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The low Mach formulation of the coupled Navier-Stokes and energy equations proved to be a suitable
tool for including variable density effects in thermal flow calculations, yet avoiding the high computational
expenses that arise with a fully compressible formulation. In this paper we present the validation of such a
low Mach solver developed in the parallel multi-physics simulation code: Alya. The LES solver is applied for
fully developed anisothermal channel flow characterised by moderate Reynolds-numbers, and high density
gradients.

Keywords: low Mach; channel flow; LES

1 Introduction
Simulation of flows characterised by low Mach number, moderate Reynolds number, and high density gradi-
ents are of high importance in combustion, which is one of the main interest of the authors. In combustion
applications temperature differences of O(103 K) occur over distances of O(10−4 m), while the transport
properties strongly depend on temperature, and the velocities are moderate to facilitate a stable flame. The
fully developed anisothermal channel flow introduced by Nicoud [1] is simulated to validate the low Mach
solver.

This type of flow was studied using direct numerical simulation (DNS) [1, 2, 3], and large eddy simulation
(LES) [4, 5, 6, 7, 8, 9] by different groups. Nicoud [1] studied DNS of anisothermal channel flow at a
wall Reynolds number of Reτ = 180 with temperature ratio of Tr = 2 (ratio of upper and lower wall
temperatures.) Toutant and Bataille [3] also use DNS to simulate a Tr = 2 case but at Reτ = 395, they
argue that results in [1] are affected by low Reynolds number effects near the hot wall. Wang And Pletcher [4]
executed LES of a channel at Tr = 3 with Reτ = 180 to study the effect of heat flux on the near wall
turbulent structures. Lessani And Papalexandris [5] used LES to explore Tr = 2 and Tr = 8 at Reτ = 180
for validation purposes. Gravemeier and Wall [6] used a finite element LES to simulate the Tr = 2, Reτ = 180
case also with the aim of validation. Serra et al. [7] used LES for the study of the turbulent kinetic energy
spectrum of anisothermal channels of Tr ∈ {2, 5} and Reτ ∈ {180, 395}. Avila et al. [8] simulate a channel
of Tr = 2 and Reτ = 180 for validating LES with finite element method. Aulery et al. [9] used both DNS
and LES to investigate the turbulent kinetic energy balance of anisothermal channel flows at Tr = 2 and
Reτ ∈ {180, 395}.

In this work simulations of anisothermal channel flows of Tr = 2 and Reτ = 395 are presented for
the validation of the developed low Mach solver. The modelling approach and the details of the case are
presented in section 2 and section 3. The results are discussed in 4.

2 Modelling approach
Ma� 1 indicates instantaneous acoustic equilibrium, since the velocity scale of the flow is much lower than
the speed of sound. In the simulation acoustics are neglected by decomposing the pressure (P ) to a spatially
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homogeneous thermodynamic pressure (P0) and the hydrodynamic pressure (p):

P (x, y, z, t) = P0(t) + p(x, y, z, t) (1)

The acoustics are eliminated by decoupling the density and the hydrodynamic component of the pressure,
i.e.: the equation of state is evaluated using only the thermodynamic pressure. In this study ideal gas law is
used keeping in mind the future combustion applications:

ρ = P0
W

RuT
(2)

where ρ is the density, W is the mean molecular weight of the gas, Ru is the universal gas constant, and T
is the absolute temperature.

In open boundary problems the thermodynamic pressure is fixed throughout the domain, however in
closed systems like the bi-periodic channel flow of this study, mass conservation constrains the thermodynamic
pressure. The total mass in the closed domain denoted by Ω is:

M =

∫
Ω

ρdV =

∫
Ω

P0
W

RuT
dV = P0

W

Ru

∫
Ω

1

T
dV (3)

In a closed system the initial mass must be sustained, thus:

P0(t) =
Mt=0Ru

W
∫

Ω
1
T dV

(4)

2.1 Governing equations
Favre filtering is applied to avoid the closure of terms with subgrid density fluctuations:

φ̃ =
ρφ

ρ
(5)

where φ is an arbitrary quantity, and ∼ and – denote Favre and Reynolds filtering respectively. After filtering
the low Mach approximation of the Navier-Stokes equations yields:

∂ρ

∂t
+
∂ρũj
∂xj

= 0 (6)

∂ρũi
∂t

+
∂ρũj ũi
∂xj

= − ∂p

∂xi
+
∂τij
∂xj
− ∂ρ (ũjui − ũj ũi)

∂xj
+ fi (7)

∂ρh̃

∂t
+
∂ρũj h̃

∂xj
=

dP0

dt
− ∂qj
∂xj
−
∂ρ
(
ũjh− ũj h̃

)
∂xj

(8)

where ũj is the resolved velocity, τij is the viscous stress tensor, fi is an external force term, h̃ is the resolved
enthalpy, and qj is the resolved heat flux vector. The viscous stress tensor is calculated as:

τij = 2µS̃Dij (9)

where S̃Dij = S̃ij − 1
3δijS̃kk is the traceless part of the strain rate tensor with δij being the Kronecker-delta,

and the strain rate tensor is:

S̃ij =
1

2
(g̃ij + g̃ji) (10)

with the velocity gradient tensor denoted by: g̃ij = ∂ũi
∂xj

.
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The enthalpy is related to the temperature as:

h̃ = href +

∫ T̃

Tref

cp(τ)dτ (11)

where href is a reference enthalpy, and Tref is the corresponding reference temperature. The isobaric
specific heat (cp) can be temperature dependent. The heat flux vector is evaluated using Fourier’s law of
heat conduction:

qj = −λ ∂T̃
∂xj

(12)

Eq.(11) has to be inverted to evaluate the heat flux and the temperature dependent quantities (ρ, µ, λ.) In
general this inversion is executed by a Newton–Raphson method, although in this work the specific heat is
constant. Note that the viscous work

(
τij

∂ũi
∂xj

)
, the work of subgrid stresses

(
ρ (ũjui − ũj ũi) ∂ũi∂xj

)
, and the

work of hydrodynamic pressure
(
ũi

∂p
∂xi

)
is neglected in the enthalpy equation, as convection and conduction

dominates the enthalpy transport in the intended applications.

2.2 Subgrid modelling
The subgrid terms in Eq.(7) and Eq.(8) are closed using eddy viscosity models:

τsgsij = ρ (ũjui − ũj ũi) = −2ρνtS̃ij (13)

qsgsj = ρ
(
ũjh− ũj h̃

)
= −ρ νt

Prt

∂h̃

∂xj
(14)

where: τsgsij is the subgrid stress tensor, qsgsj is the subgrid heat flux, νt is the eddy viscosity, and Prt is
the turbulent Prandtl number. Prt = 0.9 is used in this study proposed in [10] and verified for the low
Mach limit in [1, 3]. The eddy-viscosity model proposed by Vreman [11] is used in this work. The following
symmetric tensor is defined incorporating the effect of anisotropic mesh size:

βij = ∆2
mg̃img̃jm (15)

where ∆m is the cell size in coordinate m. The second scalar invariant of βij tensor (Bβ = β11β22 − β2
12 +

β11β33 − β2
13 + β22β33 − β2

23) is used to define the eddy viscosity:

νV remant = c

(
Bβ
g̃ij g̃ij

)1/2

(16)

where c = 0.1 is used in this study.

2.3 Spatial discretization
A finite element Galerkin approximation is used for the space discretisation with a non-incremental fractional
step extended to low Mach to stabilize pressure. This allows for the use of finite element pairs that do not
satisfy the inf-sup condition, such as equal order interpolation for the velocity and pressure used in this work.
EMAC discretisation [12] is applied for the treatment of the convective term, which assures the simultaneous
conservation of kinetic energy, momentum and angular momentum.

2.4 Temporal discretization
Temporal discretisation is performed through an explicit standard third-order Runge-Kutta scheme combined
with an eigenvalue based time step estimator [13]. First the enthalpy is advanced through the Runge-Kutta
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scheme. The enthalpy in the kth sub-step is evaluated as:

h̃k = h̃n +
∆tn

ρk−1

k∑
m=1

akm

((
−∂ρũj h̃

∂xj
−
∂qj + qsgsj

∂xj

)m
+

(
dP0

dt

)n)
, k = 1..s (17)

The enthalpy in the next step is calculated as:

h̃n+1 = h̃n +
∆tn

ρk=s−1

s∑
k=1

bk

(−∂ρũj h̃
∂xj

−
∂qj + qsgsj

∂xj

)k
+

(
dP0

dt

)n (18)

where akm and bk are the coefficients of the Runge-Kutta scheme (See Tab.1.) The time derivative of the
thermodynamic pressure is approximated at the end of each time step following the method in [14]:(

dP0

dt

)n+1

=
1

∆tn−1

((
1 +

∆tn

∆tn−1

)
Pn0 −

(
1 +

∆tn

∆tn−1
+

∆tn

∆tn−2

)
Pn−1

0 +
∆tn

∆tn−2
Pn−2

0

)
(19)

For advancing the velocity field, the non-incremental fractional step method is combined with the Runge-Kutta
scheme. The kth sub-step could consist of:

ρk,∗ũi
k,∗ = ρnũi

n + ∆tn
k∑

m=1

akm

(
−∂ρũj ũi

∂xj
+
∂τ̃ij + τsgsij

∂xj
+ fi

)m
, k = 1..s (20)

−∂
2pk

∂x2
i

=
1

ck∆tn

(
−∂ρ

k

∂t
− ∂ρk,∗ũi

k,∗

∂xi

)
, k = 1..s (21)

ρkũi
k = ρk,∗ũi

k,∗ − ck∆tn
∂pk

∂xi
, k = 1..s (22)

where ck is also listed in Tab.1. The solution of the Poisson eqation (Eq.(21)) is very expensive. Solving
it in the sub-steps is optional in the developed algorithm, this step can be omitted by directly using an
approximate pressure field in Eq.(22). The velocity field in the next time step is calculated as:

ρn+1,∗ũi
n+1,∗ = ρnũi

n + ∆tn
s∑

k=1

bk

(
−∂ρũj ũi

∂xj
+
∂τ̃ij + 2ρνtS̃ij

∂xj
+ fi

)k
(23)

−∂
2pn+1

∂x2
i

=
1

∆tn

(
−∂ρ

n+1

∂t
− ∂ρn+1,∗ũi

n+1,∗

∂xi

)
(24)

ρn+1ũi
n+1 = ρn+1,∗ũi

n+1,∗ −∆tn
∂pn+1

∂xi
(25)

where: ũin+1,∗ is a pseudo velocity used in the fractional step method.
Instead of using the divergence of the momentum evaluated in the next time step

(
∂ρn+1ũi

n+1

∂xi

)
on

the right hand side of the Poisson equation (Eq.(24)), this term is substituted by the time derivative of
density (based on Eq.(6)), and it is calculated using the second order backward approximation proposed by
Nicoud [15]:

∂ρn+1

∂t
=

((∆tn + ∆tn−1)2 − (∆tk)2)ρn+1 − (∆tn + ∆tn−1)2ρn + (∆tn)2ρn−1

∆tn∆tn−1(∆tn + ∆tn−1)
(26)
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ck akm
0
1/2 1/2
1 -1 2

1/6 2/3 1/6
bk

Table 1: Constants of the standard third-order Runge-Kutta scheme

3 Application
Fig.1 illustrates the channel flow geometry. As commonly used, the stream-wise, wall-normal, and span-wise
directions are aligned with the x, y, and z coordinates respectively. The channel half-height is chosen as
h = 1 m. The cold and hot walls are located at yc = 0 m and yh = 2 m respectively. The stream-wise and
span-wise sizes applied by Serra et al. [7] are adapted: Lx = 2πh, Lz = πh. The domain is periodic in the x
and z directions.

Figure 1: Channel geometry

The temperature dependent material properties of Toutant and Bataille [3] are used, as these represent
realistic, gas-like behaviour. The gas constant is:

R =
Ru
W

= 287
J

kgK
(27)

The dynamic viscosity is calculated using Sutherland’s law:

µ =
T 3/2

T + 111 K
1.461 · 10−6 Pas√

K
(28)

The specific heat is taken as constant: cp = 1005 J
kgK , thus Eq.(11) is greatly simplified:

h = cpT (29)

The thermal conductivity is calculated assuming constant molecular Prandtl number (Pr = 0.71):

λ =
µcp
Pr

(30)

The mean flow is induced by applying a constant artificial pressure gradient (f1) in the x direction.
Following the convention of incompressible channel simulations the flow is characterised by the wall Reynolds
number, however as the material properties are evaluated at the corresponding wall temperature:

Reτ =
ρwuτh

µw
(31)
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where "w" indicates the wall state (ρw = ρ(P0, Tw), µw = µ(Tw)), and uτ is the friction velocity:

uτ =

√
〈τw〉
ρw

(32)

with 〈τw〉 being the mean wall shear stress calculated as:

〈τw〉 =
1

∆t

t0+∆t∑
t0

|Fw,x(ti)|
Aw

dti (33)

where Fw,x(ti) is the friction force exerted on the wall at time step i, Aw is the wall surface, ∆t is length of
the averaging interval, and dti is the time step size.

The two walls have different wall Reynolds numbers for non-unity temperature ratios. The usual approach
to reach different temperature ratios is keeping the cold wall as it is while increasing the temperature of
the hot wall. If Sutherland’s law is applied, the viscosity at the hot wall increases, and the wall Reynolds
number decreases. The cases can be characterised by the average wall Reynolds number:

Reτ =
Reτ,c +Reτ,h

2
(34)

"c" and "h" indicating the cold and hot walls.
There are numerous approaches in the literature for comparing different temperature ratios. The DNS

database considered in this work imposes a force term such that the average wall Reynolds number is
constant [3], thus the force term is expressed as:

f1 =
τc + τh

2h
=

Re2τ,cµ
2
c

ρc
+

Re2τ,hµ
2
h

ρh

2h3
(35)

To calculate the force term in the Tr = 2 case the two wall Reynolds numbers are taken from the DNS [3]
a priori: Reτ,c = ReDNSτ,c = 235 and Reτ,h = ReDNSτ,h = 565. The temperature scaling is based on the wall
heat flux (q̇w), the friction temperature is defined as:

Tτ =
q̇w

ρwcpuτ
(36)

Structured hexahedral mesh is applied with homogeneous size in x and z. The mesh is refined in the
wall-normal direction using the formula in [3]. The node coordinates are calculated as:

yi = h

{
1 +

1

α
tanh

[
atanh(α)

(
2i

Ney
− 1

)]}
, i = 0..Ney (37)

where Ney is the number of elements in y, and α is a parameter expressing the level of refinement. The
number of hexahedral elements in the corresponding directions is set to 165 × 123 × 82. A refinement
parameter of α = 0.983 is used, thus at the wall distance of the first node in wall units is ∆+

y,min = 0.54,
while ∆+

x ≈ ∆+
y,max ≈ ∆+

z ≈ 15 assuming Reτ = 395.
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4 Results

4.1 Validation at the incompressible limit
The performance of the solver is assessed at quasi-incompressible conditions Tr = 1.01 and Reτ = 395. The
results are compared to the incompressible DNS of Moser et al. [16] in Fig.2. The match is considerably
good, the remaining discrepancies could be decreased by further mesh refinement.
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Figure 2: Comparison of mean velocity and fluctuations at the incompressible limit (Reτ = 395, T r = 1.01),
a: mean stream-wise velocity, b: stream-wise velocity RMS, c: wall-normal velocity RMS, d: span-wise
velocity RMS, DNS: Moser et al. [16]

4.2 Validation at Tr = 2

The results of Tr = 2 and Reτ = 395 are compared to the DNS of Toutant and Bataille [3] in Fig.3. The
wall Reynolds numbers predicted by the present work are Reτ,c = 516 and Reτ,h = 287 on the cold and hot
walls respectively. The discrepancies of the mean velocity and temperature present in Fig.3, could originate
from the different wall units (different scaling.) Also the cold side becomes more turbulent, thus the same
mesh has a lower quality at the increased temperature ratio. It is worth pointing out, that the wall-normal
and span-wise fluctuations have the most noticeable differences even in the quasi-incompressible case (Fig.2)
and these discrepancies are expected to increase with the temperature ratio. Overall the general trends are
well predicted.
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Figure 3: Comparison of mean and RMS properties of the case: Reτ = 395, T r = 2, "c+" superscript
indicates scaling by the cold wall units, a: mean stream-wise velocity, b: stream-wise velocity RMS, c: wall-
normal velocity RMS, d: span-wise velocity RMS, e: mean temperature

(
T+ = Tw−〈T 〉
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)
, f: temperature

RMS, DNS: Toutant and Bataille [3] (truncated at y+ = 200)
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