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t:The �ltered density fun
tion (FDF) is 
onsidered as one of the most e�e
tive means of 
ondu
tinglarge eddy simulation (LES) of turbulent rea
ting �ows. The FDF is essentially the 
ounterpartof the probability density fun
tion (PDF) methods in Reynolds-averaged Navier-Stokes (RANS)simulations. Alternative formulations of FDF have been introdu
ed in the literature, and theserange from FDF 
losures for a only subset of quantities where the rest is modeled via 
onventionalmodels, to FDF 
losures for the joint statisti
s of all of the relevant physi
al variables. Common toall FDF models is that the one-point statisti
s are a

ounted for in an exa
t manner; in parti
ular,FDF allows model-free representation of the subgrid e�e
ts of highly non-linear 
hemi
al kineti
s.The s
alar FDF is the simplest form of FDF, it 
onsiders only the joint statisti
 of the s
alar �eld,and 
an be utilized to in
orporate any kineti
s model in a straightforward manner. This is the mostwidely used form and is the subje
t of the 
urrent study.FDF and other methodologies with detailed 
hemistry 
omputations share a 
ommon feature:
omputational 
ost. In parti
ular, in its 
urrent implementation, the s
alar FDF involves 
on
urrentsolution of 
ompressible �ow dynami
s on an Eulerian domain, and the Monte Carlo (MC) simula-tion of a set of sto
hasti
 di�erential equations (SDEs) over a large number of Lagrangian parti
les.These parti
les represent the transient thermo-
hemi
al 
omposition of the �uid. The SDEs havethree main 
omponents: transport, mixing, and rea
tion; and these are advan
ed in fra
tional stepsusing splitting s
hemes. The rea
tion step involves the 
omputation of detailed kineti
s and thesolution of a sti� ODE system for ea
h parti
le; and a

ounts for 95% of the 
omputation time ina typi
al simulation.A 
ommon feature of su
h 
omputations is the 
omputational load imbalan
e due to the natureof 
hemi
al kineti
s and inhomogeneity of �ow 
omposition throughout the simulation domain andtime. At any instant of the simulation, di�erent regions of the �ame undergo di�erent stages of
ombustion. For some regions, the integration of 
hemistry sub-step 
an be done very qui
kly (e.g.in 
old air or fuel with no mixing), but for some others impli
it integration of a highly sti� ODEsystem is required (e.g. extin
tion/reignition regions, regions of high level of fuel/oxidizer mixing,�ame fronts, et
.).We introdu
e an adaptive domain de
omposition strategy whi
h addresses the highly dynami
and transient nature of detailed 
hemistry 
omputations in the 
ontext of a stru
tured Navier1



Stokes solver 
oupled with the Lagrangian MC solver (see Figure). The implementation allows fortremendous improvements in s
alability, and is the key enabler of petas
ale 
omputations. Thepaper des
ribes the implementation details of the hybrid solver and the domain de
ompositionstrategy, along with presentation of sample petas
ale LES of realisti
 �ames. We believe that thedynami
 parallelization is not only useful, but also is essential for su
h 
omputations in order toa
hieve petas
alability ; and that the lessons learned and the strategies presented in this work areappli
able to all PDF and FDF methodologies, as well as other simulation te
hniques that involvedetailed 
hemistry 
omputations.Keywords: Turbulen
e, Combustion, Large Eddy Simulation, Filtered Density Fun
tion, Petas-
ale Parallelization, Chemi
al Kineti
s.
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TimestepFigure 1: Domain topology with (a) the uniform de
omposition, and (b) adaptive de
omposition.Non-idle CPU times per time-step for ea
h rank for subsequent time-steps with (
) uniform de
om-position, and (d) adaptive irregular de
omposition. Petas
ale 
omputations 
ontain 10,000s of CPU
ores. What is shown here for 
larity, is a ben
hmark 
ase with small number of CPUs.


