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Abstract: We present a parallel Newton-Krylov-Schur �ow solution algorithm for the three-
dimensional Navier-Stokes equations for both steady and unsteady �ows. The algorithm employs
second- and fourth-order summation-by-parts operators onmulti-block structured grids with simul-
taneous approximation terms used to enforce block interface coupling and boundary conditions.
The discrete equations are solved iteratively with an inexact-Newton method, while the linear
system at each Newton-iteration is solved using the �exiblegeneralized minimal residual Krylov
subspace iterative method with the approximate-Schur parallel preconditioner. Time-accurate solu-
tions are evolved in time using explicit-�rst-stage singly-diagonally-implicit Runge-Kutta methods.
The algorithm is demonstrated through the solution of the steady transonic �ow over the NASA
Common Research Model wing-body con�guration in a range of angles of attack where substantial
�ow separation occurs. Several parallel scaling studies highlight the excellent scaling characteristics
of the algorithm on cases with up to 6656 processors, and grids with over 150 million nodes. Finally,
the algorithm accurately captures the temporal evolution of the Taylor-Green vortex �ow, high-
lighting the advantages of high-order spatial and temporaldiscretization. The algorithm presented
is an e�cient option for a wide range of �ow problems encompassing the steady and unsteady
Reynolds-averaged Navier-Stokes equations as well as large-eddy and direct numerical simulations
of turbulent �ows.
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1 Introduction

With recent advances in computer architectures, parallel computing, and numerical methods, large-scale
CFD simulations are becoming more suitable for use in a practical setting. However, accurate simulations
of �ows of interest necessitate the solution of very large problems, with the results from the AIAA Drag
Prediction Workshop [1] indicating that grids with over O( 108) grid nodes are required for grid-converged
lift and drag values for �ows over a wing-body con�guration. In order to make e�cient use of computational
resources, algorithms that scale well with thousands of processors are required. At the same time, high-
order methods present an avenue for reducing the cost of simulations. Despite being more computationally
expensive per node or per time step, they can achieve a speci�c level of accuracy on signi�cantly coarser
grids.

In the computation of turbulent �ows over complex geometries, numerical approaches span the use of
structured or unstructured grids, �nite-volume, �nite-el ement, or �nite-di�erence approximations, explicit
or implicit solution strategies, and a wide range of linear solvers and preconditioners. A few examples
of popular Reynolds-averaged Navier-Stokes (RANS) solvers are OVERFLOW [2], FUN3D [3], Flo3xx [4],
and NSU3D [5]. This paper presents an e�cient parallel three-dimensional multi-block structured solver
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for turbulent �ows over aerodynamic geometries, extendingprevious work [6, 7, 8] on an e�cient parallel
Newton-Krylov �ow solver for the Euler equations and the Navier-Stokes equations in the laminar �ow
regime. The combination of techniques employed in the current solver also has the bene�t of lending itself
to a uni�ed approach for performing both steady and implicit unsteady computations.

In order to accommodate complex three-dimensional shapes,the multi-block approach, which breaks the
computational domain into several subdomains, is used. This approach has the added bene�t of being easily
utilized in a parallel solution algorithm, since each blockcan be assigned to an individual process. Simulta-
neous approximation terms (SATs) are used to impose boundary conditions, as well as inter-block solution
coupling, through a penalty method approach. SATs were originally introduced to treat boundary conditions
in an accurate and time-stable manner [9], and later extended to deal with block interfaces [10, 11, 12]. Svärd
et al. [13, 14] and Nordströmet al. [15] have shown the application of SATs for the Navier-Stokes equations
to unsteady problems, as well as some steady model problems.This approach has several advantages over
more traditional approaches. It eliminates the need for mesh continuity across block interfaces, reduces the
communication for parallel algorithms, especially when extended to higher-order discretizations, and ensures
linear time stability when coupled with summation-by-part s (SBP) operators. SBP operators allow for the
construction of �nite-di�erence approximations to deriva tives, while also presenting a systematic means of
deriving higher-order operators with a stable and suitably high-order boundary treatment. However, the
SBP-SAT approach has received limited use in computationalaerodynamics applications since SATs present
a di�culty in that they can necessitate the use of small time s teps with explicit solvers [16]. Hence, the
combination of SATs with a parallel Newton-Krylov solver has the potential to be an e�cient approach.

Parallel preconditioning is a critical component of a scalable Newton-Krylov algorithm. Hicken et al. [17]
have shown that the approximate-Schur preconditioner scales well to at least 1000 processors when inviscid
and laminar �ows are considered, with similar performance reported for turbulent �ows in [18]. One of the
objectives of this paper is to demonstrate the applicability of a spatial discretization based on the SBP-SAT
approach with a parallel Newton-Krylov-Schur algorithm to the Reynolds-averaged Navier-Stokes equations
coupled with the Spalart-Allmaras one-equation turbulence model [19], resulting in an e�cient parallel solver
for turbulent �ows. The e�cient Newton-Krylov-Schur algor ithm used for steady computations can also be
readily extended to the solution of unsteady �ows, with the solution of each time step serving as an excellent
initial guess for the solution of the subsequent time step, greatly improving the convergence of the nonlinear
residual. In this way, a uni�ed approach can be readily applied to the solution of both steady and unsteady
�ows, with the time-accurate algorithm leveraging the solution strategy developed for steady �ows.

Although more expensive per node or per time step, higher-order methods possess a higher convergence
rate. In simulations where a high level of accuracy is required, higher-order methods can become more
e�cient than their second-order counterparts. Additional ly, CFD applications with complex geometries
often result in highly sti� problems. These can be solved by explicit algorithms, but are limited by the size
of the time step needed for stability and will often result in prohibitively expensive computations. On the
other hand, one can generate implicit methods that are stable regardless of step size and can be used to solve
these sti� problems. Higher-order implicit time-marching methods bene�t from both of these advantages
and present a promising approach for obtaining time-accurate �ow solutions in an e�cient manner.

The paper is divided into the following sections. Section 2 presents a brief overview of the governing
equations, while Sections 3 and 4 present the spatial and temporal discretizations used, respectively. Section 5
provides details of the Newton-Krylov-Schur method and itsapplication to solving the large nonlinear system
resulting from the discretization of the Navier-Stokes equations for both steady and unsteady �ows. Section
6 presents results obtained with the current algorithm for steady and unsteady �ow solutions, including
steady transonic �ow solutions around the NASA Common Research Model (CRM) geometry, parallel scaling
performance characteristics of the current algorithm, andthe Taylor-Green vortex unsteady �ow simulation.
Conclusions are given in Section 7.

2 Governing Equations

The current algorithm numerically solves the three-dimensional Navier-Stokes equations, with turbulent ef-
fects modeled by use of the standard form of the Spalart-Allmaras one-equation turbulence model. Applying
the curvilinear coordinate transformation (x; y; z) ! (�; �; � ) allows the application of �nite-di�erence meth-
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ods in a computational space where the grid is uniform. All steady �ows are assumed to be fully turbulent,
and no explicit trip terms are used in the turbulence model.

3 Spatial Discretization

The spatial discretization of the Navier-Stokes equationsand the turbulence model is obtained by the use of
Summation-By-Parts (SBP) operators, while inter-block coupling and boundary conditions are enforced by
the use of Simultaneous Approximation Terms (SATs). This section presents the SBP operators for �rst and
second derivatives and their application to the governing equations, as well as the various SATs required.
The SBP-SAT discretization, if implemented in a dual-consistent manner, can also lead to superconvergent
functional estimates [20, 21].

The numerical dissipation employs either the scalar dissipation model developed by Jamesonet al. [22]
and later re�ned by Pulliam [23], or the matrix dissipation m odel of Swanson and Turkel [24]. With the
second-order spatial discretization, the numerical dissipation consists of second- and fourth-di�erence dissi-
pation operators, whose magnitudes are controlled by� 2 and � 4 coe�cients, respectively, typically set to 2.0
and 0.04 for transonic �ows. For subsonic �ows, � 2 is set to 0. With the higher-order spatial operator, the
order of the dissipation model is increased in order to preserve the overall order of the spatial discretization.

Grid metrics, which result from the coordinate transformation, are computed in a manner that matches
the spatial �nite-di�erence operator, with second-order m etrics used with the second-order operators and
fourth-order metrics used with the fourth-order operators.

The ultimate goal of the current research program is the construction of an algorithm for e�cient aerody-
namic optimization of aircraft. The most computationally e xpensive operation of the optimization procedure
is the �ow solution. One means of making the �ow solver more e� cient is to construct a higher-order (HO)
discretization such that, relative to a second-order discretization, equivalent accuracy can be achieved with
a coarser mesh.

In this section we present a general framework for discretizing the compressible Navier-Stokes equations
with SBP operators that have orders of accuracy from2 to 6. The turbulence model has yet to be discretized
using HO operators and so the remainder of the paper concentrates on second-order SBP operators, with the
exception of some results in Section 6. The premise is to givea general outline of the proposed discretization,
while a more detailed presentation of the higher-order operators is provided in [25].

3.1 Summation-by-parts operators

SBP operators allow for the construction of �nite-di�erenc e (FD) approximations to derivatives. Additionally,
they present a systematic means of deriving HO FD operators with a stable and suitably high-order boundary
treatment. As a result of only requiring C0 continuity between block interfaces, the SBP-SAT discretization
gives rise to multi-block schemes that possess less communication overhead than typical schemes using halo
nodes. Furthermore, the relaxed geometric requirements atinterfaces make grid generation and domain
decomposition substantially easier. When dealing with thecurrent governing equations, approximations to
both the �rst and second derivatives are required.

The SBP operators for the �rst derivative were originally derived by Kreiss and Scherer [26], subsequently
extended by Strand [27], and applied by various authors (see[6, 7, 15, 28, 29]). SBP operators are centered
di�erence schemes that do not include boundary conditions; in our case these are enforced using SATs.
They are constructed so that the discrete energy-method canbe used to make time stability statements
about a discretization and have been shown to be time-stablefor the linearized Navier-Stokes equations [28].
However, for curvilinear coordinates, time-stability can only be guaranteed for SBP operators constructed
with a diagonal norm, and so the discussion is limited to diagonal norm SBP operators.

3.1.1 SBP operator for �rst derivative

In this section we brie�y present the relevant SBP operatorsfor the �rst derivative. For the �rst derivative,
the SBP property is mimetic of

Rb
a Q@x Qdx, also known as integration by parts, leading to the following

de�nition:
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SBP Diagonal Norm First Derivative The matrix D1 2 R(N +1) � (N +1) is an SBP operator for the �rst
derivative, if it approximates the �rst derivative, is of fo rm D1 = H � 1� , where H 2 R(N +1) � (N +1) is a
positive-de�nite diagonal matrix, called the norm, and � has property � + � T = diag(� 1; 0; :::; 0; 1).

A globally second-order accurate operator for a �rst derivative is given by

D1 = H � 1� ; (1)

where

H = h

2
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and h takes on the value of the spatial di�erence in the pertinent coordinate direction, either � � , � � , or
� � . In the context of the uniform computational grid, h has a value of 1 for all three coordinate directions.

Application to Navier-Stokes equations

The D1 operator is used to obtain a �nite di�erence approximation o f the inviscid �uxes for the entire
computational domain. For example, the inviscid �ux in the � -direction can be taken as

@� Ê � D1� Ê : (2)

For the second-order operator, this results in the following stencils in di�erent parts of the domain:

low side: Ê2 � Ê1; interior: 1
2

�
Ê i +1 � Ê i � 1

�
; high side: ÊN � ÊN � 1;

where N is the number of nodes in the� -direction. This is identical to the typical centered �nite di�erence
approximation, with �rst-order treatment at boundaries.

The D1 operator is also used in the discretization of the cross-derivative viscous terms, which have the
form

@� (�@� � ); (3)

where � is a spatially variable coe�cient and � can be a �ow quantity such as the x-component of velocity,
u. Using (1), the cross-derivative can be approximated as

D1� � D1� � ; (4)

resulting in the following interior discretization (at nod e (j; k; m )):

1
2

� j +1 ;k;m

�
� j +1 ;k +1 ;m � � j +1 ;k � 1;m

2

�
�

1
2

� j � 1;k;m

�
� j � 1;k +1 ;m � � j � 1;k � 1;m

2

�
: (5)

Application to Spalart-Allmaras turbulence model

The advective terms that appear in the turbulence model consist of �rst derivatives of the turbulence variable,
~� , multiplied by velocities. An example of this is the term associated with the spatial derivative in the � -
direction, given by

U@� ~�; (6)

where U is the contravariant velocity given by � x u + � y v + � z w.
The authors of the model suggest the use of an upwinding strategy when discretizing this term, which

is the approach taken here. However, in the context of SBP operators, we have made use of the connection
between upwinding and arti�cial dissipation, namely that a n upwinded operator can be equated to a centered
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di�erence operator added to a dissipation operator. The derivative can be taken as

U@� ~� � U D1 ~� +
1
2

jU jH � 1D T
d Dd ~� (7)

where ~� represents a vector containing the turbulence quantity in the domain, and

U = diag(U1; U2; :::; UN ) ; jU j = diag(jU1j; jU2j; :::; jUN j) ; Dd =

2
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:

The above SBP discretization provides a clear approach to dealing with block boundaries. For complete-
ness, the following shows the resulting discretization in di�erent parts of the domain:

low side: (U1 � j U1j) (~� 2 � ~� 1) ;
interior: 1

2 Ui (~� i +1 � ~� i � 1) � 1
2 jUi j (~� i +1 � 2~� i + ~� i � 1) ;

high side: (UN + jUN j) (~� N � ~� N � 1) :

The �rst derivative operator of (1) is also used for the derivatives present in the vorticity term, S.

3.1.2 SBP operator for second derivative

The compressible Navier-Stokes equations require a discrete approximation to derivatives of the form @x (�@x � ),
where � are spatially varying coe�cients. The simplest means of discretizing these terms is to apply the
�rst derivative twice. Alternatively, one can construct a d iscrete approximation that has the same stencil
width as the �rst derivative, called a compact-stencil operator. The application of the �rst derivative twice
has several disadvantages compared to compact-stencil operators: larger bandwidth, loss of one order of
accuracy, higher global error, and less dissipation of highwavenumber modes. Given these shortcomings,
our approach is to derive compact SBP operators for the second derivative with variable coe�cients. These
have been recently derived for up to6th interior order by Mattsson [30]. In a companion paper [25] we
present a novel framework for deriving SBP operators for thesecond derivative with variable coe�cients
that allow for derivation of up to 8th order interior accuracy, allow for solution of the resultant nonlinear
system of equations, substantially reduce the number of free parameters used in the derivation, and can be
systematically constructed and optimized.

For the second derivative with variable coe�cients, the SBP property is mimetic of
R 

a Q@x (�@x (Q))dx,
where � are the variable coe�cients, leading to the following de�ni tion:

SBP Second Derivative The matrix D2(� ) 2 R(N +1) � (N +1) is an SBP operator for the second deriva-
tive, with variable coe�cients � > 0, if it approximates the second derivative and is of the form,D2(� ) =
H � 1 f� M + EBD bg, whereH is a diagonal positive-de�nite matrix, called the norm, E = Diag(� 1; 0; :::; 0; 1),
B = diag(� 0; � 1; :::; � N � 1; � N ), Db is an approximation to the �rst derivative at the boundaries , M =
D T

1 HBD 1 + R, and M and R are positive-semi-de�nite (PSD) and symmetric.

In order to show that the proposed SBP-SAT discretization is time-stable for the linearized Navier-Stokes
equations, H in the above de�nition must be the same norm as used with the �rst derivative, thus the
formulation is said to be compatible with the �rst derivativ e; see Mattsson [31] for more information.

The proposed SBP operators for the second derivative with variable coe�cients are 2p accurate on the
interior and have p accurate boundary closures; nonetheless, Mattsson and Nordström [31] have proven them
to be p + 2 globally accurate.

For the second-order operator one obtains:

D (2 ;1)
2 (� ) = H � 1

�
�

�
D (2 ;1)

1

� T
HBD (2 ;1)

1 �
1

4h

�
~D (2 ;1)

2

� T
C2B ~D (2 ;1)

2 + EBD (2 ;2)
1

�
; (8)
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where
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and D (2 ;1)
1 is de�ned in (1). The notation D ( i;b ) provides the order of the operator, both internally (i ) and

at boundaries (b). The tilde symbol signi�es an undivided di�erence operator.

Application to governing equations

Both the viscous terms of the Navier-Stokes equations and the di�usive terms of the turbulence model contain
double-derivatives which can be approximated as

@� (�@� � ) � D2(� )� : (9)

For an internal node, this will result in the narrow stencil u sed by Pulliam [23] (with k and m subscripts
suppressed):

1
2

(� j +1 + � j )( � j +1 � � j ) �
1
2

(� j + � j � 1)( � j � � j � 1): (10)

At the block boundaries, where one-sided di�erences are employed, the discretization takes on the form

low side: � � j [2(� j +1 � � j ) � (� j +2 � � j +1 )] + � j +1 (� j +1 � � j );
high side: � j [2(� j � � j � 1) � (� j � 1 � � j � 2)] � � j � 1(� j � � j � 1):

(11)

3.2 Simultaneous Approximation Terms

The use of SBP operators ties in closely to the application ofSAT penalties at block boundaries, be they
interfaces or domain boundaries. SATs are used to preserve inter-block continuity, or enforce speci�c bound-
ary conditions. The purpose of this section is not to derive the forms of the various SATs used, but rather to
present the implementation used in the present algorithm. See references [6, 13, 14, 15] for an analysis and
derivation of the SAT terms applied to the Navier-Stokes equations. All SAT terms that follow are shown
in the form in which they would be added to the right-hand-side of the governing equations.

3.2.1 SATs for Navier-Stokes equations

The form of the inviscid, or Euler, portion of the SATs on the low side of a block is

SAT inv = � H � 1
b J � 1A+

� (Q � Qexternal ) ; (12)

where Hb is the boundary node element of the diagonal norm matrixH ,

A+
� = A � + jA � j

2 ; A � = @̂E
@̂Q

;

and Q are the �ow variables on the boundary node in the current block. jA � j denotesX � 1 j� j X , whereX is
the right eigenmatrix of A � , and � contains the eigenvalues along its diagonal. At a high-sideboundary A �

�
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is used to capture the incoming characteristics and the signof the penalty is reversed. When dealing with
boundaries normal to the other two coordinate directions,A � is replaced by eitherA � or A � . The variable
Qexternal takes on the target values to which the local values ofQ are being forced. When dealing with a
block interface, these are the �ow variable values on a coincident node in a neighbouring block, or, when
dealing with a far-�eld boundary, they can be the free-stream �ow variable values. A number of di�erent
boundary conditions, such as a slip-wall or symmetry plane,can be enforced using this approach for the Euler
equations. In each case, the SAT works on a principle very similar to characteristic boundary conditions.

The basis of the viscous SATs is presented by Nordströmet al. [15] and is summarized below, with special
attention being paid to each type of block boundary.

The �rst type of viscous SAT deals with di�erences in viscous �uxes. In the � -direction, this term has
the form

SATvisc _ ux =
H � 1

b � V

Re

�
Êv � gv

�
; (13)

where Êv is the local viscous �ux, and gv is the target value of the viscous �ux. Additionally, � V = 1 at a
low-side boundary, and -1 at a high-side boundary. At a far-�eld boundary, which is supposed to force the
solution towards free-stream conditions,gv = 0 . Interface SATs also make use of (13), wheregv is equal to
Êv2 , the viscous �ux on the coincident node in the adjoining block.

A no-slip adiabatic wall boundary condition is enforced with the use of a di�erent type of term, which is
again added on top of the Euler SAT. The form of the viscous portion of the no-slip wall SAT for a boundary
at the low or high side of a block in the � -direction, is

SATvisc _ wall ;1 =
H � 1

b � W

Re
I (Q � Qw ) ; (14)

where

� W � �
� 2

x + � 2
y + � 2

z

J
�
2�

max
�


Pr

;
5
3

�
; Qw =

�
� 1; 0; 0; 0;

� 1T2

 ( � 1)

� T

:

� W is calculated based on local values, whileQw is constructed in order to enforce an adiabatic no-slip wall
boundary condition. The three momentum components are forced toward zero, thus satisfying the no-slip
condition, while no condition is enforced on density, sincethe local value of density, � 1, will cancel out in the
penalty term. The energy equation has a penalty term appliedto it based on the value of the temperature
of one node above the boundary,T2. This approach will result in a zero temperature gradient at the solid
boundary, along with a no-slip velocity condition. The use of T2 to enforce the adiabatic condition relies on
the assumption that the grid is perpendicular to the surfaceof the wing, which may not always be true. The
form of the SAT presented in (14) can also be readily used to enforce an isothermal boundary condition.
This can be achieved by replacing theT2 term in Qw with the desired wall temperature, Tw , as described in
[14]. It should also be noted that unlike a more traditional method of applying the adiabatic no-slip surface
condition, the penalty approach presented here does not apply any constraint on the momentum equation.
This is due to the fact that the Navier-Stokes equations are solved on all nodes, including the boundaries,
whereas more traditional approaches provide the solution on boundaries explicitly.

An alternate approach to dealing with the adiabatic conditi on involves a combination of previously
discussed penalty terms. The surface penalty in (14) can be modi�ed to only enforce the no-slip condition,
while the viscous �ux penalty in (13) can be modi�ed to enforce the zero-temperature gradient necessary for
the adiabatic condition. The overall form of this SAT is

SATvisc _ wall ;2 = H � 1
b

�
� W

Re
I (Q � Qw2 ) +

� V

Re

�
Êv � Êv ;w

� �
; (15)

where
Qw2 = [ � 1; 0; 0; 0; e1]T ;

and Êv ;w is identical to Êv , except that the temperature derivative terms normal to the wall are set to zero.
The local values of density and energy are given by� 1 and e1, respectively, and the coe�cients � W and
� V retain their previously de�ned values. In this way, the �rst part of the SAT enforces only the no-slip
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condition, while the second part enforces the adiabatic condition. Since this approach uses the gradients as
they appear in the viscous stresses, it makes no assumptionsabout the grid (whether it is perpendicular to
the surface), and enforces a more general condition of@T

@n = 0 .
Block interfaces are treated in a similar way, but with unique viscous SATs for penalizing di�erences in

conservative variable values. The form used is:

SATvisc _ vars = �
H � 1

b � V2

JRe
B int ;� (Q � Q2 ) ; (16)

where
� V2 � 0:5

for stability, and Q2 is the vector of conservative �ow variables on the coincident node in the adjoining block.
The B int matrix is related to the viscous Jacobian, and is derived based on Nordström et al. [15]. Refer to
the Appendix for the complete form.

In order to reduce the size of the computational domain, symmetry boundaries can be imposed. SATs
are again used to impose this boundary condition by using (12) to impose a purely tangential �ow ( Qexternal

is constructed in such a way as to force the normal velocity component to zero). In addition, (14) is used to
enforce a zero normal gradient in all conservative variables.

The following is used to enforce the inviscid SAT on an out�ow boundary in a viscous �ow:

SAT inv _ outow =
H � 1

b � I

J
A �

� (Q j max � Q j max � 1) ; (17)

in which the boundary is assumed to be on the high side of a block in the � -direction. The modi�cation
is appropriate in dealing with the viscous wake region. The advantage of this approach is that it requires
minimal modi�cation to the existing Euler SAT term, which us es the free-stream �ow conditions instead of
Q j max � 1. An alternate approach to dealing with the out�ow condition is presented by Svärdet al. [13].

3.2.2 SATs for turbulence model

The SAT for the advection portion of the turbulence model needs to account for the �ow direction in much
the same way as the Euler equation SATs. This can be achieved using the following form of the SAT:

SATadv = H � 1
b � a (~� local � ~� target ) ; (18)

where ~� local is the local value of the turbulence variable and~� target is the target value of the turbulence
variable, which can either be speci�ed by a boundary condition or, in the case of a block interface, the
corresponding value on an adjoining block. The SAT parameter � a is constructed so that it accounts for the
direction of information propagation in the �ow:

� a = �
1
2

[max (jUj; � ) + � aU] ; (19)

where � a is +1 on the low side of a block, and -1 on the high side of a block. On an interface all �ow
related information in � a, such as the contravariant velocity U, is based on an average velocity between the
coincident interface nodes, while at a domain boundary, it is constructed based on local information only.
Finally, � is a limiting factor introduced to prevent the SAT from compl etely disappearing in regions where
the value of U goes to zero, such as near a solid surface. Following the workdone on the Euler equation
SATs, the value of � was chosen to be

� = Vl

�
jUj + a

q
� 2

x + � 2
y + � 2

z

�
; (20)

where Vl = 0 :025, and a is the speed of sound. The quantity appearing in the bracketsabove is the spectral
radius of the inviscid �ux Jacobian.

As with the SATs used for the viscous portion of the Navier-Stokes equations, the SATs for the di�usive
portion of the turbulence model consist of two parts, one dealing with the di�erence in the turbulent quantity,
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the other dealing with the di�erence in the turbulent quanti ty gradient.
The di�usive SAT dealing with the di�erence in gradients of t he turbulence variable has the general form

SATdi� _ ux = H � 1
b � df (glocal � gtarget ) ; (21)

where � df is +1 on the low side of a block and -1 on the high side of a block.Additionally, the local and
target gradients, denoted by g, have the form

g =
1

� t Re
(� + ~� )

�
� 2

x + � 2
y + � 2

z

�
� � ~�; (22)

where� � ~� is a one-sided �rst derivative consistent with the de�nitio n of the second derivative SBP operator at
block boundaries, speci�ed in theD (2 ;2)

1 matrix of (8). The parameter � t is de�ned as part of the turbulence
model with a value of 2=3. This SAT is applied at the far�eld boundary, with the target gradient set to 0,
or at block interfaces, with the target gradient calculated based on values at the interface of the adjoining
block.

The di�usive SAT that deals with the di�erence in �ow variabl es has a form analogous to the viscous
SAT presented by Nordström et al. [15] for the Navier-Stokes equations,

SATdi� _ vars = � H � 1
b

1
4� t Re

� dv (~� local � ~� target ) ; (23)

where
� dv = ( � + ~� )

�
� 2

x + � 2
y + � 2

z

�
: (24)

As with the advective SAT, the value of � dv is based on a state average when dealing with an interface,
or simply the local state when at a domain boundary. Grid metrics are always taken from the local block
information. This SAT is applied at block interfaces, wall boundaries (where the target value is 0), and
symmetry planes (where the target value is taken from one node inside the boundary).

While the production and destruction terms act as source terms, therefore not necessitating the appli-
cation of the SBP-SAT approach due to the absence of spatial derivatives, we have found it necessary to
add a source term for nodes located directly on the surface ofthe aerodynamic body. The production and
destruction terms have no physical meaning for these nodes,as they are unde�ned due to a division by a zero
o�-wall distance. However, a lack of any source term for the surface nodes leads to a signi�cant di�erence
in the residual between the surface nodes and the nodes directly above the surface. This di�erence often
results in large, destabilizing updates to the turbulence variable, often causing the code to diverge.

A destruction source term is added to all nodes with a zero o�-wall distance in order to stabilize the
solution in the early stages of convergence. It is calculated using a value ofd = dmin =2, where dmin is the
smallest non-zero o�-wall distance in the entire computational domain. The use of this extra source penalty
for the surface nodes does not have a signi�cant impact on theconverged solution, as it forces~� towards 0.

The far�eld condition used with the turbulence model sets the target far�eld value of ~� to 3.0, as suggested
by Spalart and Rumsey [32]. The target surface value of~� is set to 0.0. Furthermore, the turbulence quantity
is initialized to the far�eld value at the beginning of the �o w solution process.

4 Temporal Discretization

General s-stage Runge-Kutta methods are described by:

y(n ) = y(n � 1) + h
P s

j =1 bj F (Yj ; t (n � 1) + ci h);
Yi = y(n � 1) + h

P s
j =1 A ij F (Yj ; t (n � 1) + ci h) for i = 1 ; : : : ; s;

(25)

where Yi are the individual stage values,y(n ) the solution at time step n, h = t (n ) � t (n � 1) is the step size,
and A ij , bj and ci are the coe�cients of the given method, often presented in a Butcher tableau:
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ci A ij

bj
.

4.1 Explicit-�rst-stage and sti�-accuracy

Often the order of the internal stages in a Runge-Kutta method is lower than the global order predicted by
classical order theory. Asymptotically, global order convergence is always guaranteed and is also practically
realized for relatively non-sti� problems; however, when implicit Runge-Kutta methods are applied to very
sti� problems with �nite step sizes, the local error of these internal stages can dominate. This is known as
order reduction.

In CFD applications, order reduction is not a threat for invi scid or laminar problems; however, order
reduction can manifest in URANS simulations [33, 34]. Forcing the �rst stage of explicit-�rst-stage singly-
diagonally-implicit Runge-Kutta (ESDIRK) methods to be ex plicit, allows the internal stages to have order
two. The local error can be further reduced by enforcing sti�-accuracy, namelycs = 1 and thereforebj = Asj .
These conditions imply that the minimum convergence of an ESDIRK method for a sti� ODE will be at least
third order. The conditions for sti�-accuracy also mean that the explicit stage needs only to be computed
once.

4.2 Singly-diagonally-implicit methods and stability

Methods in this class of time-integrators are unconditionally stable (A-stable) and provide complete damping
of modes at in�nity (L-stable). This is particularly advant ageous when the governing equations are sti�, as
is often the case in CFD simulations, especially when geometries are complex. The size of the time steps is,
therefore, only limited by accuracy and not stability. Expl icit methods, which are conditionally stable, can
be used, but the required number of time steps to maintain stability increases rapidly with sti�ness. This
increase in the number of times steps outweighs the cost of solving an implicit non-linear system.

Fully implicit Runge-Kutta methods can be generated which have order2s, wheres again is the number
of stages. This is very attractive for lowering the local truncation error and for increasing convergence with
step size. However, fully-implicit RK methods require an implicit solution to a system of size sn, where n
is the number of unknowns. For large systems of equations, which are common in CFD, this can be very
expensive in terms of both CPU time and memory. In contrast, diagonally-implicit methods only require
the solution to s systems of sizen.

Letting the diagonal entries of A ij be constant, except A11, which is zero, means that the temporal
component of the Jacobian (36) for the implicit stages is constant. This can be exploited during the solution
process to reduce the computational costs. More information can be found in Section 5.2.2.

4.3 Runge-Kutta methods and order of accuracy

It is well known that A-stable implicit Linear Multistep Met hods (LMMs) are limited to second-order [35].
However, this restriction does not apply to Runge-Kutta methods; arbitrarily high-order methods can be
generated. High-order methods are desired since they have the potential be be more e�cient, especially for
simulations which require a high level of accuracy.

4.4 ESDIRK methods and local truncation error

Incorporating these ideas, the Butcher tableau of an ESDIRKmethod is of the form:

0 0 0 0 : : : 0
2� � � 0 : : : 0
c3 a31 a32 � : : : 0
...

...
. . .

...
1 as1 as2 as3 : : : �

as1 as2 as3 : : : �

.

10



Table 1: List of time-marching methods and associated characteristics, z = �h

Method Global External Total Implicit Stability jLT E j
Order Steps Stages Stages

BDF2 2 2 1 1 L-Stable � 0:33z3

BDF2OPT(0.5) [36] 2 2 1 1 L-Stable � 0:16z3

ESDIRK2/TRBDF2 2 1 3 2 L-Stable � 0:04z3

BDF3 3 3 1 1 L(86:03� )-Stable 0:25z4

ESDIRK3 3 1 4 3 L-Stable � 0:0259z4

RK4 4 1 4 0 Conditional � 0:0083z5

BDF4 4 4 1 1 L(73:35� )-Stable 0:2z5

MEBDF4[37] 4 3 3 3 L-Stable � 0:0892z5

SDIRK4 4 1 3 3 L-Stable � 0:1644z5

ESDIRK4 4 1 6 5 L-Stable � 0:0008z5

From these coe�cients, the local truncation error can be evaluated. First, the stability polynomial is
de�ned as:

� (z) = 1 + zbT (I � zA)� 11; (26)

whereI is the identity matrix, 1 is a column vector of ones, andz = �h , where � represents the eigenvalue of
the test function y0 = �y . The stability polynomial approximates ez , the exact solution of the test equation,
up to the order of the Runge-Kutta method, p. Written as a Taylor series, the di�erence between the stability
polynomial and the exact solution is:

� (z) � ez =
�

1 + z +
1
2

z2 + : : : +
1
p!

zp + O(p + 1)
�

�
�

1 + z +
1
2

z2 +
1
6

z3 + : : :
�

(27)

= C1zp+1 + C2zp+2 + C3zp+3 + : : : (28)

The local truncation error, is then de�ned as C1zp+1 . A �nal advantage of ESDIRK methods is the
relatively small local truncation error coe�cients ( jLT E j), as can be seen in Table 1, which compares some
common time integration methods. Even taking into account the increased number of implicit stages, it is
clear that ESDIRK methods of a given order can be very e�cient.

5 Solution Methodology

5.1 Steady-state solutions

Applying the SBP-SAT discretization described in the previous section to the steady Navier-Stokes equations
and the Spalart-Allmaras one-equation turbulence model results in a large system of nonlinear equations:

R (Q ) = 0 ; (29)

whereQ represents the complete solution vector. When time-marched with the implicit Euler time-marching
method and a local time linearization, this results in a large system of linear equations of the form [38]:

�
I

� t
+ A (n )

�
� Q (n ) = � R (n ) ; (30)

wheren is the outer (nonlinear) iteration index, � t is the time step, I is the identity matrix, R (n ) = R (Q (n ) ),
� Q (n ) = Q (n +1) � Q (n ) , and

A (n ) =
@R (n )

@Q (n )

is the Jacobian.
In the in�nite time step limit, the above describes Newton's method and will converge quadratically if a

suitable initial iterate, Q (0) , is known. This initial iterate must be su�ciently close to t he solution of (29).
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Since it is unlikely that any initial guess made for a steady-state solution will satisfy this requirement, the
present algorithm makes use of a start-up phase whose purpose it is to �nd a suitable initial iterate. The
following sections describe each of the phases as they applyto the solution of the Navier-Stokes equations.
Both phases result in a large set of linear equations at each outer iteration, which are solved to a speci�ed
tolerance using the preconditioned Krylov iterative solver GMRES.

5.1.1 Approximate-Newton phase

The approximate-Newton method makes use of implicit Euler time-stepping to �nd a suitable initial iterate
for Newton's method. Since we are not interested in a time-accurate solution, some useful modi�cations can
be made. These include a �rst-order Jacobian matrix and a spatially varying time step.

A �rst-order Jacobian matrix, A 1, has been shown to be an e�ective replacement for the true Jacobian,
A , during the start-up phase [39, 40, 41]. A number of approximations are made when creating the �rst-
order approximation to the Jacobian. When dealing with the inviscid terms, the fourth-di�erence dissipation
coe�cient, � 4, is combined with the second-di�erence dissipation coe�cient, � 2, to form a modi�ed second-
di�erence dissipation coe�cient, ~� 2, such that

~� 2 = � 2 + �� 4;

where � is a lumping factor. A value of � = 8 has been shown to work well for the Navier-Stokes solutions
with scalar dissipation [42]. Current work with matrix diss ipation uses � = 12. The modi�ed fourth-
di�erence dissipation coe�cient, ~� 4, is set to zero. Applying this lumping approach reduces the number of
matrix entries for the inviscid terms, reducing the memory requirements for the code.

The viscous terms, however, still possess a relatively large stencil. To mitigate this, the cross-derivative
terms that appear in the viscous stresses are dropped when constructing the �rst-order Jacobian. This
approach reduces the stencil of all interior nodes to nearest neighbors only, matching the stencil size of the
inviscid terms, which is substantially smaller than that of the full �ow Jacobian. The linearization of the
viscous �ux SATs for the Navier-Stokes equations is also modi�ed to ignore the tangential derivatives, which
are analogous to the cross-derivatives. Additionally, theviscosity term appearing in the viscous �uxes is
treated as a constant when forming the approximate Jacobian.

No approximations are made to the discretization of the turbulence model when constructing the Jacobian
entries that arise due to the solution of this extra equation, since all cross-derivatives were dropped during
the coordinate transformation.

The implicit Euler method requires a time step whose inverseis added to the diagonal elements ofA 1. A
spatially varying time step has been shown to improve the convergence rates of Newton-Krylov algorithms,
leading to the use of the following value:

� t (n )
j;k;m =

J j;k;m � t (n )
ref

1 + 3
p

J j;k;m
; (31)

where (j; k; m ) denote the indices of the node to which this time step is beingapplied. Since the solver
uses the unscaled �ow variablesQ, instead of the transformed variablesQ̂, the J term that results from the
coordinate transformation is lumped into the numerator of (31). The reference time step is

� t (n )
ref = a(b)n ;

where typical values used for turbulent �ow solutions are a = 0 :001 and b = 1 :3.
Once formed, the �rst-order Jacobian is factored using block incomplete lower-upper factorization (BILU)

with �ll level p in order to construct the preconditioner used throughout the solution process. This is a
computationally expensive task, especially in the approximate-Newton phase, which requires many outer
iterations. Previous work [6, 43] has shown that lagging theupdate of the preconditioner (freezing it for a
number of iterations) during the start-up phase can positively impact the e�ciency of the �ow solver. A
typical �ll level for the factorization is 2.

E�ective preconditioning is critical to an e�cient paralle l linear solver. Two approaches to parallel
preconditioning, namely additive-Schwarz [44] and approximate-Schur [45], have been previously investigated
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in the context of a parallel Newton-Krylov �ow solver for the Euler [6, 17] and Navier-Stokes [17] equations,
with a thorough description of their application to the curr ent linear system provided in the references. The
approximate-Schur parallel preconditioner is used in the current work, making use of the interface nodes in
constructing the global Schur complement.

An important part of using a start-up phase is knowing when a suitable iterate has been found to initiate
the inexact-Newton phase. For this purpose, the relative drop in the residual is used:

R(n )
d �

jjR (n ) jj2

jjR (0) jj2
: (32)

For turbulent �ows, once this value reaches 0.0001, i.e. theresidual has dropped by 4 orders of magnitude in
the approximate-Newton phase, the algorithm switches to the inexact-Newton method. This initial drop is
larger than the one required for inviscid or laminar solutions for two reasons. First, the turbulence quantity
�uctuates substantially more than the mean-�ow quantities during the start-up phase, necessitating a longer
start-up than �ow solutions dealing with inviscid or lamina r �ows. Second, due to the use of grids with much
�ner spacing near the surface of the aerodynamic shape, the initial residual, R (0) , begins with a much larger
value, but drops by one to two orders of magnitude very quickly before settling into a convergence pattern
similar to that observed with inviscid or laminar solves. Hence, the relative residual drop threshold,Rd, is
adjusted to compensate for these di�erences. This parameter may need to be adjusted slightly depending
on the complexity of the �ow being solved.

5.1.2 Inexact-Newton phase

The inexact-Newton phase uses a di�erent scheme for the reference time step, designed to ramp the time step
toward in�nity more rapidly than in the approximate-Newton phase. This eventually eliminates the inverse
time term from the left-hand-side of the discretized Navier-Stokes equations. The present work involves the
use of a scheme developed by Mulder and van Leer [46], by whicha new reference time step is calculated
and used in (31):

� t (n )
ref = max

�
�

�
R(n )

d

� � �
; � t (n � 1)

ref

�
;

where � 2 [1:5; 2:0] and � is calculated as

� = a(b)n Newt

�
R(n Newt )

d

� �
;

and nNewt is the �rst iteration of the inexact-Newton phase.
In contrast with the approximate-Newton phase, the inexact-Newton phase uses the full second-order

accurate Jacobian. However, since we use a Krylov subspace method, we do not need to form the full Jacobian
matrix, A , explicitly. Instead, only Jacobian-vector products are required, which can be approximated using
a �rst-order forward di�erence:

A (n ) v �
R (Q (n ) + � v) � R (Q (n ) )

�
:

The parameter � is determined from

� =

r
Nu �
vT v

;

where Nu is the number of unknowns, and� = 10 � 12. The approximate Jacobian, A 1, is still used for
preconditioning the system.

Finally, neither the approximate-Newton nor the inexact-Newton phase solves its respective linear system
exactly. Instead, the following inequality is used to govern how far the system is solved:

jjR (n ) + A (n ) � Q (n ) jj2 � � n jjR (n ) jj2;

where the forcing parameter� n is speci�ed. If it is too small, the linear system will be over-solved and will
take too much time, but if it is too large, non-linear convergence will su�er. For the present work, a value
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of 0.05 is used for the approximate-Newton phase, while 0.01is used for the inexact-Newton phase.

5.1.3 Special Considerations for Turbulence Model

The addition of the turbulence model to the linear system of (30) presents some unique challenges, as the
scaling of the linear system can be adversely a�ected, resulting in unpredictable behavior of the linear solver.
The improper scaling arises from several factors. First, the turbulence model does not contain the inherent
geometric scaling present in the mean �ow equations (division by J ). Second, the turbulence quantity can
be as large as 1000 or higher in the converged solution, whilethe nondimensionalized mean �ow quantities
rarely exceed 2. Finally, the terms that result from the linearization of the turbulence model with respect to
the mean �ow variables add large o�-diagonal values to the Jacobian. Hence, a more sophisticated scaling
approach has been implemented to account for these discrepancies, based on the work done by Chisholm and
Zingg [47], in order to obtain an e�cient and accurate soluti on of the linear system. The row, or equation,
scaling of the mean �ow equations is achieved by multiplying the equations by a factor that includes the
metric Jacobian, removing the inherent geometric scaling,while the turbulence model is scaled by10� 3.
This value accounts for the maximum turbulence value that is likely to be encountered in the �ow solve,
e�ectively normalizing the turbulence equation by that qua ntity. In order to normalize the �ow variable
values, the turbulence variable quantity is also multiplied by 10� 3. Hence, instead of solving the system
presented in (30), the solution algorithm tackles a scaled system of the form:

�
SaSr

�
I

� t
+ A (n )

�
Sc

� �
S� 1

c � Q (n )
�

= � SaSr R (n ) ; (33)

whereSr and Sc are the row and column scaling matrices, respectively.Sa is an auto-scaling matrix used to
bring the magnitudes of the individual equation componentswithin an order of magnitude, further improving
the scaling of the linear system. In the current implementation, these matrices are de�ned as

Sr = diag(Sr 1; Sr 2; :::; SrN ) ; Sc = diag(Sc1; Sc2; :::; ScN ) ;

where

Sri =

2

6
6
6
6
6
6
6
6
4

J 2=3
i

J 2=3
i

J 2=3
i

J 2=3
i

J 2=3
i

10� 3J � 1=3
i

3

7
7
7
7
7
7
7
7
5

; Sci =

2

6
6
6
6
6
6
4

1
1

1
1

1
103

3

7
7
7
7
7
7
5

;

and J i is the value of the metric Jacobian at the i th node in the computational domain. The values in
the auto-scaling matrix are calculated based on the equation-wise residual L2-norms of the partially scaled
systemSr R (n ) , and are identical for each node in the domain. Instead, theyscale the individual component
equations by di�erent amounts. Any residual values required for the time step calculation make use of the
partially scaled residual Sr R (n ) .

During the convergence to steady state, it is not atypical to encounter negative values of~� in the
�ow�eld. These values are nonphysical and merely a result ofthe occurrence of large transients in the
solution, especially during the early stages of convergence or after the switch from the approximate-Newton
phase to the inexact-Newton phase. However, it is importantto address these negative values, since they
can destabilize the solution process. The approach taken isto trim any negative ~� values to a very small
positive quantity. In particular, any negative turbulence quantities that are encountered on a solid surface
are trimmed to 10� 14� =� , while all other locations are trimmed to 10� 3� =� . The local � =� term is introduced
such that advective and di�usive �uxes do not vanish completely from regions where several adjacent nodes
are trimmed during the same iteration.

Additional trimming is used when dealing with the value of vorticity, S. In order to avoid numerical
problems, this value is not allowed to fall below 8:5 � 10� 10. Finally, the vorticity-like term, ~S, cannot
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be allowed to reach zero or become negative, which would havea destabilizing e�ect on the values of the
production and destruction terms. We have found that preventing this value from becoming smaller than
10� 5M works well, whereM is the far�eld Mach number.

5.2 Unsteady solutions

Using an ESDIRK scheme with s stages, the fully discretized Navier-Stokes equations form a system of
non-linear equations:

R̂ (n )
k (Q (n )

k ; : : : ; Q (n )
1 ; Q (n � 1) ) =

Q (n )
k � Q (n � 1)

� � t
+

1
�

sX

j =1

Akj R (Q (n )
j ) = 0 ; k = 2 ; : : : ; s; (34)

where R̂ de�nes the unsteady residual, andR is the spatial residual (29) de�ned in Section 5. Each stage
is treated as a steady problem in pseudo time, and the unsteady residual equations are solved with the
inexact-Newton method with iteration counter p:

Â k
(p)

� Q (p)
k = � R̂ (p;n ) (Q (p)

k ; Q (n )
k � 1 : : : ; Q (n )

1 ; Q (n � 1) ); k = 2 ; : : : ; s; (35)

where � Q (p)
k = Q (p+1)

k � Q (p)
k and the Jacobian becomes:

Â (p)
k =

1
� � t

I +
@R (Q (p)

k )

@Q (p)
k

; k = 2 ; : : : ; s: (36)

No approximate-Newton phase is needed.

5.2.1 Polynomial extrapolation

The performance of Newton's method can be improved by providing better initial iterates. Previous solution
information can be used to generate low-order inexpensive approximations of the solution at the next time
step.

Consider a sequence of solution valuesu(n � 1) ; : : : ; u(n � k ) at t (n � 1) ; : : : ; t (n � k ) . These times do not have
to be equally spaced or monotonic. The solutionu(n ) at t (n ) is then approximated by:

u(n ) =
kX

i =1

ln � i (t (n � i ) )u(n � i ) ; (37)

where

ln � i (t (n � i ) ) =
k+1Y

j =1 ;j 6= i

�
t (n ) � t (n � j )

t (n � i ) � t (n � j )

�
: (38)

Increasing the number of past solutions increases the accuracy of the approximation. In this work, three
past solutions are used as a balance between accuracy and memory usage.

5.2.2 Delayed preconditioner updates

The temporal component of the Jacobian in (36) is constant and is often signi�cantly larger than the change
in the spatial Jacobian over a stage or an entire time step. Therefore, it is possible to freeze the preconditioner
over a stage or time step without a signi�cant impact on the convergence of the system. Current results
were obtained by freezing the preconditioner over each timestep, resulting in a signi�cant reduction in CPU
time.
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Figure 1: Convergence history for transonic solution at� = 2.75� (with 704 processors)

5.2.3 Termination of non-linear iterations

The temporal integration has a certain level of truncation error. The convergence of the residual equations
can, therefore, be terminated when the residual is less thanthis error. This reduces computational cost and
is done without any loss in global accuracy. In this work, termination is based on a preset reduction from
the initial residual value. The necessary relative tolerance is fairly step size independent since a reduction
in step size will result in a better initial iterate from poly nomial extrapolation and therefore a lower initial
residual. A typical relative tolerance used in the current work is 10� 6.

6 Results

This section presents the application of the current algorithm to range of steady and unsteady �ow simula-
tions. For steady simulations, the solution of transonic �ow around the NASA CRM wing-body geometry [48]
will be shown, along with a parallel scaling study making useof both the ONERA M6 wing and CRM wing-
body geometries. The Taylor-Green vortex �ow [49] is used tohighlight the unsteady solution capabilities
of the algorithm.

6.1 Transonic �ow around CRM wing-body geometry

The �rst case concerns the solution of a transonic �ow around the CRM wing-body geometry. The O-O
topology structured multi-block grid, obtained from the or ganizers of the 5th Drag Prediction Workshop
(DPW5), contains 5.97 million nodes, with an o�-wall spacing of 5:3 � 10� 6 chord units. The original grid
has been subdivided into 704 blocks to leverage the parallelcapabilities of the current algorithm. It has also
been scaled down from dimensional units, with mean aerodynamic chord (MAC) of 275.80 inches, to have
an MAC of 1.0.

To investigate the range of angles of attack during which bu�et onset should occur, the �ow conditions
used in this case are

Ma = 0.85, Re = 5:00� 106, � = 2.00� to 4.00� .

Solutions were computed with the scalar dissipation model for angles of attack up to 3.15� . A representative
residual convergence plot is shown in Figure 1. The nonlinear residual is reduced by 12 orders of magnitude,
and both solution phases of the steady �ow solution algorithm are clearly visible. Figure 2 shows the
streamlines above the wing for solutions at all angles of attack.

At 3.25� and above, the steady solution algorithm fails to converge,with stalled nonlinear convergence.
Unsteady �ow features were assumed to be the cause of the convergence di�culty. Hence, time-accurate
simulations were undertaken. The unsteady solution algorithm was used to run solutions for all angles above
3.25� . After advancing all solutions 160 nondimensional time units, no oscillations were observed in the
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Figure 2: Transonic CRM �ow solutions at various angles of attack
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Figure 3: CRM force coe�cients

force coe�cients, and the solution was converging to a steady �ow. Using the �nal unsteady solution as a
starting point, the steady solution algorithm was used to fully converge the solutions. Subsequently, further
simulations with substantially reduced time-step ramping and reductions based on residual behavior allowed
the steady-state solution algorithm to convergence without any use of the unsteady algorithm. At all angles
above 3.25� , a substantially di�erent �ow pattern is observed, as can be seen in Figure 2. A substantial
recirculation bubble is present, originating at the wing-body junction. It is not presently known whether
the large separation region represents a physically accurate phenomenon or is an artifact associated with the
interplay of the grid resolution in the area and the turbulence model.

Figure 3 presents the lift, drag, and moment coe�cients for all angles of attack. All coe�cient values
exhibit a discontinuity at an angle of attack of 3.25� due to the presence of the large recirculation bubble.

6.2 Parallel scaling study

In order to evaluate the parallel performance of the algorithm, a parallel scaling study was conducted for
the solution of a steady subsonic �ow around the ONERA M6 wing and a steady transonic �ow around the
CRM wing-body geometry. The subsonic �ow conditions are

Ma = 0.30, Re = 7:48� 106, � = 2.0 � ,

while transonic �ow conditions are

Ma = 0.85, Re = 5:00� 106, and CL = 0.500.

The ONERA M6 grid consists of a C-H topology mesh comprising 8192 blocks, with a total of 40 million
nodes. The o�-wall spacing is 8 � 10� 7 root chord units. The CRM wing-body case was run on two grids,
with each grid consisting of a 6656 block O-O topology mesh obtained from the �X� and �S� grid levels used
in DPW5. The �X� grid contains 48 million nodes and an o�-wall spacing of1:83� 10� 6 MAC units, while
the �S� grid contains 154 million nodes and an o�-wall spacing of 1:29� 10� 6 MAC units. The subsonic �ow
solution was computed with scalar arti�cial dissipation, converging the residual by 12 orders of magnitude,
while the transonic solutions made use of the matrix dissipation model, converging the residual by 10 orders
of magnitude. All meshes are perfectly load-balanced, withan equal number on nodes in each block.

The results for all cases, presented in Figure 4, show that the code exhibits excellent parallel scaling
characteristics up to 6656 processors. The performance of the code is measured by relative e�ciency, which
is based on the lowest possible number of processors that each case can be computed with. Due to memory
requirements, the ONERA M6 case can be run with a minimum of 128 processors, while the two CRM
cases require a minimum of 208 and 832 processors, respectively. In the range of processors considered, the
relative e�ciency does not drop below 80%. In fact, many processor counts exhibit super-linear scaling, due
partly to the changing form the the preconditioner, with di� erent numbers of interface nodes contributing to
the global Schur complement, and partly to the manner in which the parallel computing hardware manages
parallel communication with varying numbers of processors. Additionally, the nearly constant number of
linear iterations required to converge the solutions at di�erent processor numbers highlights the e�ectiveness
of the approximate-Schur preconditioner even when large numbers of processors (>6000) are used.
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Figure 4: Parallel scaling performance of code

6.3 Taylor-Green vortex �ow

The �nal case is the Taylor-Green vortex �ow. It was original ly developed to study vortex stretching,
the lengthening of vortices which creates small eddies fromlarger ones. This process is believed to be an
important mechanism in the turbulent energy cascade [49]. The �ow is initialized with a smooth, uni-modal
velocity �eld. As the solution develops, smaller and smaller modes are generated, eventually mimicking
homogeneous non-isotropic turbulence. Finally, the turbulence decays as the smallest modes are dissipated
due to viscous e�ects. The initial conditions are:

u = M � sin(x) cos(y) cos(z);
v = � M � cos(x) sin(y) cos(z);

w = 0 ;

p = p� + � � M 2
�

16 (cos(2x) + cos(2y)) ;
� = p=p� ;

where � � = 1 and p� = 1
 . To minimize the e�ects of compressibility and to be consistent with the AIAA's

1st International Workshop on High-Order CFD Methods, the free-stream Mach number is set to0:1. The
Reynolds number is 1600, which corresponds to a peak Taylor microscale Reynolds number of about 22,
and the Prandtl number is 0:71. The convective time unit is de�ned as [tc] = 1

M �
[t], and the simulation is

advanced to t f inal = 20tc. The simulation domain is a periodic box, � � � x; y; z � � .

6.3.1 Basic De�nitions

In this study, kinetic energy is de�ned as:

Ek =
1

2V

Z

V
� v � vdV;

where V is the volume, v is the velocity vector and � is the density. Dissipation rate is then e = � dE k
dt , and

enstrophy is de�ned as,

� =
1

2V

Z

V
� ! � ! dV;

6.3.2 Grid convergence studies

A grid convergence study was conducted for second- and fourth-order spatial discretizations on four succes-
sively �ner grids: 323, 643, 1283 and 2563 nodes. Each grid was decomposed into blocks of323 nodes with
a one-to-one distribution of blocks to processors. The workload per processor is therefore constant. The
solutions were advanced with the fourth-order ESDIRK method and a constant maximum CFL number,
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Figure 5: Taylor-Green �ow: temporal evolution of kinetic energy.
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Figure 6: Taylor-Green �ow: temporal evolution of kinetic energy

� 31 for second-order and� 50 for the fourth-order simulation. The step size is constant for grids of the
same size, therefore the di�erence inCFL number is due to the di�erence in the maximum value of the
modi�ed wave number between the second and fourth-order discretizations. The fourth-order discretization
makes use of the fourth-order �rst-derivative operator twi ce to construct the second derivative, resulting in
a non-compact-stencil formulation.

Figure 5 displays the evolution of kinetic energy between the second- and fourth-order simulations and
compares them with the 5123 mode dealiased spectral direct numerical simulation (DNS)of van Reeset
al. [50]. In both cases, the coarsest simulations are not able toaccurately capture the decay of kinetic
energy. The higher-frequency modes cannot be represented on these grids and are, therefore, damped by
the dissipation model. As a consequence, less energy is transferred to the higher frequency modes, and this
is believed to be the cause of the lower dissipation rate and higher kinetic energy present at the end of the
simulation. The fourth-order simulations do not dissipate quite as early as the second-order simulations and
the 643 simulation is able to recover a more accurate dissipation rate in the latter half of the simulation.
However, there is still a noticeable deviation from the DNS results.

The �ner simulations more accurately capture the decay of kinetic energy. These simulations are isolated
in log-log form in Figure 6 along with the error with respect to the DNS result in [50]. The coarser second-
order solution still dissipates too early and only the �nest fourth-order simulation lies on top of van Rees'
DNS result. The �ne second-order and coarser fourth-order results are comparable, accurately capturing the
initial dissipation, but under-predicting the �nal dissip ation rate.

These conclusions are further supported by considering theevolution of dissipation rate directly, as
seen in Figure 7. The coarser fourth-order simulation marginally over-predicts the dissipation rate just
before the peak, but also has a slightly higher and more pronounced peak than the �ner second-order
result. The main di�erence is that the coarse fourth-order simulation costs about 6.3 times less that the
�ne second-order simulation in terms of CPU time. Again, only the �ne fourth-order solution approximates
the reference solution well. The relatively high accuracy of the evolution of kinetic energy is somewhat
surprising considering the large deviation in normalized enstrophy, also shown in Figure 7. Enstrophy is an
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Figure 7: Taylor-Green �ow: temporal evolution of normalized enstrophy and dissipation rate of kinetic
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Figure 8: Taylor-Green �ow ( 2563 grid): vorticity magnitude and x-component of vorticity of the present
study compared with vorticity norm from van Rees et al. [50]

indication of the resolving power of the discretization andthe results suggest that even the �nest simulation
is under-resolved.

Finally, contours of the vorticity norm at one of the periodi c faces,x = � , are shown in Figure 8 for
the fourth-order result obtained on the �nest grid. The stru ctures presented by van Reeset al. [50] are
recovered; however, extra structures are visible in the present simulations. These structures are fairly large,
but are formed by the lowest vorticity contour lines. If only the x-component of the vorticity is shown,
the structures then match very well. The di�erence is likely due to the di�erence in grid resolution in the
present simulation. Figure 9 shows contours of only thex-component of vorticity for the other high-resolution
simulations. The circular high-vorticity structure of the second-order1283 result is weak and spread out.
By increasing the order, the vorticity becomes much stronger and more annular in structure, however, there
are some erroneous artifacts. The �nest second-order solution is similar to the complementary fourth-order
solution. However, the regions of high vorticity extend further towards the center of the circular structure.

6.3.3 Temporal convergence studies

The temporal accuracy and e�ciency of the second and fourth-order ESDIRK methods were evaluated in
a temporal convergence study with time steps� = 0 :005; : : : ; 0:8; this corresponds to maximum CFL �
5; : : : ; 808. Simulations were computed on a1283 grid with the fourth-order non-compact-stencil spatial
discretization. The reference solution was obtained with the classical fourth-order Runge-Kutta (RK4)
method and a time step of0:003125, corresponding toCFL � 0:3. The error is computed as the root-mean-
square of the di�erence in kinetic energy:

RMS-error =

s
P # time steps

i =0 (Ek;i � Ek;i;ref )2

# time steps
:

The temporal convergence and e�ciency of the ESDIRK methodsare shown in Figure 10, along with an
estimation of the temporal error found in the spatial convergence study. The design order of each method
is recovered. The main result is the e�ciency of the methods: the CPU time required to obtain a preset
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Figure 9: Taylor-Green �ow: x-component of vorticity
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Figure 10: Taylor-Green �ow: convergence and e�ciency of second- and fourth-order ESDIRK methods.
The estimate of the temporal error found in the spatial convergence study is shown by (� )

level of error. ESDIRK2 is e�cient only for simulations requ iring a minimum level of temporal accuracy.
As the required accuracy is lowered, ESDIRK4 quickly and decidedly becomes more e�cient. Furthermore,
accurate simulations were obtained atCFL values well beyond the stable region of explicit methods, like
RK4, and in less CPU time, con�rming the value of implicit met hods for such problems.

7 Conclusions and Future Work

The parallel Newton-Krylov-Schur algorithm with the SBP-S AT spatial discretization was shown to provide
accurate and e�cient �ow solutions to the three-dimensiona l Navier-Stokes equations and the one-equation
Spalart-Allmaras turbulence model. Both steady and unsteady �ow solutions were considered, with time
marching carried out with ESDIRK methods.

The solution of transonic �ows around the NASA Common Research Model wing-body con�guration
over a wide range of angles of attack highlights the capability of the algorithm to converge for complex �ows
with substantial separation. Parallel scaling studies on the same geometry, as well as the ONERA M6 wing,
show excellent algorithm scaling characteristics with up to 6656 processors.

Taylor-Green vortex results highlight the advantages of high-order spatial and temporal discretization;
the algorithm accurately captures the evolution of the large vortical structures and integrated quantities.

Future work will extend the higher-order spatial discretization to the turbulence model, allowing higher-
order solutions for the steady and unsteady RANS equations.

Acknowledgments

The authors gratefully acknowledge �nancial assistance from the Natural Sciences and Engineering Research
Council (NSERC), the Ontario Graduate Scholarship program, the Canada Research Chairs program, Bom-
bardier Aerospace, and the University of Toronto.

Computations were performed on the GPC supercomputer at theSciNet HPC Consortium and the
Guillimin supercomputer of the CLUMEQ consortium, both par t of Compute Canada.

22



Appendix

The following are the complete forms of the conservative formulation of the B int ;j matrices, wherej = �; �; � .

B int ;j =

2

6
6
6
6
4

0 0 0 0 0
� a1u � a2v � a3w a1 a2 a3 0
� a2u � a4v � a5w a2 a4 a5 0
� a3u � a5v � a6w a3 a5 a6 0

b51 b52 b53 b54 a7

3

7
7
7
7
5

;

where, for the � -direction,

a1 = t1(4=3� 2
x + � 2

y + � 2
z ); a2 = t11=3� x � y ;

a3 = t11=3� x � z ; a4 = t1(� 2
x + 4=3� 2

y + � 2
z );

a5 = t11=3� y � z ; a6 = t1(� 2
x + � 2

y + 4=3� 2
z );

a7 = t2 (� 2
x + � 2

y + � 2
z );

b52 = � a7u + a1u + a2v + a3w; b53 = � a7u + a2u + a4v + a5w;

b54 = � a7u + a3u + a5v + a6w;

t1 = � � 1(� + � t ); t2 = � � 1(�=P r + � t =P rt );

and
b51 = a7

�
� e=� + ( u2 + v2 + w2)

�
� a1u2 � a4v2 � a6w2 � 2(a2uv + a3uw + a5vw):
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