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Abstract: The purpose of this paper is two-fold; �rst, a systematic approach is developed to
improve the stability of cell-centered �nite volume methods on unstructured meshes by optimizing
boundary conditions. This approach uses the rightmost eigenpairs of the spatially discretized
system of equations to determine the existence or the path to stability. This will ensure the energy
stability of the system; consequently resulting in convergence. To this end, it exploits �rst order
gradients of eigenvalues with respect to the types of boundary conditions. Secondly, the sensitivity
of the rightmost eigenvalues to the solution is measured to investigate the e�ects of using surrogate
or half-converged solutions for the purpose of linearizing the semi-discretized Jacobian.
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1 Introduction

In computational aerodynamics problems, the boundary conditions speci�ed to approximate the physical
solution at the boundaries of the computational domain are of paramount importance. Thomas and Salas [1]
showed that the numerical accuracy of the steady state solution can be greatly a�ected by careless implemen-
tation of boundary conditions at the truncated far�eld boundaries. Spurious non-physical waves originating
or re�ected from the far�eld boundaries can contaminate the interior solution, including in particular the
aerodynamic forces. Hence, there have been many di�erent e�orts to derive boundary conditions at far�eld
which asymptotically approximate the far�eld free stream conditions (e.g., see a review on these boundary
conditions by Tsynkov [2] and the reference therein). One of the �rst methods developed to approximate
the analytical solution at the far�eld corrects the constant free stream conditions with a vortex �ow which
is dependent on the airfoil lift (see [1]). This method is successful in reducing the sensitivity of the forces
on the airfoil with respect to the location of the far�eld boundary, albeit with the added cost of introducing
non-local features, i.e. lift coe�cient, to the boundary conditions. In other method for reducing non-physical
oscillations, non-re�ecting boundary conditions at the far�eld is imposed. These boundary conditions, which
were �rst introduced by Engquist and Majda [3] and further improved by [4, 5], direct the oscillations out
of the physical domain. Recently, there have been more work on these types of boundary conditions. In
another attempt, Allmaras et al. [6] derived a boundary condition for the far�eld which is both local and
independent of the forces on the airfoil, relying on their modi�ed variables and radial velocity. They showed
that by applying this boundary condition, the far�eld boundary can greatly be brought closer to the airfoil.

One of the shortcomings in all of the research papers in the use of boundary conditions is the lack of
an applied approach to systematically choose the most stable boundary conditions amongst the set of all
available boundary conditions. In this paper, instead of introducing a speci�c type of boundary condition
which may not be always stable in practice, we devise a framework which can �nd the most stable boundary
condition for a given problem. This work stems from our previous works [7, 8] which showed how the location
of mesh vertices can be modi�ed to improve convergence and stability. We calculate the gradients of the
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rightmost eigenvalues of the semi-discretized Jacobian with respect to the types of the boundary conditions
to optimize boundary conditions through gradient descent. The eigenvalues and eigenvectors of the linearized
system is calculated by SLEPC [9] which is a large scale sparse eigenvalue solver. It is also fully adaptable
with the data structure and linear algebra package, PETSC [10] which we use in our in-house libraries.

The paper is organized as follows. In Section 2 we describe the spatial and time discretization schemes
we sue to solve Euler or Navier-Stokes problems to steady state solution. We then describe di�erent types of
commonly-used far�eld boundary conditions for 2D external aerodynamics. In Section 3, we �rst introduce
a systematic approach to optimize di�erent types of boundary conditions to improve the numerical stability
by calculating the derivatives of the rightmost eigenvalues of the semi-discretized Jacobian. Secondly, the
sensitivity of these eigenvalues to the solutions at which the global Jacobian of the �ux integral was linearized
is presented. Section 4 showcases the numerical stability results for the aforementioned optimization approach
as well as the sensitivity of the eigenvalues with respect to the solution. Finally, Section 5 gives conclusion.

2 Background

2.1 Discretization Scheme

The partial di�erential equations solved in CFD can be written as:

∂u(x, t)

∂t
+∇ · F (x, t) = S(x, t) (1)

where Eq. 1 is recast to the following formulation by �nite volume discretization schemes:

dU

dt
=

1

V

ˆ
V

du(x, t)

dt
dV = − 1

V

˛
A

FdA+
1

V

ˆ
v

SdV = R(U) (2)

In Eq. 2, U is the global vector of unknowns which are the control volume averaged solutions. F and S
are the �ux and source functions respectively. The residual is denoted as R in Eq. 2. To calculate the �ux
integrals, suitable �ux functions (in this paper, we use Roe's �ux scheme [11]) are computed and accumulated
at each Gauss integration point along control volume boundaries. These �ux functions calculated at Gauss
points are evaluated by reconstructed solutions at those points from control volume solution averages (see
[12, 13] for more details). This solution reconstruction from piecewise constant control volume solution
averages will result for a more accurate solution approximation. Finally, implicit time advance methods are
applied to Eq. 2 to discretize the equation in time and evolve the solution to steady state. To evolve in time
using implicit Euler time advance, Eq. 2 is recast as:

Un+1 − Un

△t
= R(Un+1) = R(Un) + JδU +O

(
δU2

)
(3)

where the residual function is linearized about the solution state Un. The system of semi-discretized equations
(Eq. 2) can also be linearized to form a matrix vector product (Eq. 4) and a global Jacobian matrix, J :

dU

dt
=

∂R

∂u
U = JU (4)

From energy stability analysis, Eq. 4 and hence the corresponding �nite volume discretization is stable if and
only if the Jacobian matrix, J , is negative semi-de�nite. This means that in the eigen-decomposition (Eq. 5
and 6) of Jacobian matrix, the rightmost eigenvalues, which have the largest positive real parts, determine
the stability of the problem.

Jxi = λixi (5)

yiJ = yiλi (6)

In Eq. 5 and 6, λi, xi, and yi are respectively the ith rightmost eigenvalue, its right eigenvector and its left
eigenvector.
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Figure 1: Characteristic lines for a subsonic two-dimensional �ow at outlet. The y direction is normal to the
surface.

2.2 Far�eld Boundary Conditions

In this sub-section we review some of the common boundary conditions used for external compressible
subsonic �ows. If all variables were known at the boundary, evaluation of Eq. 2 would be seamless, however
this is not usually the case. To determine all the states at boundaries for the discretized equations, numerical
and physical conditions need to be set. As each characteristic direction carries a piece of information into or
out of the discretized domain, only these transported variables can be set freely at the boundary; these are
the physical boundary conditions. The rest of the variables needed by the set of discretized equations can be
determined by the discretization scheme itself; these are the numerical boundary conditions. For example,
Figure 1 shows the characteristic lines for a subsonic out�ow in a two-dimensional �ow.

All the numerical and physical boundary conditions in this paper are enforced weakly through proper �ux
functions. The following shows di�erent types of boundary conditions used for a two-dimensional subsonic
�ow in this paper.

2.2.1 Characteristics with vortex correction BC

The boundary conditions can be �xed in a straightforward way by specifying the propagated variables directly
from the characteristic information or similarly by the Riemann invariants. In Eq. 7 and 8 the primitive
variables that are directly transfered with the characteristic variables are determined both at in-�ow and
out-�ow. The rest of the required variables are determined from the interior discretization.

• In-�ow:

Negative acoustic wave: (p− p∞)− ρc (Vn − V∞n) = 0 (7)

Entropy: (p− p∞)− c2 (ρ− ρ∞) = 0

Tangential velocity: (Vt − V∞t) = 0
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• Out-�ow:
Positive acoustic wave: (p− p∞) + ρc (Vn − V∞n) = 0 (8)

where variables subscripted with ∞ represent far�eld variables and c is the sound velocity. In external �ows
(and similarly internal �ows) the disturbances at the far�eld (or inlet and outlet) can be transfered to the
interior of the �ow. To minimize these e�ects, normally the physical boundaries are placed far from the
domain of interest.

However by better approximating the solution at the far�eld, the far�eld boundary can be taken closer
to the �ow region of interest (e.g. airfoil) without a�ecting the �ow solution. For the inviscid, compressible
�ow condition, the far�eld �ow perturbations can be modeled by the linear potential equation. The far�eld
uniform free stream variables in Eq. 7 and 8 can be corrected by the asymptotic perturbations to the lowest
order from the thin airfoil theory and the linear potential equation (see [1] for more details):

V∞x = M∞c∞ cos (α) +𝟋 sin (θ)
V∞y = M∞c∞ sin (α) − 𝟋 cos (θ)

(9)

where M∞ is the free stream Mach number, α is the angle of attack, and c∞ is the free stream sound velocity.
The parameter 𝟋 is:

𝟋 =
ClLM∞c∞

4π

√
1−M2

∞
r

1

1−M2
∞ sin2 (θ − α)

(10)

The perturbations in Eq. 10 are governed by the circulation of a vortex centered at the airfoil quarter-chord.
The circulation itself is dependent on the lift coe�cient, Cl. The lift coe�cient is measured around any
arbitrary surface enclosing the airfoil. In Eq. 10, parameters L, r, θ are respectively the chord length, the
radius measured from the center of the vortex to the boundary location, and the angle between the chord
and the line connecting the center of the vortex to the boundary location.

2.2.2 Pressure BC

Another commonly used boundary condition at the far�eld is specifying the pressure. As pressure is constant
across a viscous wake, this does not disturb the transport of viscous perturbations. Thus, imposing a constant
pressure downstream of the �ow is a common practice. In this boundary condition, we specify the free stream
back pressure at out�ow and we use total pressure, total temperature, and angle of attack at the free stream
to determine the three physical boundary condition at the in�ow using isontropic relations.

• In-�ow:
Ptot, Ttot, α

• Out-�ow
p = p∞

2.2.3 Dirichlet BC

In this type of boundary condition, all the primitive (or conservative) variables are directly determined from
free stream variables at far�eld. The boundary �uxes are then calculated using these �xed values. This
problem is over-speci�ed at both in�ow and out�ow. However, it has been shown that the numerical errors
tend to be localized.

• In-�ow:
ρ, u, v, p

• Out-�ow
ρ, u, v, p
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2.2.4 Radial Velocity BC

To bring the far �eld boundary closer to the airfoil without a�ecting the lift and drag coe�cients, Allmaras
et al. [6] suggested setting properties at the far �eld that are to �rst order independent of the airfoil lift:

• In-�ow:

Total Enthalpy:

[
γ

γ − 1

p

ρ
+

V 2

2

]
=

[
γ

γ − 1

p

ρ
+

V 2

2

]
∞

(11)

Entropy:
p

ργ
=

p∞
ργ∞

Radial Velocity: Vr = V⃗∞ � êr

• Out-�ow
Vr = V⃗∞ � êr (12)

In Eq. 11 and 12, êr is the radial direction calculated from the vortex center, situated at a quarter of the
chord, to the boundary location.

2.2.5 Non-re�ecting out�ow BC

As explained earlier, the physical information crosses the boundaries with characteristic variables. This
in turn causes re�ection of the perturbation waves at the boundaries. For example, specifying only the
back pressure at out�ow does not satisfy the perturbations of the characteristic waves ∆W = (p− p∞) −
ρc (Vn − V∞n); hence, pressure waves with magnitudes of ρc (Vn − V∞n) will be re�ected back into the
domain. For steady-state computations with constant pressure boundary conditions, Rudy et al. [4] proposed
a method which damps out the pressure waves leaving the computational domain in the transient and satis�es
the constant pressure at steady-state:

• In-�ow:
Ptot, Ttot, α

• Out-�ow
∂p

∂t
− ρc

∂Vn

∂t
+ ω (p− p∞) = 0

where ω decreases from roughly 0.7− 0.8 in subsonic to 0.1− 0.3 in transonic �ows.

3 Methodology

3.1 Boundary Condition Optimization

In this work, we optimize boundary conditions to improve the numerical stability of the semi-discrete system
of equations arising from �nite volume discretization on unstructured meshes. In previous work [8] we
showed that mesh related instabilities can be eliminated by modifying the mesh vertices locally based on
the gradients of the right-most eigenvalues with respect to the mesh vertex displacement vectors. Herein,
we are looking into the stability e�ects of di�erent boundary condition implementations. Throughout this
work, we apply boundary conditions weakly using �ux calculations. The premise of this work is to use the
semi-discretized Jacobian of the �ux integral, and its right most eigenvalues and eigenvectors to calculate
the gradients of eigenvalues of the Jacobian matrix with respect to the scheme design parameters b, which
are boundary �ux weights in this work.

5



∂

∂b
(Jxi = λixi) (13)

yi(
∂J

∂b
xi + J

∂xi

∂b
=

∂λi

∂b
xi + λi

∂xi

∂b
) (14)

(yiJ − yiλi)
∂xi

∂b
= yi

∂λi

∂b
xi − yi

∂J

∂b
xi (15)

We take the derivative of the right eigen-system with respect to the variable of interest in Eq. 13. While
keeping the solution U �xed, we multiply from left by the left eigenvector in Eq. 14. The left hand side of
Eq. 15 contains the left eigen-problem, leaving us with Eq. 16. Since the eigen-vectors are normalized so
that xi � yi = 1, we take the gradients of the eigenvalues:

∂λi

∂b
= yi

∂J

∂b
xi (16)

where parameter b is the scheme design variable which we are taking the derivative with respect to. One key
step in evaluating Eq. 16 is approximating the gradient of the Jacobian matrix with respect to the variables
of interest, ∂J

∂b . We choose to use �nite di�erencing on the Jacobian matrix, however this gradient can also
be calculated using reverse automatic di�erentiation.

Moreover, we are aiming to systematically select and optimize the boundary conditions to stabilize
the �nite volume methods. To �nd the most stable boundary condition con�guration, we �rst linearly
superimpose the di�erent boundary �uxes for each boundary control volume. Second, we optimize these
superposition parameters based on the gradient of the right-most eigenvalues of the Jacobian matrix based
on these parameters. For a simple case in which optimization is between only two types of boundary
conditions, we combine the two di�erent boundary �uxes with weights bcvi and 1− bcvi for every boundary
control volume:

Flux = bcviF1 + (1− bcvi)F2 (17)

∂J

∂bcvi

= J1 − J2 (18)

Now by using Equations 16 and 18, where y and x are respectively the left and right eigenvectors of the right
most eigenvalue, we can measure the gradient of the eigenvalue with respect to the boundary �ux weights b.
Hence, by expanding the Taylor series of the new eigenvalue of the Jacobian matrix J , we can �nd the best
boundary �ux con�guration for each boundary control volume so that the new projected eigenvalue λn+1 is
on the left hand side of the complex plane of eigenvalues:

λn+1 = λn +
−→
△b

∂λ

∂b
≤ 0 (19)

−→
△b = − |K| ∂λ

∂b
(20)

K =
λn(
∂λ
∂b

)2 (21)

bopt = b+
−→
△b (22)

In this way the best boundary condition con�guration at each boundary control volume is attained by
optimizing the boundary �ux weights b.

3.2 Sensitivity of Eigenvalues to Solution

As we have typically used surrogate solutions or lower order solutions to approximate the semi-discrete
Jacobian for eigenvalue analysis, it is of paramount importance to understand the e�ects of these approximate
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solutions on the rightmost eigenvalues of the Jacobian matrix. One common way to compute the sensitivity
is to use the adjoint methods (e.g., see the work done by Giles and Pierce [14]). In an adjoint problem
setting, we specify the output as the rightmost eigenvalues, λ, and the sensitivity parameter in theory can be
any measurable variable. However since we are calculating the sensitivity with respect to type of boundary
conditions in the previous section, we use the same variables, b, for the sensitivity parameter:

dλ

db
= −ΨT ∂R

∂b
+

∂λ

∂b
(23)[

∂R

∂U

]T
Ψ = JTΨ =

[
∂λ

∂U

]T
(24)

where in the functional output sensitivity equation, Eq. 23, and the adjoint linear problem, Eq. 24, Ψ is the
adjoint variable and R is the residual of the primal PDE. Now the sensitivity of eigenvalue with respect to
the solution can be calculated by:

∂λ

∂U
=

(
∂R

∂b

T
)−1(

dλ

db
− ∂λ

∂b

)T

(25)

where the derivatives can be calculated by doing �nite di�erences on the mesh and solution:

dλ

db
= y

(
J (U (b+ db) , b+ db)− J (U (b) , b)

∥db∥

)
x

∂λ

∂b
= y

(
J (b+ db)− J (b)

∥db∥

)
x

∂R

∂b
=

R (b+ db)−R (b)

∥db∥

However, calculating the sensitivity of the eigenvalues with respect to the solution using Eq. 25 as it requires
calculating multiple derivatives for each control volume in the problem. Instead, we use Eq. 16 and the
Frechet derivatives to calculate these sensitivities. In this way, the sensitivity of eigenvalues to the solution
can be calculated by substituting parameters b in Eq. 16 with control volume solution averages:

∂λ

∂U
= y

∂J

∂U
x (26)

where the right hand side of Eq. 26 is calculated by multiplying the left eigenvector by the following Frechet
derivative:

∂J

∂U
êkx =

J (U + εêkx)− J (U)

ε
(27)

In Eq. 26 and 27, U is the vector of control volume solution averages and ε is an in�nitesimal number for
di�erencing. Eq 27 is calculated row by row for each control volume to break up an otherwise third rank
tensor. However, in evaluation of Eq. 27, there is no need to recalculate the whole Jacobian matrix, J ,
for all control volumes in the mesh everytime as this would result in a O(N2) computational time where
N is the number of control volumes. Instead, when calculating each row of the right hand side of Eq. 26,
we determine the speci�c rows in the Jacobian matrix which need to be updated after solution within a
control volume has been perturbed. In other words, once the solution within control volume α changes, the
�ux integral at all the nearby control volumes which have control volume α in their reconstruction stencil
changes. As the discretization is constant and it does not change once the solution changes, the sparsity of
the Jacobian matrix is known a prior to its evaluations. This means that for identifying the control volumes
for which the �ux integral changes after a solution perturbation at control volume α, we look at non-zero
entries of the column of the Jacobian matrix associated with control volume α. In this way, the evaluation
of Eq. 27 is of order of O(N).
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4 Results and Discussion

4.1 Boundary Condition Optimization

In our previous works [7, 8] to investigate and improve the stability of �nite volume methods on unstructured
meshes by optimizing the location of the mesh vertices, we realized that not all the unstable eigenmodes of
all the problems were �xable by merely modifying the mesh vertices. To showcase the di�erence between
di�erent eigenmodes, we show here two eigenvectors for an inviscid Euler problem with Mach 0.8 and an
angle of attach of 2◦ (Figure 2). We measured the gradient of eigenvalues with respect to the mesh vertex
locations for di�erent boundary conditions at far�eld. Figure 2a clearly shows that modifying the vertex
locations for di�erent boundary conditions result in the same values of eigenvalue gradients. In other words,
the gradients in this case are independent of the types of boundary conditions but the eigenvalue is strongly
in�uenced by the changes in the mesh (notice the high values of gradients in Figure 2a). On the other hand,
changing the boundary conditions at the far�eld has noticeably changed the gradients of another eigenvalue
which is more dependent on the physics of the problem (Figure 2b). Additionally, in Figure 2b, all the
gradients are orders of magnitude smaller than the ones in Figure 2a. This in turn signals that this speci�c
eigenmode is not sensitive to the changes in the mesh vertices.

To investigate the sensitivity of the eigenvalues with respect to the boundary conditions and to validate
the boundary condition stabilization in sub-section 3.1, we stabilize or improve the convergence rates for
an inviscid Euler problem. Figure 3 shows the boundary condition types at the far �eld and their best
con�guration for an Euler problem on NACA 0012 airfoil with Mach 0.55, and angle of attach of 2

◦
. In

this problem, four di�erent far �eld boundary conditions of vortex characteristics, radial [6], pressure, and
Dirichlet were used. It can be observed from Figure 4 that these optimized boundary condition con�gurations
have been able to stabilize an originally unstable problem or in some cases improve the convergence rate.
In all the cases, the bundled boundary conditions are showing better convergence characteristics. After the
optimization process, the boudanry conditions are linear averages of each individual boundary conditions
where the weights of these linear combinations are the results of the optimization.

4.2 Sensitivity of Eigenvalues to Solution

To present the e�ect of the solution on the eigenvalues, we developed a methodology to calculate the sensi-
tivity of each of the eigenvalues to the solution in Section 3.2. Here, we showcase this sensitivity for a second
order inviscid transonic Euler problem with Mach number 0.8 and an angle of attack of α = 1.25◦. This
problem with 4200 control volumes is initialized with far�eld free stream �ow conditions everywhere. It is
evolved to steady-state using pseudo-time stepping with an implicit time advance scheme. Figure 5 shows
the L2 norm of residual for this problem and the three iterations at which we have measured the sensitivity
of the eigenvalues with respect to the solution.

Figures 6, 7, 8, and 9 are respectively showing the gradients of the rightmost eigenvalue with respect
to the four primitive variables, ρ, u, v, p at all control volumes. In addition to the three iterations, as
shown in Figure 5, at which the sensitivity is measured, we are also showing the sensitivity of the rightmost
eigenvalue of the same second-order discretization evaluated using the �rst-order solution as a linearization.
This sheds light on our previous works [7, 8] where we used a lower-order steady-state solution to linearize
a higher-order discretization (e.g., using a �rst-order steady-state solution as a surrogate solution to the
second order-solution for linearizing the Jacobian).

Comparing the sensitivity maps between all four di�erent solutions and for each of the primitive variables
reveals that both the half converged solution and the lower order solution have similar features to the
sensitivity of the fully converged solution at near �eld. The rightmost eigenvalues of all the four solutions
are quite close while the eigenvalues at iteration 35 (with a �ux integral residual of order of 10−1) and the
steady-state solution are exactly identical. However, sensitivity maps at the �rst iterations of convergence
(Figures 6b, 7b, 8b, and 9b) show high gradients mostly further away from the airfoil and they mostly fall
short of capturing the important features adjacent to the airfoil. This is indeed aligned with the intuition
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Figure 2: Derivative of the eigenvalue with vertex movement for two eigenmodes of Euler problem with
Mach 0.8, and angle of attack of 2

◦
on a NACA 0012 airfoil with 2000 control volumes. Vertical axes are

the average of the gradients of eigenvalues with respect to the mesh vertices for all the vertices of each
control volume. The gradients of eigenvalues with respect to mesh vertices are calculated at each vertex.
However, to project them on the eigenvector components, i.e. each unknown at each control volume, the
gradients are averaged for each CV. The horizontal axes are the average of the values of all components of
eigenvector corresponding to each control volume. Each control volume has the same number of entities in
the eigenvector as the number of unknowns.
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Figure 3: Boundary condition con�gurations: far-�eld boundary condition optimization for an Euler problem
with Mach 0.55, and angle of attack of 2

◦
on a NACA 0012 airfoil with 2000 control volumes
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NACA 0012 airfoil with 4200 control volumes.
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Figure 6: Sensitivity of the rightmost eigenvalue with respect to the density, ρ, at three di�erent stages of
convergence (see Figure 5).
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Figure 7: Sensitivity of the rightmost eigenvalue with respect to the axial velocity, u, at three di�erent stages
of convergence (see Figure 5).
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Figure 8: Sensitivity of the rightmost eigenvalue with respect to the vertical velocity, v, at three di�erent
stages of convergence (see Figure 5).
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Figure 9: Sensitivity of the rightmost eigenvalue with respect to the pressure, p, at three di�erent stages of
convergence (see Figure 5).
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that the solution near the airfoil had not yet had the chance to evolve from the free stream conditions. The
study of the sensitivities of the eigenvalues with respect to the solution further con�rms the idea of using
either a lower-order or half-converged solution as a surrogate solution for linearizing the Jacobian in our
stability algorithms.

5 Conclusion and Future Works

In this work, we �rst proposed and studied a new approach to optimize boundary conditions for stabiliza-
tion of �nite volume discretization on unstructured meshes. This method superimposes di�erent boundary
conditions for aerodynamic problems at far-�eld. It automatically optimizes this mixed boundary condition
con�guration through gradients of the right most eigenvalues of the semi-discretized Jacobian. In this way, a
stable boundary condition con�guration is designed that produces a stable �nite volume method in terms of
steady state convergence. Secondly, we presented a methodology to investigate the sensitivities of the eigen-
values with respect to the solution at any point when converging to the steady sate solution. Our results
showed that both the lower-order and half-converged solutions capture enough variations in the solution to
be able to approximate the semi-discretized Jacobian of a higher-order solution at steady state.
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