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Abstract: The coupled time integration methods(CTIM) based on computational 
structural dynamics(CSD) and computational fluid dynamics(CFD) have been 
developed to predict the aeroelastic phenomena such as flutter or buffet in transonic 
or low supersonic regimes. Staggered algorithms are basically applied for data 
transfer when CFD using implicit temporal scheme and CSD using explicit temporal 
scheme are loosely coupled. An iterative staggered algorithm was proposed that 
repeatedly converges structural equations while solving the CFD sub-iteration to 
overcome the limitations of the conventional staggered algorithm. For comparison 
with other temporal schemes, the convergence test with the time step was conducted. 
The flutter-boundary prediction of the AGARD 445.6 wing is used to verify the 
developed code and demonstrate the accuracy and efficiency. 
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1     Introduction 
 
Flutter is the self-excited structural oscillation due to the interaction between the inertial, elastic and 
aerodynamic forces. Modern aircraft are designed to have high flexibility inevitably to have more and 
more lightweight. In addition, the nonlinearity that is related to the viscous effect, turbulence and shock 
waves on the airfoil causes the flutter dip which is a phenomenon where flutter boundary is drastically 
lowered. Therefore, the aeroelastic stability analysis in the transonic region is indispensable for the 
conceptual design stage of modern aircraft. Computational studies on aeroelastic analysis have been 
continuously conducted [1-6]. 

Coupling methods for fluid-structure integration can be classified into monolithic approach and 
partitioned approach. A monolithic approach computes the reconstructed fluid-structure integrated 
equation [7,8], which can improve the time accuracy. However, in case of the complicated aeroelastic 
analysis, it is not easy to formulate the integration between fluid and structural dynamic equations.  A 
partitioned approach, called by staggered algorithm, sequentially integrates unsteady equations by 
transferring each solution as an initial condition. It is simple and efficient to develop because it uses 
existing structure and fluid analysis techniques. Conventional staggered algorithms, however, have the 
first-order temporal accuracy with respect to the aerodynamic forces used in time advance of the 
structural dynamic equations. This temporal error, called the time lagging, can be reduced by using a 
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more smaller time step, but the computation time increases. 
To overcome the time lagging, Alonso and Jameson [9] used a tightly coupled method with an 

explicit method for diagonalized state space equation. At time level n , the pseudo-time calculation is 
conducted, and the flow information is sent to the structural solver. Then the new deformation is 
transferred to the flow solver. It is tried to eliminate the time lagging by exchanging the aerodynamic 
forces and structural deformation repeatedly in every pseudo time step. For this method, at least 100 
pseudo-time steps are generally needed for the explicit schemes to ensure adequate convergence [10]. 

Farhat and Lesoinne [11] proposed improved serial/parallel method. The improved serial staggered 

algorithm based on midpoints rule predicts the position of the 1 / 2n   step using the structural position 
and velocity at the n  step, and transferred them to the flow solver to obtain the aerodynamic forces at 

the 1 / 2n   step.  The parallel staggered algorithm forces to advance the structure integration twice in 
one time step, as a prediction and correction step. This strategy helps overcome the time lagging by 

exchanging aerodynamic and structure information at 1 / 2n   step.  
In this study, an aeroelastic analysis solver is developed by combining structural dynamic equations 

with modal approach and in-house CFD code that is based on structure grid system. Partitioned 
approach requires aerodynamic forces mapping and structural displacement interpolation. Because the 
number of grid points in the moving boundary is generally very large, The spline method and the inverse 
transform mapping method using the equilibrium of virtual work [12, 13] are very large interpolation 
matrix operations. The spline interpolation matrix is parallelized based on the moving boundary of 
CFD. It is important to maintain the temporal accuracy related to aerodynamic forces for staggered 
algorithm. The iterative method can provide converged solutions of both structure solver and flow 
solver at the next time step through repetitive coupling of the fluid-structure. The dual time stepping 
method based on the diagonalized alternating directional implicit (DADI) is applied to the unsteady 
time-accurate CFD simulation. The 4th order Runge-Kutta method is applied as the structural time 
integration method. Time step convergence study for the AGARD 445.6 wing tested on transonic 
dynamics tunnel(TDT) [14] was conducted to compare the coupled time integration methods.  

 

2     Numerical Approach 
 
2.1     Governing Equations in Flow Solver 
 
The 3-dimensional compressible Navier-Stokes equations [15] can be written as: 
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where Q is the conservative variable vectors, jF  and vjF  are the inviscid and viscous flux vectors in 

each direction, respectively: 
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Here,   , p , E  and H are the density, pressure, total energy and total enthalpy. ju  is the cartesian 

velocity components in each direction,   and *  is the laminar and turbulent shear stress tensor, 
respectively and jq  is the heat fluxes in each direction.  These components can be represented as 

follows: 
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The strain-rate tensor is given by 
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The molecular viscosity is determined by the Sutherland law and the eddy viscosity, T , is evaluated 
using Spalarat-Allmaras(S-A) RANS turbulence model to determine the turbulent stresses in this paper. 
 
2.2     Time Marching Scheme in Flow Solver 
 
For unsteady flow solver, dual time stepping which is suggested by Jameson [16] is used to ensure the 
temporal accuracy in physical time step. The pseudo temporal term is added to unsteady residual 
including physical time step with high order differencing as follows: 
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The governing equations can be formulated by implicit form applying pseudo time step  .  
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The Jacobian matrix of unsteady residual in governing equation is defined by spatial discretization 
scheme. The diagonalized alternating direction implicit(DADI) temporal scheme, which constructs an 
implicit operator by diagonalizing the matrix through approximate-factorization [17], is used to advance 
the solution in physical time. 
 
2.3     Aeroelastic Equation of Motion 
 
The aeroelastic equation of motion can be formulated by Hamilton Theorem for elastic models and is 
written in matrix form as follows [18]. 
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where   q t  is the generalized displacement vector and gM   , gC    and gK    is the generalized 

mass, damping and stiffness matrices respectively.   Q t  is the generalized aerodynamic forces as 

follows: 
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where subscript i  indicates the influence mode shapes and *S  is the non-dimensional area on the wing 
surface. 20.5 U  and 2

rC  are the dynamic pressure and dimensional area associated with the root chord 

length which is the multiplied to make the dimensional forces. t  represents physical time that is 
transformed from the non-dimensional time of the CFD. Eq. (4) can be reduced to the state vector forms 
as follows: 
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2.4     Time Marching scheme in Structural Solver 
 
To solve the structural equations coupled with flow solver, a loosely coupled manner is used and can 
be seen as a conventional serial staggered procedure(CS) in figure 1, where x  denotes the structure 
state vector [ , ]Tq q , U  denotes the aerodynamic forces, u  denotes the generalized aerodynamic forces 
with  mode-shape vectors. 
 

 
Figure 1: Schematic diagram of Conventional serial staggered algorithm. 

 
In this method, the aerodynamic forces converged at each physical time step are transferred to the 
structural solver to obtain the generalized displacement, it is possible to facilitate the development by 
simply combining each independent solver. The structural differential equation (8) can be solved 
explicitly by Runge-Kutta method as follows:  
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The aerodynamic forces 1/2nu   and 1nu   except nu  are unknowns in Eq. (12). If these unknowns are 

replaced by nu , Eq. (11) becomes conventional serial staggered algorithm and has the disadvantage that 
it is only first-order time-accurate, even when the underlying flow and structural solvers are of second-
order time-accurate [11]. 

There are three methods for Eq. (11) to have higher order accuracy for aerodynamic forces. The 
first method (IS1, Improved Staggered algorithm 1) estimates the aerodynamic forces  1/2nu   and 

 1nu  by linear extrapolation using flow solution obtained at the previous step [19]. 
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Substituting Eq. (13) into Eq. (12), Runge-Kutta solution in Eq. (11) provides a second-order time 
accuracy and the time step can be increased moderately, which can improve the efficiency of the 
computation. Furthermore, it is attractive that the computation time is nearly the same as the CS method 
because the computing time for the extrapolation is very small. 
 

 
Figure 2: Schematic diagram of Improved serial staggered algorithm(IS2). 

 
The second method (IS2, Improved Staggered algorithm 2) is to predict the aerodynamic forces on  
1 / 2n   step by transferring the position on the next extrapolated 1 / 2n   step to the flow solver. The 

schematic diagram of IS2 is shown in Figure 2 [11]. Position of  1/2nx   is predicted based on midpoint 

rule by using the position and velocity in displacement states vector  nq  components.  The position is 

determined by extrapolation only without integration of Eq. (8) as follows: 
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IS2 method is very similar to CS method except the extrapolation process. Therefore, the computation 
time of IS1 method is the same as that of CS method, but the second-order accuracy can be obtained 
easily. In this case, the calculated aerodynamic forces and structural position are different by half steps. 
The main common idea of both IS1 and IS2 is to integrate the structural Eq. (8) using the predicted 
aerodynamic forces by extrapolating the forces and deformation for the next step.  

Finally, the main idea of the iterative staggered algorithm(ITS) suggested in this study is to 
repeatedly perform the explicit time integration of the structural Eq. (8) within the pseudo time loop of 
the flow solver to simultaneously converge the fluid solution  1nu   and structural position  1nx  in 

the next time step. 
1. Solve the structural equation using given initial condition  nu   

2. Update the fluid mesh using generalized displacement vector of structural solution  *x  and 

evaluate the  *u  in fluid sub-iteration loop 

3. Solve the structural equation using explicit method(RK4) with given  nu and  *u  as follows: 
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4. If both flow and structure solutions are converged, set  *u  to  nu , otherwise repeat step 2. 
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The solution of the structural equation usually converges more quickly than that of the flow solver in 
the pseudo time loop. Therefore, the efficiency of computation can be increased by introducing arbitrary 
variables that determine the number of couplings in the pseudo time loop of the flow solver and 
adjusting the information exchange period between the flow solver and the structural solver. Flowchart 
of a method of adjusting the coupling period by introducing an arbitrary periodic variable i  is shown 
in Figure 3. 
 

 
Figure 3: Flowchart of the iterative algorithm in pseudo time loop 

 
2.5     Fluid-Structure Interpolating Algorithm    
 
The thin plate spline (TPS) method used in this study provides a mean to characterize an irregular 
surface by using functions which minimize energy functional. The equilibrium equations between the 
FEM grids points and the CFD grids points are constructed by interpolation matrix for interpolating 
displacement vectors or projecting aerodynamic forces [12]. The number of structural nodes   and 
the number of nodes at the moving boundary in flow solver is  , the size of the interpolation matrix is 
  by  . Matrix operation takes a lot of computation time and memory. It is possible to reduce the 
size of the interpolation matrix by parallelizing the moving boundary of CFD grid having a relatively 
large size. The displacement vector obtained from the FEM grid is parallelized and interpolated to the 
moving boundary of CFD grid as follows.  

     f sKK
x G x       (16) 

where fx  is the displacement vector on the divided domain of the moving boundary. The number of 

nodes of moving boundary is divided into K  number of parallel CPUs, and the size of the interpolation 

matrix is   by K . By applying the relation between the aerodynamic forces  f K
u  obtained from 

the divided domain and the equivalent load  su  acting on the structural grid, it can be expressed as 

follows. 
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f f s sK K
x u x u       (17) 

Substituting Eq. (17) into Eq. (16), 

         0
TT

s f sK K
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In order to satisfy the virtual displacement in Eq. (18), the following condition must be satisfied. 
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Since the equilibrium equation is linear, it is possible to obtain the aerodynamic forces at the complete 
structural nodes by integrating the aerodynamic forces at each divided moving boundary. 

     
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k
T

s fK K
n

u G u
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       (20) 

 
3     Numerical Results and Discussion 
 
3.1     AGARD 445.6 wing 
 
The AGARD 445.6 Wing was tested in the NASA Langley Transonic Dynamics Tunnel(TDT) in 1961. 
Flutter boundary data have been publicly available for over 20 years and have been widely used for 
preliminary computational aeroelastic benchmarking. Figure 4 shows the geometric configuration of 
AGARD 445.6 wing. The wing is a semi-span model that has the swept back angle of 45 deg along the 
1 / 4  chord line and taper ratio 0.66. The wing cross section is symmetric NACA65A004 airfoil with a 
4% thickness. 
 

 
Figure 4: Geometric configuration of AGARD 445.6 wing. 

 
First four mode shapes of the wing are shown in Figure 5. In the figure, the first and second modes 

are the first bending and torsion mode shapes and the third and fourth modes are the second bending 
and torsion mode shapes, respectively.  Left figures are the FEM analysis result used in this study and 
right figures are the mode information presented by Yates [14]. In most of the references, four modes 
are used for flutter analysis. It is found that there is no significant difference in the analysis results if 
more modes are considered. 
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Figure 5: Structural mode shapes and frequencies. 

 
3.2     Grid and Boundary Condition 
 
Figure 6 shows the grid system used in this study. The number of grids which is the C-type topology 
for Euler analysis is 144 33 41   in each stream-wise, span-wise and chord-wise direction 
respectively. In addition, N-S base grid of 209 41 65   and N-S fine grid of 281 65 97  were used 
considering viscous effects using Navier-Stokes equations. Farfield boundaries of all grid systems are 
located 20 times the length of the chord from the wing. The surface of the wing has the adiabatic wall 
condition. In the case of the flutter analysis, it is difficult to consider the exact Reynolds number 
because the flutter speed or density is changed for each case. Applied Reynolds number on flutter 
boundary at 0.964M   is 6Re 0.87 10c   [22]. 

 

 
Figure 6: Structure grid system for Euler analysis  



 9

3.3    Code Validation using Prediction of Flutter Boundary 
 
To verify the developed code, the Euler method and the Navier-Stokes method were used to predict 
the flutter boundary by varying dynamic pressure for various Mach numbers ranging from subsonic to 
low supersonic. The dynamic pressure at the flutter boundary is defined as flutter speed index (FSI) as 
follows. 

f
f

neutral

U
V

b  

 
   
 

      (21) 

fU  is the free-stream velocity, b  is the half root chord,   is the primary torsional frequency (2nd 

mode) and / ( )m v   is the wing mass ratio. m  is the mass of the wing, v  is the volume related to 

the wing, and   is the density of the fluid. In this study, the velocity was specified and the density 

was changed to check the response characteristics at the dynamic pressure corresponding to Mach 
number. Figure 7 shows decaying and diverging modal responses for various FSI at 0.499M  . As a 
result, trial and error calculations were repeatedly conducted until the neutral variations were obtained 
at each Mach number. Figure 8 shows the response of generalized displacements at neutral boundary 
for various Mach numbers.  
 

 
Figure 7: Decaying and diverging modal responses for various FSI (Euler, 0.499M  ) 

 
The non-dimensional time step used in all cases is set to 0.02, which means that the actual time 

step varies with varying flutter speeds that is equivalent to about 1/500 of the maximum period 
corresponding to second natural frequency. Flutter frequency ratio is /   ,   is the frequency of 

response of first modal displacements. Figure 9 is the flutter speed and frequency boundaries of 
AGARD 445.6 wing using Euler and Navier-stokes. and these results are compared with other 
researchers’ results [6, 10, 23] and with experimental data [14]. In subsonic and transonic regions, the 
flutter speed was predicted to be almost equal to the experiment and well simulated flutter dip.  In the 
low supersonic region, it has a tendency similar to other researchers’ results and predicts a higher flutter 
speed than the experimental data. Im et al. [5] noted that it is important to accurately predict the 
shockwave/boundary layer interaction of the vibrating wing in the supersonic region to reduce the 
deviation. Accurate flutter boundary almost same as the experiment was predicted when DDES 
turbulence model and high order spatial discretization method are applied. The flutter boundary more 
slightly similar to the experimental data was predicted by using finer grid and Navier-Stokes equations.  
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Figure 8: Generalized displacements at neutral boundaries (Euler). 

 
 

 
Figure 9: Flutter speed and frequency boundaries of AGARD 445.6 wing  

and comparisons with other researchers’ results 
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3.3    Time Step Convergence 
 
Time step convergence according to temporal scheme was investigated for the target cases with 
neutrally stable response at Mach numbers of 0.499 and 0.954, and the corresponding FSI was 0.4311 
and 0.305, respectively. In the case of 0.499M  , the non-dimensional time step was varied from 
0.0025 to 0.1. Table 1 shows the relative computation time corresponding to the non-dimensional time 
step used in the CFD. 
 

Table 2: RCT according to non-dimensional time step( 0.499M  ) 
*t  RCT(ITS) RCT(other) 

0.0025 1.00 0.87 
0.0050 0.68 0.59 
0.0125 0.48 0.42 
0.0250 0.36 0.32 
0.1000 0.21 0.19 

 
The relative computation time (RCT) is a non-dimensional computation time based on the case of ITS 
with the largest computation time. The computation times of the CS, IS1 and IS2 are similar while 
those of the ITS are increased about 15% due to the additional computations that is caused from the 
recurring integration of the structural dynamics and fluid dynamics. Flow solutions were converged at 
every time step within the L2-norm tolerance of 0.01 which is computed based on the density. 
Figures 10(a) and 10(b) show the first mode response calculated by CS and ITS method, respectively. 
In the case of CS method, the neutral response can be obtained only when the time step size is less than 
0.005. In other words, when the more smaller time step is used, the response will be more stable and 
convergent. In the case of ITS method, because the results do not have difference between the response 
which is computed with less than the 0.025 time step, all the results can be regarded as the neutral 
stable. we can conclude that numerical stability of the CS method is more restrictive than those of other 
methods, or other methods may have higher accuracy properties. 

The vibration stability of the wing can be evaluated using the logarithmic decrement ratio(LDR). 
The definition of the LDR is as below. 

1ln i

i

A
LDR

A
        (22) 

As the time step becomes smaller, the responses of all schemes gradually become neutrally stable, and 
the larger the time step, the more unstable response produces. As a result, the result with neutral 
response regarded as the exact solution. As the LDR approaches zero, it means that the response is more 
neutrally stable, and the solution is more accurate. Therefore, the accuracy can be estimated through 
the slope of the LDR line according to the time step, and the smaller the slope, the higher the accuracy 
is estimated. Figures 11 and 13 show that IS1, IS2 and ITS have almost similar accuracy but these are 
slightly improved in order. 

Figures 12(a) and 12(b) show the first mode responses calculated by CS and ITS methods, 
respectively as in figures 10(a) and 10(b). The response of the CS method calculated using the largest 
time step of 0.8 is a very unstable response that diverges rapidly in five periods. It is considered that 
the temporal error has increased rapidly in a relatively large time step. ITS method converges to the 
neutral response for all time steps, and the response at the largest time step is indistinguishable from 
that predicted by the smallest time step. 
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Figure 10: Time history of the first mode for various time step, 0.499M   (a: CS, b: ITS). 

 

 
Figure 11: Logarithmic Decrement Ratio, 0.499M   

 
Table 2: RCT according to non-dimensional time step( 0.954M  ) 

*t  RCT(ITS) RCT(other) 

0.1 1.00 0.72 
0.2 0.50 0.37 
0.4 0.45 0.30 
0.8 0.41 0.27 
1.6 0.33 0.24 
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Figure 12: Time history of the first mode for various time step, 0.954M   (a: CS, b: ITS). 

 

 
Figure 13: Logarithmic Decrement Ratio, 0.954M   

 
 

4     Concluding Remarks 
 
In this present study, the aeroelastic analysis system was developed by coupling between the structural 
dynamics based on the modal approach and an in-house CFD solver. The coupling error due to data 
extrapolation was reduced by the present recurring computation of the structural equation exploiting 
aerodynamic forces at the next time step that are computed in the pseudo time loop. The aeroelastic 
analysis of the AGARD 445.6 wing was conducted by the developed aeroelastic analysis system and 
the present results show good agreement with the experimental data. Improved staggered methods have 
better convergence than CS method since the structural equation was computed using fluid solution of 
next time step. The time step convergence test show that convergence of the ITS method is slightly 
improved, although the total computation time increases about 15% in the ITS method due to the 
additional recurring computations. 
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