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Abstract: A hybrid improvement function (also known as infill criterion) used 

for multiobjective efficient global optimization (EGO) algorithm has been 

proposed to solve the aerodynamic shape optimization problems with multiple 

objectives based on the high-fidelity CFD simulations, such as RANS-based 

solutions. The proposed algorithm has combined some of the ideas from two 

other multiobjective expected improvements (EI) known as statistical 

multiobjective EI and hypervolume-based EI and avoided the difficulty of high-

dimensional integrals required by these two multiobjective EIs. Ten analytical 

test problems and two aerodynamic shape optimization problems with different 

characteristics have been tested. In comparison with the other two multiobjective 

EGO algorithms and a standard evolutionary multiobjective optimization 

algorithm in the commercial software, the present algorithm gives the best 

performance in most of the test cases and shows great potential in aerodynamic 

shape optimizations based on the expensive CFD simulations. 
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1     Introduction 
 
Nowadays the aerodynamic shape optimizations based on the RANS solutions become more and 

more popular in the aeronautical industries. In comparison with the solutions based on the linear 

aerodynamic theory, the RANS solutions can give much more accurate results. However, solving 

the RANS equations for practical aerodynamic problems is still time-consuming and the 

aerodynamic shape optimizations usually require a large number of CFD solutions. To make the 

high-fidelity aerodynamic shape optimizations affordable, one way is to build some kinds of 

surrogate models and then perform the optimizations on these surrogate models. One of the widely 

used surrogate models is the Kriging model [1]. Since the accuracy of a Kriging model has to be 

validated before optimizations, lots of resources may be wasted during this validation process. By 

introducing an infill criterion called the expected improvement (EI), Jones et al. [2] has proposed 

an efficient global optimization algorithm (EGO). After an initial Kriging model is established, a 

series of sampling points can be continuously added based on the EI value until the optimum or the 

maximum iteration is reached. The EGO algorithm can automatically balance the local 

(exploitation) and global search (exploration) so that no explicit validations are required.  

 

Since the EGO algorithm shows great success in the optimization problems with one objective, this 

idea was also generalized to deal with the multiobjective optimization problems. By introducing the 
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weighted scalarizing function, Knowles [3] converted a multiobjective optimization problem into a 

number of single-objective optimization problems, which can be easily solved by the single-

objective EGO algorithm. Zhang et al. [4] also proposed a similar algorithm which can generate 

multiple candidate points during one iteration. In essence, these algorithms do not change the 

classical single-objective EGO algorithm and the free parameters introduced by these algorithms 

have to be tuned for each specific problem. In terms of the statistical meaning of EI, Keane [5] has 

generalized the original EI to the statistical multiobjective EI and derived an analytical expression 

of two-objective EI. For problems with more than two objectives, so far no analytical expressions 

of multiobjective EI can be found in literature. Emmerich et al. [6] has generalized the original EI 

to the multiobjective EI in another way. They proposed to continuously improve the hypervolume 

constructed by the approximate Pareto front and a hypervolume-based EI is used to infill new 

sampling points. To calculate the hypervolume-based EI, a high-dimensional integral is required. 

For two-objective optimization problems, Emmerich et al. [7, 8] have worked out a direct method 

to calculate the values of the hypervolume-based EIs. However, for the optimization problems with 

more than two objectives, time-consuming numerical methods have to be employed. 

 

In this paper, a hybrid figure of merit for multiobjective optimization problems is proposed. This 

hybrid infill criterion has combined some of the ideas from Keane’s multiobjective EI [5] and 

hybervolume-based EI by Emmerich et al. [6]. Its analytical formula can be easily found for the 

problems with more than two objectives. Furthermore, it can give better results than other 

multiobjective optimization algorithms in the tests of a number of analytical cases and practical 

aerodynamic shape optimization cases. 

 

2     Optimization Algorithm 

 

2.1     Multiobjective Optimization Problem 
 

The multiobjective optimization problem considered in this paper is defined as 

min( ( ))

. . l u

f x

s t b x b 
                                                               (1) 

where 1 2( ) ( , , , )kf x f f f  is the objective vector and 1 2( , , , )dx x x x  is the design vector, with 

upper and lower bounds represented as lb  and ub . In this paper ( )f x  and x  are assumed to be 

continuous. 

 

2.2     Single-objective EGO Algorithm 
2.2.1     Kriging Model 
 

Assuming there are n sampling points by using some kinds of space-filling sampling method [9], 

like the most common one called Latin hypercube sampling method, the predictor of the Kriging 

model at any point x  can be written as 
1ˆ ˆ ˆ( ) ( 1 )y x y                                                            (2) 

where 1 2( , , , )ny y y y  is the function vector of the sampling points 1 2( , , , )nx x x , and the mean 

̂  is found from 

1

1

1
ˆ

1 1

y










                                                                 (3) 

  is the correlation matrix and its corresponding component   is given by 

 1( , ) ( , )nCor x x Cor x x                                               (4) 

where the correlation function is defined as  



 3 

  1

( , ) exp
l

d
p

i j l il jl ij

l

Cor x x x x 


 
    

 
                                         (5) 

where l  and lp are called hyperparameters of the Kriging model, and   is a regularization 

constant used to govern the degree of regression. In this paper, since the objective functions are 

relatively smooth, the hyperparameters lp  
are fixed to be 2 and   is set to be 10

-6
 to filter the 

possible numerical noise. The hyperparameters l  are tuned by maximizing the likelihood, which is 

defined as 
1

1/2 2/2 2 /2

ˆ ˆ1 ( 1 ) ( 1 )
exp

ˆ2ˆ(2 ) ( )n n

y y 

 

    
 

  
                                  (6) 

where the variance 2̂  is given by 
1

2 ˆ ˆ( 1 ) ( 1 )
ˆ

y y

n

 


  
                                                       (7) 

The accuracy of the model is measured by the mean squared error of the prediction, which is 
1

2 2 1

1

1 1
ˆ ˆ( ) [1 ]

1 1
s x


  






 
   


                                               (8) 

As one can see from the above formulas, unlike other surrogate models, the prediction of a Kriging 

model consists of a certainty part ˆ( )y x  as shown in equation (2) and an uncertainty part 2ˆ ( )s x  as 

shown in equation (8). In other words, the prediction of a Kriging model is a random variable, 

which forms the basis of the EGO algorithm. 

 
2.2.2     Single-objective EI 

 

Considering k=1 in equation (1), the problem becomes a single-objective optimization problem 

with bound constraints. In order to solve this optimization problem, Jones [2] has proposed an 

improve function defined as min( ) ( )I x y y x  , where min min( )y y  and ( )y x  is the prediction of 

the Kriging model. Therefore, the search of the optimum can be automatically driven by finding a 

sampling point which can maximize ( )I x . Since ( )y x  is a random variable with a mean value of 

ˆ( )y x  and a variance of 2ˆ ( )s x , ( )I x  is also a random variable. Thus, the probability of improvement 

can be defined as 

min
ˆ( )

( ( )) ( )
ˆ( )

y y x
P I x

s x


                                                     (9) 

and its corresponding EI can be given by 

min min
min

ˆ ˆ( ) ( )
ˆ ˆ( ( )) ( ) ( ) ( )

ˆ ˆ[ ( )] ( ) ( )

0

y y x y y x
y y x s x

E I x s x s x


 
  

 



 , 
ˆ( ) 0

ˆ( ) 0

s x

s x




               (10) 

where ()  is the normalized Gaussian distribution function and () is the normalized Gaussian 

density function.  

 

Figure 1 has explained the meanings of the probability of improvement and EI. The shade area 

represents the probability of improvement, which indicates the probability that a new sampling 

point x  will improve the existing sampling points in the sense of searching the minimum, and the 

EI is the first moment of this shade area about the line through the ymin, which measures how much 

an improvement will be by adding a new point x  into the existing sampling points. 



 4 

 
 

 

 

2.2.3     Single-objective EGO Algorithm 

 

Then, the procedure of the EGO algorithm can be described as: 

 

Algorithm I Single-objective EGO Algorithm 

1) Generate initial sampling points by one of the space-filling sampling methods; 

2) Build a Kriging model by tuning the hyparameters in equation (5); 

3) Find the optimum of the EI in equation (10) and add a new sampling point; 

4) Check the convergence; if the converged requirements aren’t satisfied, go back to step 2). 

 

2.3    Multiobjective EGO Algorithm 
2.3.1     Statistical Multiobjective EI 

 

Keane [5] has generalized the ideas of EI to address the multiobjective optimization problems. Here 

we consider the optimization problem with only two objectives given as 1( )f x  and 2 ( )f x . Given 

initial M0 sampling points, we can construct an approximate Pareto front, which is  

 0 00 0
( )* ( )*( ) ( )(1)* (1)** (1) (1)

1,2 1 2 1 2( ), ( ) , , ( ), ( )
M MM M

f f x f x f x f x  
   

                       (11) 

We can also build an independent Kriging model for each objectives denoted as 1
ˆ ( )f x  and 2

ˆ ( )f x . 

Then the joint probability density function can be written as 
2 2

1 1 2 2
1 2 2 2

1 21 2

ˆ ˆˆ ˆ[ ( )] [ ( )]1 1 1 1ˆ ˆ( , ) exp exp
2 2ˆ ˆˆ ˆ( ) ( )( ) 2 ( ) 2

f x f x
f f

s x s xs x s x

 


 

       
      

      

                (12) 

If we define the set which dominates the Pareto front *
1,2f  as ndA  

 
* *( ) ( )

1 2 1 2 01 2( , ) : ( , ) ( , ), 1, ,
i i

ndA f f f f f f i M                                     (13) 

Then the probability of improving the Pareto front is 

1 2

1 2 1 2ˆ ˆ( , )

ˆ ˆ ˆ ˆ( ) ( , )
ndf f A

P I f f df df


                                                 (14) 

According to Keane [5], the EI for multiobjective problems can be written as 

   
2 2

( )* ( )*
1 21 2
ˆ ˆ[ ] [ ] j j

keaneMOEI E I P I f f f f                                      (15) 
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Figure 1:  Probability of improvement and expected improvement (EI).  
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where ( 1f̂ , 2f̂ ) is the centroid of probability integral and ( ( )*
1

jf , ( )*
2

jf ) is the nearest point to the 

centroid. The definition of the centroid is 

1 2

1 2

1 1 1 2 1 2ˆ ˆ( , )

2 2 1 2 1 2ˆ ˆ( , )

ˆ ˆ ˆ ˆ ˆ ˆ( , ) / ( )

ˆ ˆ ˆ ˆ ˆ ˆ( , ) / ( )

nd

nd

f f A

f f A

f f f f df df P I

f f f f df df P I









 


 





                                               (16) 

A complicated analytical expression of keaneMOEI  for two-objective optimization problems has 

been derived by Keane [5]. However, no analytical expressions of keaneMOEI  for optimization 

problems with more than two objectives have been found so far. In this paper, the subroutines 

provided by Forrester et al. [10] are used to calculate the value of 
 keaneMOEI . 

 

2.3.2     Hypervolume-based EI 

 
The concept of hypervolume for a Pareto front was proposed by Zitzler et al. [11]. As shown in 

Figure 2, the hypervolume of a Pareto front is defined as the shade area/volume between a 

reference point and the points in the Pareto front. It can be used to measure the quality of a Pareto 

front. Fonseca et al. [12] have figured out a fast method used to calculate the hypervolumes, and the 

subroutines developed by them have been employed in this study. Based on the concept of the 

hypervolume, Emmerich et al. [6] has generalized the EI for multiple objectives. If we assume that 

the current Pareto front is *
1,2f  and the Pareto front after adding a new sampling point x  is **

1,2f , 

then the improvement based on their hypervolume difference can be defined as 
** *

1,2 1,2( ) ( ) ( )H H HI x I f I f                                                    (17) 

 

 
 

 

Apparently, 1 2
ˆ ˆ( , )f f  are random variables, so does ( )HI x . Naturally, the hypervolume-based EI can 

be written as 

( ( ))hv HMOEI E I x                                                     (18) 

It is difficult to find an analytical expression of hvMOEI , since ( )HI x  is a random variable and a 

high-dimensional integral is required. However, Emmerich et al. [7, 8] has managed to find a direct 

method to calculate its value while there are only two objectives. The subroutines developed by 

them are used in this study. For the optimization problems with more than two objectives, the 

Monte-Carlo integration method has to be adopted, although its cost is very high in comparison 

with the direction method. It can be written as 

1

1 m

hv i

i

MOEI I
m 

                                                       (19) 

(1) (1)

1 2( , )f f

(2) (2)

1 2( , )f f

(3) (3)

1 2( , )f f

reference

Figure 2:  The definition of hypervolume.  
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where m is the total number of sampling points. The value of 10000 is used in this study. 
 

2.3.3     Hybrid EI 

 

As seen in equation (18), the difficulty of calculating ( ( ))HE I x  is because of the need to perform a 

high-dimensional integral for a random variable. Now if only the predictors of the Kriging models 

are used to calculate the hypervolume difference written as ** *
1,2 1,2
ˆ ˆ( ) ( )H HI f I f , the difficulty of 

calculating ( ( ))HE I x  in equation (18) can be greatly reduced. Since the predictor of a Kriging 

model is the value with the highest probability close to the true value, the hypervolume difference 

based on the predicators can be used to measure how much improvement there will be if a new 

sampling point x  is added.  

 

On the other hand, if we assume the set of the squared points in Figure 3 is 1,2f   , which contains the 

corner points used to calculate the hypervolume between a reference point and the current Pareto 

front represented as circles in Figure 3, the probability improvement to point i (the probability of 

being in the shade area) in the 1,2f   can be given by 

( ) ( )
1 21 2

1 2

ˆ ˆ( ) ( )
( ) ( ) ( )

ˆ ˆ( ) ( )

i i

i

x x
P x

s x s x

    
                                         (20) 

By summing all of the contributions from the points in the set 1,2f  ,  written as 
1

( )
n

i

i

P x


 , the 

probability of improvement to the current Pareto front by adding a new sampling point x  can be 

measured. For k objectives, it can be easily generalized as 
( )

1

ˆ ˆ ( )
( ) ( )

ˆ ( )

ik
j j

i

jj

x
P x

s x

 




                                                  (21) 

 

By combining the hypervolume difference based on the predicators, corresponding to the local 

search (exploitation) capability in the context of global optimizations, and the probability of 

improvement to the corner points used to calculate the hypervolume, corresponding to the global 

search (exploration) capability, the present hybrid EI can be written as 

** *
1,2 1,2

1

ˆ ˆ( ) ( ) ( )
n

present i H H

i

MOEI P x I f I f


 
      

 
                                (22) 

In some sense, this hybrid EI has combined some of the ideas from Keane [5] and Emmerich et al. 

[6], and it has greatly improved the efficiency and capability of the multiobjective EGO algorithm 

as shown in the following tests. Furthermore, in comparison with equation (15) and (18), the 

present hybrid EI is much easier to be calculated and generalized to the optimization problems with 

more than two objectives. 
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2.3.4    Multiobjective EGO Algorithm 
 

Similar to Algorithm I, the procedure of the multiobjective EGO algorithm can be described as: 

 

Algorithm II Multiobjective EGO Algorithm 

1) Generate initial sampling points by one of space-filling sampling methods; 

2) Build Kriging models for all of the objectives by tuning the hyparameters in equation (5); 

3) Build an approximate Pareto front based on the existing data; 

4) Find the optimum of the multiobjective improvement in equation (15) or (18)or (22); 

5) Check the convergence; if the converged requirements aren’t satisfied, go back to step 2). 

 

3     Results and Discussions 

3.1    Analytical Test Problems 
3.1.1     Performance Metrics 

 
In order to compare the performance of different multiobjective algorithms, the inverted 

generational distance (IGD) metric and hypervolume difference ( HI  ) metric as suggested by Zhang 

[4] are adopted. The inverted generational distance is defined as 

**

*

( , )
( , ) P

d P
IGD P P

P







                                                 (23) 

where P is the approximate Pareto front and P
*
 is the set of the exact Pareto front. ( , )d P  is the 

minimum distance between point   and the points in P. If *P  is large enough to represent the 

exact Pareto front, the IGD can be used to measure the accuracy of the approximate Pareto front P. 

Similarly, the hypervolume difference is defined as 
* *( , ) ( ) ( )H H HI P P I P I P                                                     (24) 

 
3.1.2     Experiment Results 

 
In order to test different multiobjective optimization algorithms, ten analytical test problems with 

different characteristics are chosen as suggested by Ref. [3, 13-17].  The analytical expressions of 

these test problems can be found in Table 2 in the Appendix. In this paper, the word “gamultiobj” 

represents the multiobjective optimizer in the commercial software MATLAB [15], which solves 

reference
⃝

i

hypervolume

( )iP x

Figure 3:  The definition of Hybrid EI.  
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the multiobjective optimization problems by an evolutionary algorithm. In the “gamultiobj” 

optimizer, the size of population for one generation is set as 30 and the maximum generation is set 

as 101. Thus, the total population used by “gamultiobj” is equal to 3030. For all of the 

multiobjective EGO algorithms, the size of initial sampling points is set as 11 and the maximum 

iteration is set as 89. Thus, the total number of sampling points is equal to 100, which is about 30 

times less than that of the “gamultiobj” optimizer. Each experiment is repeated 50 times and the 

mean value and covariance are calculated. 

 
 

 

 
 

 
Figures 4 and 5 have compared the inverted generational distances and hypervolume differences of 

different algorithms. In these Figures and the Figures below, “keane” represents keaneMOEI  in 

equation (15), “hv” represents hvMOEI  in equation (18) and “present” represents presentMOEI  in 

equation (22). For the optimization problems with three objectives (Problem No. 8 and 10), only 

“gamultiobj”, hvMOEI and presentMOEI  have been tested. It can be easily seen that the present 

algorithm is the winner for most of the cases. Figure 6 has compared the Pareto fronts by different 

algorithms in their last experiments. The fact that the present algorithm has the best performance 

has been clearly confirmed. Interestingly, although the “gamultiobj” optimizer has used about 30 

times more points, its performance rarely matches that of the multiobjective EGO algorithms. This 

indicates that the costs of optimizing the multiobjective problems can be greatly reduced by the 

multiobjective EGO algorithms. 

 

Figure 5:  Comparison of hypervolume differences for test problems.  

Figure 4:  Comparison of inverted generational distances for test problems.  
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Figure 6: Comparison of Pareto fronts for test problems: The rows from 

top to bottom correspond to problem No.1-7 
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3.2    Aerodynamic Shape Optimizations 
3.2.1     Shock Control Bump Optimization with Two Objectives 

 
The first case for testing the performance of different algorithms in the aerodynamic shape 

optimizations is a shock control bump optimization on an airfoil called RAE5243. The 

parameterization of 2D shock control bump [18] with four design variables is shown in Figure 7. 

Based on our previous experiences, the bump length has been fixed as 0.3 of the chord length. Thus 

the remaining free design variables are bump crest location (x1), relative bump crest location (x2) 

and bump height (x3). The bumps are directly added on the upper surface of the RAE5243 airfoil.  

 

The CFL3D v6.7 solver [19, 20] has been employed.  A C-type mesh with 249×65 points has been 

generated and the average y
+
 value on the first cell near the wall has been adjusted to O(1). Figure 8 

and Table 1 has shown the mesh around the airfoil and the comparison of numerical results and 

experiment data [21, 22]. Different turbulence models have been tested and the Menter’s SST 

turbulence model has been chosen because of its accuracy and robustness. A fast algebraic dynamic 

method [23] has been adopted to update the mesh during the optimization process. 

 

The drag minimization problem at two different Mach numbers has been considered. The objective 

1 is the drag coefficient at Mach 0.66, corresponding to a shockless flow condition. The objective 2 

is the drag coefficient at Mach 0.70 and a strong normal shock wave will appear on the upper 

surface of the RAE5243 airfoil. 
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Figure 6 (continued): Comparison of Pareto fronts for test problems: The 

rows from top to bottom correspond to problem No.8-10 
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For comparisons, all of the multiobjective EGO algorithms including keaneMOEI , hvMOEI  and 

presentMOEI  have adopted the same setting with 3 initial sampling points and 200 maximum 

sampling points. Two different parameter settings have been employed in the “gamultiobj” 

optimizer. The first setting denoted as “gamultiobj-fine” has 50 populations for each generation and 

101 generations in total, and the other setting denoted as “gamultiobj-coarse” has 10 populations 

for each generation and 21 generations in total. Thus, “gamultiobj-coarse” has almost the same 

points as the multiobjective EGO algorithms. 

 

The results have been shown in Figures 9, 10 and 11. It is clearly that the present algorithm gives 

the best results. By using only about 4% of the costs of the “gamultiobj-fine”, the present algorithm 

has produced almost the same good Pareto front. In this case, the results of  keaneMOEI  has better 

performance than that of hvMOEI . The “gamultiobj-coarse” has the same number of points as the 

multiobjective EGO algorithms, but it produces the worst Pareto front. The star in Figure 9 

represents the original location of the RAE5243 airfoil. It can be seen that both of the objectives 

have been improved and eventually a trade-off between two objectives need to be considered. 

 

Table 1 Comparison of Cd while Cl=0.5154 for RAE5243 at Mach=0.6799, Re=18.68×10
6
 

Experiment [22] BL BL with DS modification SA SST 

0.00877 0.00960 0.00911 0.00980 0.00912 

 

 
 
 

 
 
 

 

Bump crest 

Bump length 

Bump height 

z 

y 

x 

Relative crest × Bump length 

Figure 8: Mesh for RAE5243 and CFD validations: Mach=0.6799, 

Re=18.68×10
6
, Cl=0.5154.  

Figure 7: The parameterization of 2D shock control bump [18].  
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Figure 9: Comparison of different algorithms for shock control bump 

optimizations on the RAE5243 airfoil.  

Figure 10: Comparison of Pareto fronts for shock control bump 

optimizations on the RAE5243 airfoil.  
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3.2.2     Airfoil Optimization with Three Objectives 

 
The airfoil optimization problem with three objectives has also been tested. The original airfoil is 

RAE2822, which is a typical supercritical airfoil. The CST parameterization method [24] is 

adopted and there are 8 design variables for changing the upper surface of this airfoil. In 

comparison with the previous case, this case has more design variables and objectives, providing 

more challenges to the multiobjective optimization algorithms. The mesh and CFD settings are the 

same as the previous case. As suggested by [25], the drag minimization problems at three different 

flow conditions are considered: 

1) Objective 1：Cd when Ma=0.734, Re=6.5×10
6
, Cl=0.7866； 

2) Objective 2：Cd when Ma=0.754, Re=6.2×10
6
, Cl=0.7478； 

3) Objective 3：Cd when Ma=0.680, Re=5.7×10
6
, Cl=0.5470。 

 

In order to find the trade-offs among these flow conditions, three optimizers including “gamultiobj”, 

hvMOEI  and  presentMOEI  have been tested. The “gamultiobj” optimizer has 30 populations for each 

generation and 101 generations in total. Both of the multiobjective EGO optimizers have adopted 

the same setting with 3 initial sampling points and 250 maximum sampling points. The comparison 

of the Pareto fronts has been shown in Figure 12. Clearly, the good performance of the present 

algorithm has been confirmed again. It can also be seen that the “gamultiobj” optimizer, which 

requires large number of CFD calculations, shows no competitiveness in this case. By using the 

multiobjective optimizations, the trade-offs among three design points have been clearly revealed 

as shown in Figure 12. The information provided by the multiobjective optimizations can give 

engineers more insights into the design of airfoils flying at a wide range of flow conditions. 
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Figure 11: Comparison of design spaces for shock control bump 

optimizations on the RAE5243 airfoil.  
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4     Conclusion 
 
An efficient multiobjective global optimization algorithm with a hybrid improvement function has 

been proposed and tested in this paper. The present algorithm has combined some of the ideas 

from Keane’s statistical multiobjective EI [5] and hypervolume-based EI by Emmerich et al. [6]. 

The proposed hybrid improvement function has avoided the difficulty of high-dimensional 

integrals and can be easily generalized to the optimization problems with more than two 

objectives. By solving ten analytical test problems and two aerodynamic shape optimization 

problems, the performance of the present algorithm has been compared with that of the other two 

multiobjective EGO algorithms and a multiobjective optimizer in the commercial software 

MATLAB, which stands for the state-of-the-art evolutionary multiobjective optimization 

algorithms. The tests show that all of the multiobjective EGO algorithms can produce better results 

than that of the evolutionary algorithm even the number of function calculations required by the 

evolutionary algorithm is much higher in some cases. Among three multiobjective EGO 

algorithms, the present hybrid improvement criterion gives the best performance, which has great 

potential in aerodynamic shape optimizations based on the expensive CFD simulations.  
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Appendix 

 
Table 2 Analytical Test Problems 

No. Name Number of 

objectives 

Number of 
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Bounds Expression 
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1 1 2

1

2

;

1 9 ; 1 /
1

m
i

i

f x f h g

x
g h f g
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