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Abstract: A reconstructed discontinuous Galerkin (rDG(P1P2)) method is developed for com-
pressible flows on 3D arbitrary grids. In this method, a quadratic polynomial solution is recon-
structed using a newly developed variational reconstruction based on the given linear discontinuous
Galerkin solution. The second derivatives are obtained by minimizing the jump of the values of
the reconstructed polynomial solutions and their spatial derivatives at cell interfaces, and therefore
maximizes smoothness of the reconstructed polynomial solutions. Unlike the rDG(P1P2) method
based on a least-squares reconstruction, the resulting rDG(P1P2) method is stable even on tetra-
hedral grids, since the stencils in the variational reconstruction are intrinsically the entire mesh.
A variety of the benchmark test cases are presented to assess the accuracy, efficiency, robustness
and flexibility of this rDG(P1P2) method. The numerical experiments demonstrate that the de-
veloped rDG(P1P2) method based on the variational reconstruction is able to maintain the linear
stability, attain the designed third order of accuracy, and outperform its rDG(P1P2) method based
on the least-squares reconstruction without a significant increase in computing costs and storage
requirements.

Keywords: Computational Fluid Dynamics, reconstructed Discontinuous Galerkin, variational
reconstruction.

1 Introduction

There are three main methods when it comes to Computational Fluid Dynamic (CFD), namely finite vol-
ume, finite element and discontinuous Galerkin (DG) method. The DG methods combine the advantages
of both finite volume and finite element methods. Associated to finite volume and finite element methods,
DG methods implement the high-order polynomials on each element and solving the Riemann problems that
arise from the discontinuous representation of solution on each element interface. The cell-centered finite
volume methods exactly correspond to the DG(P0) methods. The DG methods can be easily extended to
high-order approximation (DG(Pn)) and are suited for complex geometries. They are compact so the coding
can be structured and simplified. Since the elements are independent, and the inter-element communications
are minimal (elements only communicate with von Neumann neighbors regardless of the order of accuracy),
parallelization can be easily implemented. What’s more, they have several useful mathematical properties
with respect to conservation, stability, and convergence. Due to these attractive features, DG methods have
been widely used for solving the systems of conservation laws.

However, the DG methods suffer from a number of their own weaknesses. For 3D applications, four
variables need to be in storage for DG(P1) solution, while ten variables are needed for DG(P2) solution, and
twenty variables are needed for DG(P3) solution for each variable on each element. The costs of computation
and the storage requirement can be huge once it comes to system of equations and large number of grids. In
order to reduce both computational costs and storage requirements, a new family of reconstructed Discon-



tinuous Galerkin (rDG) methods, termed PnPm methods, is introduced [1][2][3]. This method introduces
the idea of reconstruction in FV methods to DG methods. Pn indicates that a piecewise polynomial of order
of n is used to represent a DG solution, and Pm represents a reconstructed polynomial solution of degree of
m (m>n) that is used to compute the fluxes. The PnPm schemes are for enhancing the order of accuracy
by increasing the order of underlying polynomial solution. The PnPm schemes provide a unified formulation
for both finite volume and DG methods. For example, when n=0, a piecewise constant polynomial is used to
represent the numerical solution. The POPm schemes are classical high order finite volume methods where a
polynomial of order of m is reconstructed from the piecewise constant solution. The PnPn schemes recover
the standard DG(Pn) solution. This reconstructed DG method has been widely used for solving compressible
flow problems[4][5][6][7][8][9][10] as well as turbulence problems[11][12].

The PnPm schemes require a reconstruction method which can extend the piecewise polynomial of or-
der of n to order of m. Most of work [13][14][15][16] in this area is a continuation of the work of Barth
amd Frederickson [17] based on a least-squares (LS) reconstruction. The resulting method is denoted as
rDG(PnPm(LS)) method in this paper. However, the implementation of the least-squares method can suffer
from two main disadvantages. First of all, the least-squares method may suffer from the linear instability on
unstructured tetrahedral grids when the reconstruction stencils only involve von Neumann neighborhood, i.e.,
the adjacent face-neighboring cells [18]. Secondly, when it comes to high-order reconstruction, the stencils
of the least-squares method must be extended. This extension of stencils may result in a more complicated
data structure for unstructured grids. What’s more, the elements which are adjacent to the boundaries must
be distinguished for choosing the stencils when implementing high-order least squares reconstruction.

The objective of the presented work is to develop an accurate, efficient and robust rDG(P1P2) method
for solving compressible flow problems on arbitrary grids. The novelty of this rDG method is to use a newly
developed variational formulation [19] to reconstruct a high-order polynomial solution. This variational
reconstruction (VR) can be regarded as an extension of the compact finite difference schemes [20] to the
unstructured grids. The high-order terms are obtained by solving an extreme value problem, which mini-
mizes the jump of the values of the reconstructured polynomial solutions and their spatial derivatives at cell
interfaces, and therefore maximizes smoothness of the reconstructed polynomial solutions. It has been shown
that the FV method based on VR can achieve l-exactness [21]. This new reconstruction formulation has
also been utilized with a hyperbolic method to solve diffusion model equation [22] and advection-diffusion
equation [22][23]. In this paper, the presented VR method can obtain the property of 2-exactness just like the
least-squares counterpart as they are applied to rDG(P1P2) formulation. The resulting method is denoted as
rDG(P1P2(VR)) method in this paper. It is stable even on tetrahedral grids, since its stecils are intrinsically
the entire mesh. However, the data structure required by VR is the same as the least-squares method and
is thus compact and simple. A variety of the benchmark test cases are presented to assess the accuracy,
efficiency, robustness and flexibility of this rDG method. The numerical experiments demonstrate that the
VR method is more accurate than its LS counterpart and the developed rDG(P1P2(VR)) method is able to
maintain the linear stability, attain the designed high-order of accuracy, and outperform the rDG(P1P2(LS))
method without a significant increase in computing costs and storage requirements [21|[24]. The remainder
of this paper is organized as follows. The governing equations are presented in Section 2. The developed
variational reconstruction based DG method is described in Section 3. Extensive numerical experiments are
reported in Section 4. Concluding remarks are given in Section 5.

2 Governing Equations

The Euler equations governing compressible inviscid flows can be expressed in conservative form as

OU(x.1) | OF;(U(x.1))
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where the summation convention is used here. The conservative variable vector U, and inviscid flux vector

F are defined by

P pu;
U= PU; Fj = PU; U —|—p5ij (2)
pe u;(pe +p)

Here p, p and e denote the density, pressure, and specific total energy of the fluid, respectively, and u; is the
velocity of the flow in the coordinate direction z;. The pressure is computed from the equation of state

p= (= ple — guju) 3)

which is valid for perfect gas, where =y is the ratio of the specific heats.

3 Numerical Method

3.1 Discontinuous Galerkin Spatial Discretization

To formulate the discontinuous Galerkin method, the weak formulation of (2.1) is introduced here by multi-
plying (2.1) by a test function W, then integrating over the domaind € with boudary T' = 91, and performing
an integration by parts:
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where n; denotes the unit outward normal vector to the boundary. Assuming that Qj, is a classical trian-
gulation of 2 where the domain € is subdivided into a collection of non-overlapping elements ()., triangles
in two-dimension and tetrahedra in three-dimension, the semi-discrete form of (3.1) can be obtained by
applying (3.1) on element €2,

%/ UhthQ+/ Fj(fjh)njwhdr—/ Fj(fjh)%cm:o, YW, (5)
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where I'. denotes the boundary of €2.. Uj, and W, represent the finite element approximations to the
analytical solution U and the test function W, respectively. U}, denotes the approximation of the solution
U at interface, including the reconstructed high-order terms. The approximate solution and test function
can be expressed as piecewise polynomials in each element

N M N
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where B (x), 1 < k < n is the basis function of the polynomials of degree p. The dimension of the polymonial
space, N = N(p, d) depends on the degree of the polynomials of the expansion p and the spatial dimensions
d
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For the presented rDG(P1P2) method in three-dimension, N = 4 and M = 10. The basis functions are
taken as
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where the subscript ¢ denotes central values and Az, Ay, Az are lengh scales for each element in 3 directions.
(3.2) must be satisfied for any test function Wy,. Since B} is the basis for Wy, (3.2) is equivalent to the
following system of equations
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Since the numerical solution Uy is discontinuous between element interfaces, the interface fluxes are not
I ~R
uniquely defined. The flux function F;(U},)n; is replaced by a numerical Riemann flux function H(U,,, U, ,n),

L ~ R
where U, and U, are the conservative state vector at the left and right side of the element boundary. In
the present work, the Riemann flux function is approximated using the HLLC approximate Riemann solver
[25][26][27].

Equation (3.6) represents a system of ordinary differential equation. A fully implicit time scheme is
employed to integrate Equation (3.6) to reach steady-state solutions. An approximate Newton method is
used to linearize the equations arising from the implicit discretization. GMRES+LU-SGS method [28] has
been used to solve the system of linear equations resulted from a implicit BDF1 time marching method.

3.2 Reconstructin Schemes

A recently developed variational reconstruction can be used to obtain the solution gradients by solving
an extreme value problem, which minimizes jumps of the values of the reconstructed polynomial solutions
and their spatial derivatives at cell interfaces, and therefore maximizes smoothness of the reconstructed
polynomial solutions. In this case, a cost function in the variational reconstruction can be defined as

nface

Z Iiface (10)
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where nface is the number of cell interfaces in a grid and I; ¢4c. denotes the interface jump integration function
for a given interface. For an internal face I';; separating the left element i and the right element j, I;fqce is
given by
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where d;; is the distance between the centroids of the two cells, wy 1 is the weight. In the presented work,
where non-dimensional Taylor basis functions are used, the weights corresponding top =0, p=1and p =2
are taken as 1.0, 0.5 and 0.25, respectively. U~ and U™ denote the values of reconstructed U on I';; for the
two elements ¢ and j, respectively. The face integral can be computed exactly using Gaussian quadrature
formulas with sufficient precision. The constitutive relations of the variational reconstruction are derived by
minimizzing the total I with respect to the coefficients of the reconstruction polynomial. This leads to a



system of linear equations, which is then solved using the LU-SGS method. The resultant rDG(P1P2(VR))
method can achieve the linear stability, since the stencils of this variational reconstruction are intrinsically
the entire mesh.

4 Numerical Examples

A few examples are presented in this section to demonstrate the high accuracy and robustness of our
rDG(P1P2) method based on VR for compressible flow problems on arbitrary grids. For two-dimensional
problems, the number of cells in the z-direction is simply set to be 1. The first test case is to assess the
2-exactness and the accuracy of the presented reconstruction method. In this test case, the error is measured
as the L2 error of the reconstructed solution. Test case 2 and test case 3 are chosen to demonstrate that
the developed rDG(P1P2) VR method is able to achieve the designed order of convergence for smooth flows.
The length scale, characterizing the cell size of an unstructured grid, is defined as 1/v/ncells and 1/+v/ncells,
for 2D and 3D problems, respectively, where ncells is the number of cells. The L2-norm of the entropy
production is used as the error measurement

lellzaer = 1/ / 2d0 (12)
Q

where the entropy production e is defined as
S-S
e=2"9% _ P (Pxyy g (13)
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Note that the entropy production, where the entropy is defined as S = p/p?, is a very good criterion to
measure accuracy of the numerical solutions, when the flow under consideration is smooth and therefore
isentropic.

Test case 1 Convergence study on reconstruction methods

This test case is chosen to assess the 2-exactness and the accuracy of the variational reconstruction method
in comparison with its least-squares counterpart on both hexahedral and prismatic grids. The computational
domain is a cube (0 < x; < 1). The hexahedral mesh and prismatic mesh used are shown in figure 1. A
fully quadratic polynomial function and a smooth function are used to assess the accuracy, the order of
convergence, and the 2-exact property of the two reconstruction methods. Table 1 presents numerical results
obtained by the least-squares reconstruction, VR reconstruction with 1 Gauss point for quardraliterals and
VR reconstruction with 16 Gauss points for quadraliterals on hexahedral grids. Table 2 presents numerical
results obtained by the VR reconstruction with 1 Gauss points for both triangles and quadraliterals and VR
reconstruction with 4 Gauss points for triangles and 16 Gauss points for quadraliterals on prismatic grids.
The order of convergence with respect to the smooth function is also illustrated in figure 2. As expected,
both least-squares reconstruction and variational reconstruction methods have the 2-exact property. For
a generally smooth function, both the least-squares reconstruction and the variational reconstruction can
achieve the designed third order of convergence.

Table 1. Order of convergence of test case 1 on hexahedral grids
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Figure 1: Hexahedral and prismatic mesh used for test case 1

LS VR(1 Gauss point) | VR(16 Gauss points)
Element number | L2-error  Order | L2-error  Order 12-error Order
f(z,y,2) = 5(9992” — 888y” + 7772%) — 666y + 555xz — 444y
8 X 8x8 1.0153e-12 - 1.0113e-12 - 1.0141e-12 -
16 x 16 x 16 1.4110e-12 - 1.4050e-12 - 1.4010e-12 -
32 x 32 x 32 1.2570e-12 - 1.2563e-12 - 1.2577e-12 -
f(z,y,z) = sin(rx)sin(mry)sin(rz)
8 x8x%x8 9.4959¢-4 - 1.0980e-3 - 1.1708e-3 -
16 x 16 x 16 1.0687e-4  3.152 1.1620e-4  3.241 1.2178e-4 3.265
32 x 32 x 32 1.2832e-5  3.058 | 1.3360e-5  3.121 1.3711e-5 3.151
Table 2. Order of convergence of test case 1 on prismatic grids
VR(1 and 1 Gauss point) | VR(4 and 16 Gauss points)
Element number | L2-error Order 12-error Order
fla,y,2) = 5(9992% — 888y? + 7772%) — 6662y + 5552 — 444y2

2Xx8x8x8 7.2480e-13 - 7.2165e-13 -

2x16 x16 x 16 | 1.2532e-12 - 1.2509e-12 -

2x32x32x32 | 1.7197e-12 - 1.7187e-12 -

f(z,y, z) = sin(mx)sin(mwy)sin(rz)

2x8x8x8 5.8108e-4 - 5.6690e-4 -

2x16 x16 x 16 | 6.0981e-5 3.253 5.8323e-5 3.281

2x32x32x32 | 7.0934e-5 3.104 6.7368e-6 3.114

Test case 2 Subsonic flow past a circular cylinder

An inviscid subsonic flow past a circular cylinder at a Mach number of M., = 0.38 is considered in this test
case to assess the order of accuracy and discretization error of the rDG(P1P2(VR)) and rDG(P1P2(LS))
methods for external flows. Computations are performed on two types of grids: one is consisted of hexahedral
cells and the other is consisted of prismatic cells. Figure 3 and figure 5 show four successively refined o-type
hexahedral and prismatic grids with 16 x 5, 32 x 9, 64 x 17 and 128 x 33 points, respectively. The first
number refers to the number of points in the circular direction, and the second number refers to the number
of concentric circles in the mesh. The radius of the cylinder is r; = 0.5. The domain is bounded by 733 = 20.
Figure 4 and figure 6 show the computed Mach number contours with rtDG(P1P2(VR)) method. Table 3 and
table 4 show the order of convergence, which is also shown in figure 7. It can be observed that the presented
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Figure 2: Order of convergence for test case 1

rDG(P1P2) method is able to attain an over-convergence of about fourth order, and the rDG(P1P2(VR))
method is able to outperform its counterpart LS method, especially on prismatic grids.

Table 3. Order of convergence of test case 2 on hexahedral grids

rDG(PIP2(VR)) rDG(P1P2(LS))
Log(Length Scale) | Log(L2-error) Order | Log(L2-error) Order
-0.903 -0.8594 : ~0.8865 ;
-1.204 -1.7138 2.839 -1.8036 3.047
-1.505 -2.9497 4.106 -3.0157 4.027
-1.806 -4.1987 4.150 -4.0653 3.487

Table 4. Order of convergence of test case 2 on prismatic grids

rDG(P1P2(VR)) rDG(P1P2(LS))
Log(Length Scale) | Log(L2-error) Order | Log(L2-error) Order
-1.054 -1.4768 - -1.3742 -
-1.355 -2.6658 3.950 -2.5413 3.877
-1.657 -3.9742 4.347 -3.7026 3.858
-1.957 -5.2016 4.078 -4.4100 2.350

Test case 3 Subsonic flow past a sphere

In this test case, a subsonic flow past a sphere at a Mach number of M., = 0.5 is considered to assess if the
rDG(P1P2(VR)) method can achieve a formal order of convergence rate on tetrahedral grids. The numbers
of three successively refined tetrahedral elements, grid points and boundary faces for the four grids are
(535, 167, 124), (2426, 598, 322) and (16467, 3425, 1188), respectively. Only a quarter of the configuration is
modeled due to the symmetry of the problem. since the rDG(P1P2(LS)) method is unstable for this test case,
the results obtained by a second-order DG(P1) method on the first three grids are presented for the purpose
of comparison. Figure 8 illustrates the computed velocity contours with rDG(P1P2(VR)) method. Table
5 shows the order of convergence of both rDG(P1P2(VR)) method and DG(P1) method. This comparison
is also shown in Figure 9. It can be observed that although the error magnitude is smaller with DG(P1)
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Figure 3: A series of four successively globally refined hexahedral meshes for test case 2




Figure 4: Computed Mach number contours on hexahedral meshes for test case 2
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Figure 5: A series of four successively globally refined prismatic meshes for test case 2
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Figure 8: Mach contours on a serie of four successively globally refined tetrahedral meshes for subsonic flow
past a sphere at M., = 0.5

method, the rDG(P1P2(VR)) method is able to attain the designed third order of accuracy compared to the
second order of DG(P1) method. If the mesh is further refined, it can be expected that the rDG(P1P2(VR))
method can deliver much better results.

Table 5. Order of convergence for test case 3

rDG(P1P2(VR))
Log(Length Scale) | Log(L2-error)
-1.1283 -1.9646 -
-1.4055 -2.7361 2.783
-1.6986 -3.6257 3.035

5 Conclusion and Future Work

A rDG(P1P2) based on a variational reconstruction has been developed for solving the compressible Euler
equations on 3D arbitrary grids. The variational reconstruction can attain the property of 2-exactness.
The resulting rDG(P1P2(VR)) method is linealy stable, since its stencils are intrinsically the entire mesh.

11



However, the data structure required by the present method is compact and simple. A variety of the
benchmark test cases are presented to assess the performance of this method. The numerical experiments
indicate that the developed method is able to maintain the linear stability, attain the designed third-order
of accuracy, and outperform the rDG(P1P2(LS)) method without a significant increase in computing costs
and storage requirements, especially on tetrahedral grids where the LS method becomes unstable. Future
development will be focused on the extension of the present method for solving Navier-Stokes equations.
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