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Abstract: An enhanced AUSM+-up scheme is presented for high-speed compressible two-phase
flows using a 6-equation two-fluid single pressure model. Based on the observation that the
AUSM+-up flux function does not take into account relative velocity between the two-phases, and
thus is not stable and robust for computation of two-phase flows involving interaction of strong
shock waves and material interfaces, the enhancement is in the form of a volume-fraction coupling
term and a modification of the velocity-diffusion term, both proportional to the relative velocity
between the two-phases. These modifications in the flux function obviate the need to employ the
exact Riemann solver, leading to a significantly less expensive yet robust flux scheme. Further-
more, the hyperbolic tangent interface capturing (THINC) scheme is used in order to provide a
sharp resolution for material interfaces. A number of benchmark test cases are presented to assess
the performance and robustness of the enhanced AUSM+-up scheme for compressible two-phase
flows on hybrid unstructured grids. The numerical experiments demonstrate that the enhanced
AUSM+-up scheme along with THINC scheme can efficiently compute high-speed two-fluid flows
such as shock-bubble interactions, while accurately capturing material interfaces.
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1 Introduction
Separated two-phase flows arise in a myriad of engineering applications such as cavitation, underwater
explosion, atomization of fuel droplets, departure from nucleate boiling in reactors, etc. Modeling and
simulation of these multiphase flows is an invaluable tool to study and understand such flows. The two
types of methods used to model multiphase flows are interface tracking and interface capturing methods.
Interface tracking methods, as the name suggests, employ actual tracking of the interface between two
phases (viz. bubble or droplet surfaces) and smoothing the fluid properties across this interface. The level-
set, volume-of-fluid, front-tracking and Lagrangian tracking are some famous interface tracking methods.
Interface capturing methods, on the other hand, dynamically “capture” the interfaces; just like a standard
finite-volume or discontinuous Galerkin method would capture shocks and contact discontinuities without
any special treatment. This means that each phase is treated as a separate continuum, and that there is no
clear distinction between cells containing one phase or the other. Each cell contains a fraction of each phase,
denoted by the volume fraction α. This approach is thus also termed as the “interpenetrating continua”
approach, or the diffuse interface method (DIM).

The equations for the DIM are derived from individual continuum equations for each phase, called the local
instant formulation; and then applying an averaging procedure [1]. The result is 6 equations: continuity,
momentum and total energy equations for each phase. This two-fluid system is incomplete due to more
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unknowns than the number of equations. Various approaches to close the system exist. One of these is to
adopt a single-pressure assumption leading to the Wallis model [2]. This leads to the 6-equation model of
two-fluid flow. This model has been used to simulate inviscid two-fluid flow first by Toumi [3] and then by
Chang, Liou and co-workers [4, 5, 6, 7]. Niu [8, 9] has used a primitive variable solver to improve upon this
method. Other approaches to solve two-phase flows using the Wallis model include work by Dinh et al. [10]
and Nourgaliev et al. [11] Vazquez-Gonzalez et al. [12] study the necessity of hyperbolization of this model
and compare results of an elliptic solver with the hyperbolic methods mentioned above. Another approach
to close the incomplete DIM two-fluid system is by including an additional equation for volume fraction.
This additional equation leads to a 7-equation two-pressure system [13], which is hyperbolic. This model was
used by Saurel et al. [14, 15, 16], and improved upon in a following work [17]. The 7-equation model allows
non-equilibrium of phasic pressures, velocities and internal energies, which relaxes the pressure equilibrium
assumption of the single pressure model.

In this work, the two-fluid single pressure model is used, and the focus is on shock-bubble interaction
problems. Severe two-phase flow problems such as shock-interface interactions pose a challenge for multiphase
methods, in the sense of maintaining robustness and stability. This requires well-designed discretizations
of the inviscid fluxes. In context of the two-fluid model, relative velocities reach extremely large values in
the regions of shock-interface interactions. It is known that FVS schemes in their standard forms predict
negative pressures in these zones, resulting in failure of the computation [18, 6]. The current state of practice
was proposed by Chang and Liou [4]. Their solution was to augment the FVS scheme, such as AUSM+-up
[19], with an exact Riemann solver at interfaces. This results in a robust flux scheme, able to retain pressure
positivity in the regions in question. However, there are two difficulties in this:

1. The stratified-flow model has to be applied to “split” the flux into the FVS and exact-Riemann parts,
which is complicated to visualize and implement in multi dimensions.

2. The exact Riemann solver becomes very expensive in regions where strong shocks interact with material
interfaces. This is because the solver requires a large number of Newton iterations to get a correct
middle-zone pressure p∗ in these regions.

Thus, although the resulting Godunov+AUSM+ method is robust, it comes at a large computational cost
and implementation complexity. The computational costs have been studied by Kitamura and Nonomura
[18]. It has been observed that, it is in these regions of extremely high relative velocities between the phases,
where the standard FVS schemes such as AUSM+-up break down due to negative pressure predictions. This
begs the question: do the eigenvalues of the two-fluid system (which do not have a closed-form expression)
have a dependence on the relative velocity? This is the foundation of enhancement in the AUSM+-up
fluxes proposed in this work. It builds on the initial modification in the granular mass-fluxes by Houim
and Oran [20], which was used successfully by Pandare and Luo [21, 22] in the context of two-fluid flows.
This modification involves a volume-fraction coupling term in the mass-flux. In addition to that a further
modification in the velocity-diffusion term in the pressure flux is proposed, which imparts additional stability
to the scheme. The resulting flux is termed as the AUSM+-upf flux. This work studies some severe shock-
interface interaction problems which cannot be otherwise simulated using the AUSM+-up flux alone, in
addition to other such shocked two-phase problems. It can also been proven easily that this choice of flux,
coupled with an appropriate discretization of the pressure flux and other non-conservative terms, satisfies
the pressure non-disturbance condition (also known as Abgrall’s criterion [23, 15] or well-balancedness [24]),
which is essential for the solver to maintain a stationary contact discontinuity.

The diffuse interface method, as the name suggests, smears out material interfaces, sometimes beyond
recognition. However, the cost effectiveness of the DIM makes it a more desirable multiphase simulation tool
than interface-tracking methods in many situations. Thus, significant research has been directed at “sharp-
ening” these diffuse interfaces. The reconstruction of the volume-fraction derivatives is key in this respect.
Limiting the reconstructed derivatives correctly has been proven to significantly improve the interface cap-
turing capabilities of the DIM. One of such methods is the hyperbolic tangent interface capturing (THINC)
method [25, 26], which assumes a hyperbolic tangent distribution of the volume fraction over each mesh-cell
and uses this to obtain reconstructed volume fractions to compute numerical fluxes. Another approach is
the Overbee limiter [27] which modifies the Superbee limiter to be less restrictive and sharply capture the
material interface. Needless to say, both these limiters are applied only to the volume fraction and not to
the flow variable. In this work the THINC scheme is used to sharpen the interfaces.
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The rest of the article is organized as follows: the governing equations of the two-fluid model and closure
laws are discussed in the next section. This is followed by a description of the spatial and temporal dis-
cretization and other numerics. This section discusses the enhancements made in the AUSM+-up fluxes and
the limiting process used for interface sharpening. The results obtained using the proposed modifications are
presented next. The problems in focus are tests that involve strong shock and material interface interactions.
The importance of interface sharpening is discussed in this section. This is followed by concluding remarks.

2 Governing Equations

2.1 The two-fluid model
The two-fluid model uses the interpenetrating continua approach to model two-phase flows. This model
requires an averaging procedure to filter-out the local instantaneous fluctuations very similar to the Reynolds’
averaging in turbulence. Interphasic mass-transfer terms have not been considered in this work. The resulting
two-fluid model given by Ishii [1] and concisely by Staedtke [28], using k as the index for the two fluids, is
as follows:

∂Uk

∂t
+
∂Fkj
∂xj

= Pintk + Sk (1)

where,

Uk =

 αkρk
αkρkuki
αkρkEk

 (2)

Fkj =

 αkρkukj
αkρkukiukj
αkρkukjHk

+

 0
αkpδij

0

 (3)

Pintk =

 0

pintk
∂αk

∂xi

−pintk
∂αk

∂t

 k = 1, 2. (4)

Sk represent source terms, for example due to phase transitions and body forces.
The system (1) has 11 unknowns (αk, ρk, uk, Ek, pintk , p with k = 1, 2) and a total of 9 equations with 6

PDEs, 2 equations of state (EoS ) and the constraint on volume fractions,

2∑
k=1

αk = 1. (5)

These equations constitute the Wallis two-fluid model or the 6-equation single-pressure model of two-phase
flows. The EoS required to close this system are given in the next subsection. Another condition that the
interfacial pressures should cancel each other if no other stresses such as surface tension are considered at
the interface gives,

pintg = pintl ≡ pint. (6)

pint is explicitly given as a function of the other unknowns. Here, we use the relation given by Stuhmiller
[29],

pint = p− σ αgαlρgρl
αgρl + αlρg

u2
r (7)

where ur = |ul − ug|. This interface pressure term helps restore hyperbolicity to the system [5]. This
provides the additional 3 equations and the system of equations is closed. The effect of addition of the
interface pressure term has been analyzed in detail by Chang et al. [30]. They show that there is a limiting
value of σ above which the system (1) is hyperbolic. Here, a value of σ = 2 is used for all the problems.
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2.2 Equations of state
The stiffened-gas equations of state (SG-EoS ) are used for each fluid in this work. Using the SG-EoS, the
pressure, temperature and speed of sound are given respectively as:

ρEk =
p+ Pck
γk − 1

+
ρu2

k

2
+ Pck (8)

Tk =

(
γk

γk − 1

)
(p+ Pck)

ρkCpk
(9)

ak =

√
γk
p+ Pck
ρk

. (10)

Ideal gas values are used for air whereas the following properties are used for water:

γl = 2.8

Pcl = 8.5× 108 Pa

Cpl = 4186.0 J/(kg ·K),

for Helium:

γHe = 1.648

PcHe
= 0.0 Pa

CpHe
= 5192.6 J/(kg ·K),

and for the R-22 refrigerant:

γR22 = 1.249

PcR22
= 0.0 Pa

CpR22
= 456.0 J/(kg ·K).

3 Spatial discretization
The two-fluid system (1) is discretized using a second-order finite volume method. On integrating over each
element e, and applying the divergence theorem on the flux terms, the discrete system becomes,∫

Ωe

∂Uk

∂t
dΩ +

∫
Γe

(Fk · n) dΓ =

∫
Ωe

(
Pintk + Sk

)
dΩ. (11)

Here, the cells are denoted by Ωe and the cell-faces by Γe. A least-squares reconstruction procedure is used
on the primitive variables to obtain second order. The primitive variables chosen here are

V =
[
T1 u1 T2 u2 p α1

]T
. (12)

A vertex-based limiter (VB) proposed by Kuzmin [31] is used to suppress the spurious oscillations in the flow
field, when discontinuities are expected. The diffused interface method is known to smear material interfaces.
To be able to capture these interfaces sharply, the Hyperbolic Tangent Interface Capturing (THINC) scheme
[25, 26] is used. The THINC scheme is now discussed briefly; followed by discretization of each term in this
system is now individually discussed.

3.1 Interface sharpening using the THINC scheme
The THINC scheme has previously been used by Kitamura et al. [32] for sharp interface capturing with
the two-fluid model. However, in their work, a one-dimensional approach was used on a structured mesh
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to obtain the sharpened interface. Here, the multidimensional THINC [26] is used. This allows its use on
unstructured meshes. The THINC scheme is essentially a way to limit the derivatives of the volume-fraction
in the vicinity of material interfaces. Using the VB limiter on these causes extremely diffused interfaces.
However, is has been observed that it is necessary to use THINC only in appropriate regions [32] where
χε < α < 1−χε. In other single-phase dominated regions, using THINC causes non-monotonic void-fraction
distributions. Here, χ is set to 2 and ε is the minimum value of volume fraction permitted, which is set
to 10−5 unless otherwise stated in the problem definition. Also, in the vicinity of interfaces, velocity and
pressure gradients are set to zero, as suggested by Chiapolino et al. [27]. This region is determined by:

α1α2 > 10−2.

This ensures stable interfaces, which otherwise would be affected by limiter interactions (VB and THINC in
this case). Note that the temperature gradients are kept unchanged in this region. Also note that everywhere
else in the domain, the VB limiter is used for all flow variables without modifications. Thus, it is only in the
regions where χε < α < 1− χε that the volume-fraction is limited using THINC.

The THINC scheme approximates the volume-fraction distribution near interfaces by the hyperbolic
tangent function. The step-like nature of the tanh function facilitates sharp interface-capturing of interfaces.
In this work, we use the multidimensional THINC, for which the volume-fraction in a cell-i near the interface
is approximated by,

αi(ξ, η) =
1

2
(1 + tanh (β(Pi + di))) , (13)

where,

Pi(ξ, η) + di = 0 (14)

is the equation of the interface and β is a parameter that controls the sharpness of the interfaces. The
mapping to reference coordinates (x, y) → (ξ, η) can be facilitated using the elemental shape functions
[26, 33]. The order polynomial Pi can be chosen to represent the material interface in a piecewise manner
over each cell. Here, a linear approximation is chosen for the interface equation:

aξξ + aηη + di = 0. (15)

Here, aξ and aη are derivatives of the volume-fraction in the reference coordinate system. di can be found
using the fact that,

αi =
1

Ωi

∫
Ωi

(aξξ + aηη + di) dΩ. (16)

Details are underlined in the appendices of the references [26, 33]. Using Eq. 13 the volume-fraction is
reconstructed to the face-centers when fluxes are to be computed.

Effects of using the THINC scheme on interfaces are outlined in the results section. Is should be noted
here that the parameter β is set to 2 for all the test problems in this work. The inviscid fluxes are now
discussed in detail.

3.2 Inviscid fluxes
Inviscid fluxes in the two-fluid model can be discretized using two types of numerical fluxes as described by
Kitamura et al. [6]:

1. AUSM-family standalone: The all-speed variant AUSM+-up developed by Liou [19] and extended to
the stratified-flow two-fluid model in [5] is employed in this type. A single flux-function is used to
compute the flux at the cell-interfaces.

2. Hybrid AUSM+Riemann (Godunov) solver: Flux at the cell-interface is split into fluxes between like
phases (l-l, g-g) and unlike phases (l-g, g-l). Naturally, this type of split-flux treatment requires a
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stratified flow assumption. Fluxes between like phases are computed using the AUSM+-up scheme and
those between unlike phases are computed using the Godunov method [4]. This approach is expensive
since the Godunov method uses iterations to accurately predict the fluxes.

These two types of flux schemes have been studied in detail by Kitamura et al. [6] where it has been noted
that a hybrid scheme is necessary for situations where a strong pressure discontinuity interacts with a void-
fraction discontinuity. A high pressure-ratio water-air shocktube, a shock/water-column interaction and a
shock/air-bubble interaction have been used to illustrate this. However, in this work, a modification to the
AUSM+-up flux is used, which makes it possible to solve the above mentioned problems. The new scheme
involves an additional coupling between the mass-flux and the volume-fraction of the dispersed phase. In
addition to that the velocity-diffusion term in the pressure flux is modified in a manner appropriate for
usage in the two-fluid model discretization. The AUSM+-up flux with these modifications is referred to as
the AUSM+-upf in this work; where the f stands for the volume-fraction coupling.

The AUSM+-up flux developed by Liou [19] specifically for all-speed application is a wise choice for
two-fluid problems. In the AUSM-type of flux methods, the fluxes are written as,

Fk,L/R = ṁk,1/2ψk,1/2 + αk,L/Rpk,1/2n1/2. (17)

Please note here that although the pressure flux pk,1/2 contributes differently to the two phases k = 1, 2, the
pressure of the two phases p is equal. ψk,1/2 = (1, u, H)Tk,1/2 is upwinded in the standard way,

ψk,1/2 =

{
ψk,L if ṁk,1/2 > 0

ψk,R otherwise.
(18)

Note that the pressure flux contribution to the left and right elements is different due to the difference in
the volume fractions at the face: αk,L 6= αk,R. The mass flux and the Mach number of phase-k is given as,

ṁk,1/2 = Mk,1/2ac

{
αk,Lρk,L if Mk,1/2 > 0,

αk,Rρk,R otherwise,
(19)

Mk,1/2 =M+
(4)(Mk,L) +M−(4)(Mk,R) +Mk,p, (20)

where the split Mach numbers M±(m) are,

M±(1)(M) =
1

2
(M ± |M |), (21)

M±(2)(M) =
1

4
(M ± 1)2, (22)

M±(4)(M) =

{
M±(1)(M) if |M | ≥ 1,

M±(2)(M)(1∓ 2M∓(2)(M)) otherwise,
(23)

the Mach numbers are defined as,

Mk,L/R =
uk,L/R

ac
. (24)

and the common speed of sound given by Chang and Liou [4] is used:

1

ac

(
α1

ρ1
+
α2

ρ2

)
=

α1

ρ1a2
1

+
α2

ρ2a2
2

. (25)
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The pressure diffusion term Mk,p introduced to treat low Mach number flows is,

Mk,p = −Kp max(1−M2

k, 0)
pR − pL
ρk,1/2a2

c

, (26)

M
2

k =
u2
k,L + u2

k,R

2a2
c

. (27)

The subscript ‘1/2’ has been used for definitions of a and ρ to represent averages of the left and right states.
This term is especially important for the two-fluid system where the stiffened gas equation is used.

The pressure flux is given as,

pk,1/2 = P+
(5)(Mk,L)pL + P−(5)(Mk,R)pR + pk,u, (28)

where the split Mach numbers for pressure are,

P±(5)(M) =

{
1
MM

±
(1) if |M | ≥ 1,

1
MM

±
(2)[(±2−M)∓ 3MM∓(2)] otherwise.

(29)

The velocity diffusion pk,u is then defined as,

pk,u = −KuP+
(5)(Mk,L)P−(5)(Mk,R) ·

(
ρk,1/2ac

)
(uk,R − uk,L). (30)

This choice of fluxes yielded a stable scheme for most of the cases presented. However, for some extreme
cases, such as the high pressure-ratio water-air shocktube, shock-watercolumn and shock-bubble interaction
and the very low Mach number channel flows, it was observed that a small amount of dissipation in the
mass-fluxes was necessary to obtain stability in regions of high relative velocities.

Note that the two-fluid model with equal phase velocities and pressure, known as the homogeneous
two-phase model, is hyperbolic in nature. The Wallis model, which doesn’t assume this however, is non-
hyperbolic in its original form [28]. It is surmised that when the relative velocities increase to high values, the
stratified fluid model tends more to the non-hyperbolic nature and the hyperbolic correction (7) proves to
be insufficient to ensure real eigenvalues. The fact that this correction is insufficient to completely eliminate
the nonhyperbolic nature at all physically admissible states has been noted by Hérard et al. [34, 35].

Note here that in spite of adding the hyperbolic correction term, the explicit eigen-structure (and hence
the exact acoustic speed) for this system is unknown. There is a possibility that, in assuming that the system
acoustic speed as a function of the acoustic speeds of the two individual phases alone, a possible effect of
relative velocities on the acoustic properties of the system is being neglected. Liou and Edwards [36] have
investigated the importance of using the appropriate speed of sound in the numerical fluxes. If there is a
possible dependence of the speed of sound on the relative velocity, a dissipation term proportional to the
relative velocity of the two-phases, would stabilize the discretization. The dissipation needs to be in the form
of an additional coupling between the mass-flux and the volume-fraction. This approach has been utilized
by Houim and Oran [20] in case of granular two-fluid flows. A similar form of the dissipation term has been
utilized in this work. The modified mass flux is given as,

ṁk,1/2 = Mk,1/2acαkρk −Dk,f , (31)

where Df is the volume-fraction coupling term,

Df =
1

2
λr

max(αL, αR)

αcrit
(αRρR − αLρL), (32)

where the phase subscripts are omitted, and the maximum normal relative velocity is,

λr = max(ur,L, ur,R), (33)
ur = Ur · n. (34)
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Clearly, the relative velocity λr is taken into consideration via this coupling term. Note that although
this term derives its true form from the Lax-Friedrichs flux, unlike the latter, it is well-balanced in nature.
This means that it satisfies Abgrall’s criterion [15], also known as the pressure non-disturbance condition
[4]. Another way to stabilize this model is increasing the drag coefficient, resulting in an absolute velocity
relaxation. This way, although found to be effective, might yield unphysical results and this assumption
is not valid for applications targeted here. Hence we resort to the volume-fraction coupling for stability
purposes. The importance of using the correct speed of sound for the system in the calculations of Mach
number and dissipation terms for the inviscid flux scheme has also been highlighted by Liou and Edwards
[36].

Additionally, it has been observed [18] that the AUSM+-up fluxes lead to negative pressure-fluxes in
regions where strong-shocks interact with material discontinuities. The cause of this negative pressure-flux
in Eq. (28) in spite of positive pL and pR is the all-speed pressure-flux correction pk,u from Eq. (30). This
pressure-velocity coupling term becomes too large due to the large value of ac and causes negative pk,1/2.
Here, it is replaced by

p̃k,u = −Ku

(
1− P+

(5)(Mk,L)P−(5)(Mk,R)
)
·
(
ρk,1/2λr

)
(uk,R − uk,L). (35)

Note how the behavior of this term has been inverted such that as the Mach number reaches 0, p̃k,u also
reaches 0; as against the typical pk,u from Eq. (30), which reaches 0 at Mach number 1. This is done so
that the effect of this term is more pronounced at high Mach numbers, i.e. strong shocks, which is where the
standard AUSM+-up flux tends to fail. The modified AUSM+-up flux is referred to as the AUSM+-upf flux
henceforth.

These modifications ensure the positivity of pressure-flux when the left and right side pressures pL and
pR are positive. The rationale for deriving the form of these terms is inspired from works of Liou [19] and
Edwards [37]. The effects of these additional terms can be seen for high pressure ratio shocks as encountered
in the water-air shocktube and the shock-bubble interaction problems. These problems cannot be solved
without the aforementioned dissipative terms accounted for, as also reported by Kitamura et al. [6]. Various
other ways have also been used to solve this issue. Chang and Liou [4] use an exact Riemann solution in the
region |α1,L − α1,R|. This model although robust, turns out to be quite expensive since a Newton iteration
is required to solve for the pressure in this region. Also, the full eigenstructure of the system needs to be
known for this method. Kitamura et al. [18] use an HLLC flux in this region to replace the exact Riemann
solver used by Chang and Liou. The HLLC flux, albeit more economical than the exact Riemann solver,
still requires knowledge of the eigenstructure of the system. The modifications proposed here do not require
this, and could potentially be used for other types of equations of state. A detailed discussion of the effects
of the proposed modifications will be provided in the numerical results section.

3.3 Non-conservative spatial derivative
The term Pint is comprised of non-conservative first derivatives in space and time. This necessitates the
use of so-called “well-balanced” discretizations. Extensive studies of well-balanced discretizations of non-
conservative PDEs have been done, starting from Pares’ work [24], leading to Roe-type [38] and Osher-type
[39] schemes for these equations. A numerical method for the two-fluid equations specifically was also
proposed based on this concept [40]. This collection of work clearly states that the well-balancedness is an
essential property to be considered while designing a numerical method for solving non-conservative PDEs,
to maintain global conservation. Abgrall, in one of his early works [23], also focuses on this property in the
context of multi-species (or multi-component) equations.

Consider a domain Ω with boundaries Γ. The pressure flux αk∇p on this domain can be simply written
as, ∫

Ω

αk
∂p

∂xi
dΩ.

Consider now, an element Ωe a part of the triangulation of Ω. Since this term is non-conservative, it is not
clear how this term should be discretized in this form. Thus, using integration-by-parts, this term can be
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expanded on the element Ωe as,∫
Ωe

αk
∂p

∂xi
dΩ =

∫
Γe

αkpnidΓ−
∫

Ωe

p
∂αk
∂xi

dΩ,

where ni is the i-component of the normal to the element boundary Γe, pointing outward of Ωe. Now, the
first term is an integral over the cell-boundary Γe which uses the value of the integrand (αkp) from the
cell Ωe. This term takes into account the jump of the function at each cell-boundary. The pressure for
this term should be obtained by the Riemann solver used (AUSM+-upf in this case, pk,1/2) since otherwise
it is not uniquely defined on the cell-boundary. On the other hand, the volume-fraction for this term is
supposed to be reconstructed from the cell Ωe. Thus, on each cell-boundary, this term will have a different
contribution to the cells straddling the boundary only due to the volume-fraction αk in it. This first term
corresponds to the pressure flux part in Eq. (17). The second term can be treated as a source term since it is
an integral over the cell Ωe only. This clearly shows that the non-conservative term has non-unique values at
the element faces, one from each side of the face. This type of treatment ensures the well-balanced nature of
the discretization. Thus, the “stratified-flow model” discretization of the nonconservative term [4] is obtained
by applying applying integration-by-parts to the pressure term in the two-fluid model while writing it in the
discrete form.

The non-conservative time derivative term is combined with the time-derivative of the unknowns which
modifies U. This will be discussed in the following section pertaining to time integration. Interface momen-
tum transfer and other source terms Mk and Sk are treated as volume-averaged source terms.

4 Time integration
Before discretizing the time derivative term ∂U

∂t , the non-conservative time derivative term in Pint has to be
combined into the vector of unknowns U. This results in a modified vector of unknowns for fluid k,

Ûk = Uk +

 0
0

pintαk

 . (36)

This results in the final form of the semi-discrete form of the two-fluid system:

V
∂Û

∂t
= R, (37)

where V is the cell-volume. The discretized right-hand side vector R and the modified unknown vector Û
are,

R = −F + G + P̂int + S, Û =


α1ρ1

α1ρ1u1i

α1ρ1E1 + pintα1

α2ρ2

α2ρ2u2i

α2ρ2E2 + pintα2

 , (38)

where,

S =

∫
Ωe

SdΩ, P̂int =



0∫
Ωe
pint ∂α1

∂xi
dΩ

0
0∫

Ωe
pint ∂α2

∂xi
dΩ

0

 . (39)
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The system of equations (37) is integrated in time to obtain a time-marching scheme.
In this work, the explicit 3-stage third order TVD Runge-Kutta (RK3) scheme [41] has been used to

integrate the system (37) in time. The explicit TVDRK3 is straight-forward to apply to the two-fluid
system, and implementation details can be found in [6].

4.1 Decoding of pressure and volume fractions
The TVDRK3 method works with the conservative variables Û. Once the new vector of unknowns Ûn+1

is obtained, it is necessary to obtain the pressure and volume fractions at time-step n + 1. The decoding
procedure highlighted by Liou and coworkers [4, 6], is used for this purpose. Imposing the constraint on the
volume fraction (5) and the two EoS, the quadratic equation for pn+1 is obtained,

p2 −Bp− C = 0, (40)

with the positive root,

p =
1

2

(
B +

√
B2 + 4C

)
(41)

and the volume fraction is given by,

αk =
Âk

p+ âk
, (42)

where,

Âk = (γk − 1)

(
Û3,k −

ˆ|U2,k|2

2Û1,k

)
, (43)

âk = γkPck + (γk − 1)pint, (44)

B =

2∑
k=1

(Âk − âk), (45)

C = â1Â2 + â2Â1 − â1â2. (46)

The numerical errors in computation of p and αk can be very large, considering the large values of Pck . A
Newton iteration procedure is used to reduce these errors, by solving (43) for both the phases simultaneously:

(p+ âg)αg − Âg = 0, (47)

(p+ âl)αl − Âl = 0. (48)

Typically, a few iterations are enough to drive the pressure error below 10−6.

4.2 Treatment for vanishing phase: blending
A matter of concern while solving Eq. (37) is that of phase disappearance. In this situation, the numerical
errors in the solution get amplified due to the division by a very small volume fraction. Although the volume
of the corresponding fluid and thus its contribution to the flow are negligible, the calculation procedure
might become unstable due to unrealistic values of the flow variables, leading to divergence. The idea of
the blending function suggested by Paillère et al. [42] is employed to suppress these numerical errors. It is
assumed that when a fluid nears phase-disappearance, the fluids reach equilibrium immediately by mixing
their states. After the time-integration and decoding procedure, if εmin ≤ αk ≤ εmax, then the velocity and

10



temperature fields of phase−k are blended using,

uk|blended = G(ψk)uk + (1−G(ψk))uk′ . (49)

The function G(ψ), ψ ∈ [0, 1], is a cubic polynomial interpolant with G(0) = 0, G(1) = 1 and G′(0) =
G′(1) = 0. The function,

G(ψ) = −ψ2(2ψ − 3) (50)

is used here, where ψ is the normalized volume fraction,

ψ =
α− εmin

εmax − εmin
. (51)

The parameters ε define the range of volume fractions within which blending is employed. They are preset
as,

εmin = 10−1ε (52)

εmax = 103ε, (53)

where ε is problem specific, but usually is set at 10−7.

5 Results
This section validates the discretization and flux-scheme for the two-fluid single pressure model presented in
the previous sections. Several test problems from previous work by Nonomura et al. [32] and Haimovich and
Frankel [43] have been considered for validation purposes. The purpose of this section is two-fold: Validation
of the enhancements to the AUSM+-up flux, and demonstrating the interface sharpening capabilities of the
THINC scheme. It should be noted here again, that even though the THINC scheme is used for limiting
the volume fraction, the other variables are limited using the vertex-based (VB) limiter, thus resulting in a
THINC+VB limiting process. When the THINC limiter is not used, the VB limiter is used for all the flow
variables.

5.1 Moving contact discontinuity problem
This test case is used to verify that the solver satisfies the pressure non-disturbance condition. It is also
useful to judge the accuracy of the interface sharpening technique used. The following initial conditions are
used:

(p, αg, uk, Tk)L = (105Pa, 1− ε, 100m/s, 300.0K)

(p, αg, uk, Tk)R = (105Pa, ε, 100m/s, 300.0K)

ε = 1.0× 10−7

k = 1, 2

where the L and R states are to the left and right of x = 0.5 respectively. Fig. 1 shows the void-fraction
and pressure obtained after running up to t = 0.003 using a ∆t = 10−6 on 200 cells. Profiles using the VB
limiter and THINC+VB are shown together for comparison. It can be seen that the contact discontinuity
is transported to the expected location and the uniform pressure is kept undisturbed. It is also observed
that the THINC reconstruction for the volume fraction significantly improves the sharpness of the material
interface. This can be clearly seen in Fig. 2, which shows the material interface closely. These results compare
well with those by Nonomura et al. [32].
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Figure 1: Void fraction (left) and Pressure (right) for the moving contact discontinuity
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Figure 2: Comparison of the void fraction profiles with and without THINC reconstruction

5.2 Air/water shock-tube problem
This problem tests the capability of the method to capture shocks. It is a one-dimensional test case with
the following initial conditions:

(p, αg, uk, Tk)L = (109Pa, 1− ε, 0m/s, 308.15K)

(p, αg, uk, Tk)R = (105Pa, ε, 0m/s, 308.15K)

ε = 1.0× 10−7

k = 1, 2.

A mesh with 500 elements is used. The results at t = 0.2× 10−3 using a ∆t = 5× 10−8, with and without
THINC reconstruction are shown in Figs. 3 and 4. The results compare well with references [4, 6].
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Figure 3: Void fraction (left) and Pressure (right) for the air-water shocktube
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Figure 4: Average velocity (left) and temperature (right) for the air-water shocktube
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Figure 5: Comparison of the void fraction profiles for the air-water shocktube with and without THINC
reconstruction

Fig. 5 shows the cell-averaged values of void fraction zoomed over particular regions to show the material
interface. It can be seen that using THINC, the interface is captured in 4 cells as compared to 6 cells, when
THINC is not used.
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5.3 Water/air shock-tube problem
This is a one-dimensional test case with the following initial conditions:

(p, αg, uk, Tk)L = (1.0× 108Pa, ε, 0m/s, 308.15K)

(p, αg, uk, Tk)R = (1.0× 105Pa, 1− ε, 0m/s, 308.15K)

ε = 1.0× 10−7

k = 1, 2.

As mentioned by Kitamura et al. [6, 18], this high pressure-ratio water/air shocktube cannot be solved
with the AUSM+up flux without augmenting an exact Riemann solver to it. However, the modifications in
the AUSM+-upf flux allows this high pressure-ratio shocktube to be solved without the need for an exact
Riemann solver. The results at t = 0.2× 10−3 using a ∆t = 10−7, with and without THINC reconstruction
are shown in Figs. 6 and 7. A mesh with 500 elements is used. The results show a good match with the
references.

Fig. 8 shows the comparison of cell-averaged values of void fraction zoomed over particular regions to
show the material interface. It can be seen that using THINC, the interface is captured in 3 cells instead of
5.
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Figure 6: Void fraction (left) and Pressure (right) for the high PR water-air shocktube
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Figure 8: Comparison of the void fraction profiles for the water-air shocktube with and without THINC
reconstruction

Is has been previously noted that the pressure profiles obtained for this problem are especially sensitive
to the flux scheme used [21, 22]. A grid convergence study was performed here for this reason. The THINC
reconstruction is not used for this. Pressure profiles for meshes with 500, 1000 and 2000 elements are shown
in Fig. 9, indicating that the method is indeed grid convergent.
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Figure 9: Pressure profiles showing grid-convergence for the high PR water-air shocktube

5.4 Shock/water-column interaction
A shock in air impacting a water-column (or a 2D droplet) is simulated in this problem. The droplet has
radius r = 3.2mm and is centered at the origin. Since this problem is symmetric about the X-axis, flow over
only the top half of the droplet is simulated, and the symmetry condition is imposed at the bottom boundary.
The droplet is resolved using 200× 100 isotropic cells in the domain [−5mm, 5mm]× [0mm, 5mm], so that
the grid spacing is ∆xmin = ∆ymin = 0.05mm in this region. The rest of the grid is such that 450 × 150
total cells are used in the overall domain [−15mm, 20mm]× [0mm, 15mm]. The initial conditions are [32]:

(p, αg, uk, Tk)L = (2.35438× 105Pa, ε, 225.86m/s, 381.85K) for x ≤ 4mm

(p, αg, uk, Tk)R = (1.0× 105Pa, ε, 0m/s, 293.15K) for x > 4mm, except for

x2 + y2 < (3.2mm)2, whereαg = 1− ε
ε = 1.0× 10−5

k = 1, 2.
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These conditions result in a shock moving atMa = 1.47, which impacts the droplet at t ≈ 1.5µs. A time-step
of ∆t = 1.25× 10−9 s is used.

A smooth transition of the volume fraction at the interface of the droplet is necessary. A width of
±2∆xmin is used for the transition region. The curve used to fit the volume fraction in this region is the
same as the blending function used for the vanishing phase.

αg|blended = G(ψ2)ε+ (1−G(ψ2))(1− ε),
G(ψ2) = −ψ2

2(2ψ2 − 3),

ψ2 =

√
x2 + y2 − (r − 2∆xmin)

4∆xmin
, r − 2∆xmin ≤

√
x2 + y2 ≤ r + 2∆xmin.

The left boundary is set as the inlet and the right boundary is the outlet. The top boundary is a slip-wall.
These boundaries are sufficiently far from the droplet, such that their influence can be neglected.

The AUSM+-up fluxes (without the exact Riemann augmentation) diverge after ≈ 6.25µs of flow-time.
However, if the AUSM+-upf fluxes are used, the method does not diverge at this point, and results at later
flow-times can be obtained. Thus, only the results using AUSM+-upf are reported. Pressure and numerical
Schlieren contours at t = 6.25µs, t = 10µs and t = 18.75µs are shown in Fig. 10 from top to bottom
respectively. Pressure contours are plotted between 105 Pa and 4×105 Pa. The numerical Schlieren function
is computed as (1 + α2

l ) log(1 + |∇ρ|) and the range used for plotting its contours is 4 to 20. For this test
problem, as the flow-time increases, the interface gets increasingly smeared. Hence, this example can be
very useful in studying the effect of using THINC reconstruction. Fig. 11 shows numerical Schlieren and
volume fraction plots using the VB limiter on the right, and THINC+VB limiter on the left, at flow-times
50µs, 100µs and 200µs respectively. It can be clearly seen that using THINC keeps the interface very sharp,
until the very end of the computation. This indicates that the THINC reconstruction for volume fraction is
indeed very effective in retaining sharp interfaces. These results compare well with Nonomura et al. [32]
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Figure 10: Pressure and numerical Schlieren contours for the shock/water-column interaction at t = 6.25µs,
10µs and 18.75µs
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Figure 11: Numerical Schlieren (top-half ) and volume fraction (bottom-half ) contours for the shock/water-
column interaction using THINC (left) and without using THINC reconstruction (right) at flow-times t =
50µs, t = 100µs and t = 200µs

5.5 Shock/He-bubble interaction
This problem investigates the interface capturing capabilities of the proposed method. Shocks interacting
with Helium bubbles and cylinders have been investigated experimentally by Haas and Sturtevant [44]. This
problem has been solved computationally using the two-fluid model by Haimovich and Frankel [43] and using
Lagrangian hydrodynamic methods by Burton et al. [45]. The experimental results above are used as a basis
for comparison. The problem involves a Mach 1.22 shock impacting a Helium bubble with radius 2.5cm.
The problem is solved on a domain [0m, 0.5m] × [0m, 0.0445m], with the bubble centered at (0.4, 0.0). A
uniform mesh of 1200 × 160 elements is used, resulting in a ∆x = 0.42mm and ∆y = 0.28mm. The initial
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conditions are:

(p, αg, uk, Tk)L = (1.5698× 105Pa, ε,−113.5m/s, 283.86K) for x ≥ 0.45m

(p, αg, uk, Tk)R = (1.01325× 105Pa, ε, 0m/s, 248.88K) for x < 0.45m, except for

(x− 0.4)2 + y2 < (0.025m)2, whereαg = 1− ε
ε = 1.0× 10−5

k = 1, 2.

The same smooth transition over 2 cells for the material interface like the one used in the previous shock-
bubble problems is used here as well. The THINC reconstruction has been used for this problem. Without
THINC, the bubble interface gets smeared out beyond recognition. Thus, the results without using THINC
are not included.

The numerical Schlieren and volume fraction contours of Helium at times 80 µs, 240 µs, 420 µs, 680
µs and 980 µs are shown in Fig. 12, as compared to the experimental results of Haas and Sturtevant [44].
These times, as noted in the reference, are after the shock hits the bubble. The numerical results compare
well with the experiments. It should be noted that at the final time 980 µs, the bubble has already collapsed
onto itself. However, the THINC limiting enables accurate interface capturing even in this situation. It
is also noteworthy that the mesh used in this problem is significantly coarser as compared to the meshes
conventionally used by Eulerian methods. The purpose of using a coarser mesh is to demonstrate that the
shock-interface interaction can be accurately computed nevertheless.

5.6 Shock/R22-bubble interaction
This problem is also used to demonstrate the interface capturing capabilities of the proposed method. Ex-
perimental results of shocks interacting with R22 bubbles and cylinders can also be found in the work by
Haas and Sturtevant [44]. Computational results for this problem have been presented using the two-fluid
model by Nonomura and Kitamura [32]. The problem involves a Mach 1.22 shock impacting an R22 bubble
with radius 2.5cm, centered at (0.225, 0.0). The same mesh-setup as the previous problem is used here. The
initial conditions are:

(p, αg, uk, Tk)L = (1.59× 105Pa, ε,−113.5m/s, 328.6K) for x ≥ 0.275m

(p, αg, uk, Tk)R = (1.01325× 105Pa, ε, 0m/s, 288.2K) for x < 0.275m, except for

(x− 0.225)2 + y2 < (0.025m)2, whereαg = 1− ε
ε = 1.0× 10−5

k = 1, 2.

The same smooth transition for the material interface over 2 cells is used. Numerical results using the THINC
reconstruction are presented here, because the interface is smeared out when THINC is not used. Numerical
Schlieren functions and R-22 volume fractions are shown at times 50µs, 250µs, 420µs and 1020µs in Fig.
13 as compared to experiments from Haas and Sturtevant. The numerical results show good comparison
with the experiments, in spite of using a coarse mesh. This emphasizes the effect of the THINC interface
sharpening technique on the two-fluid model.

5.7 Underwater detonation
This test simulates detonation conditions under water, and its effects on the water surface. A rectangular
domain 10m×14m is initialized with water 3.5m deep. The top, right and bottom boundaries are extrapolated
and the left boundary is symmetric. A sphere with radius 0.3m containing high pressure air is placed with
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it’s center 0.5m under the water surface. The initial conditions inside the sphere are:

(p, αg, uk, Tk) = (109Pa, 1.0− ε, 0.0m/s, 2000.0K)

ε = 1.0× 10−3

k = 1, 2

and the pressure and temperature everywhere else are 300K and 1.01325× 105Pa respectively. An unstruc-
tured mesh with 115,000 elements is used to discretize the domain, and a time-step of ∆t = 2.5 × 10−7 is
used for this problem. A smooth transition of the volume fraction is used for the water surface and the
surface of the sphere. Numerical results at 1 ms, 4 ms, and 6 ms using the THINC reconstruction are shown
in Fig. 14. At 6 ms, it is apparent that the mesh resolution is insufficient to capture the splashed water
separating into smaller fragments. Nevertheless, the sharp interface resolution of the THINC reconstruction
is clear from these results.

6 Conclusion
A robust and efficient modification to the AUSM+-up flux in the context of non-equilibrium two-fluid flows
has been presented. The regular AUSM+-up suffers from negative middle-zone pressures in regions where
strong shocks interact with material interfaces. The presented enhancement is shown to make the method
robust in such situations. Since the modifications do not involve any iterative procedure like the exact Rie-
mann solver, in addition to being robust, the resulting discretization has a low computational cost. Further,
the multidimensional THINC interface sharpening technique is used in conjunction with the proposed dis-
cretization of the two-fluid single pressure model. It is shown that the material interface is captured very
sharply using THINC as compared to a conventional TVD limiter. A number of numerical experiments in-
volving shock-bubble interactions have been considered to assess the robustness and the interface capturing
capability of the developed finite volume method for inviscid two-phase flow problems. The numerical results
demonstrate that the robustness is indeed enhanced by the modifications made in the flux function. When
used in conjunction with the THINC scheme, the modified AUSM+-upf flux function shows great potential
to be able to efficiently solve challenging shocked two-phase flow problems.
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Figure 12: Numerical Schlieren (top-half ) and volume-fraction (bottom-half ) contours for the shock-He
cylinder interaction test at t = 80µs, 240µs, 420µs, 680µs and 980µs. THINC (left-column) compared to
experiments from Haas and Sturtevant (1987) [44] (right-column)
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Figure 13: Numerical Schlieren (top-half ) and volume-fraction (bottom-half ) contours for the shock-R22
cylinder interaction test (left-column) at t = 50µs, 250µs, 420µs, 1020µs compared to experiments from Haas
and Sturtevant (1987) [44] (right-column)
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Figure 14: Volume-fraction contours for the underwater detonation test at t = 1ms, 4ms, and 6ms
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