
 1 

Tenth International Conference on        
Computational Fluid Dynamics (ICCFD10), 
Barcelona, Spain, July 9-13, 2018 
 

ICCFD10-xxxx 

 

An improved Barth-Jesperson limiter for Flux-Reconstruction 

method and its applications 
 

Zhiqiang He*, Zhongzhou Guo*, Wenwen Zhao* and Weifang Chen*  

Corresponding author: wwzhao@zju.edu.cn 
 

*College of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China 
 

 

1     Introduction 
 

The second-order CFD methods have been playing an important role in the design of aircraft. 

However, it is unable to capture structure details while solving complex unsteady flows due to the 

excessive dissipation introduced through the spatial discretization. At the same time, high-order 

methods can obtain more flow details at a lower computational cost. DG (Discontinuous Galerkin 

Method) is very popular these years for its ability to get arbitrary order accuracy with unstructured 

grids. But its huge computational cost restricts its scope of application. 

Flux Reconstruction (FR) method was first introduced by Huynh in 2007 [1], which is capable to 

recover several high-order schemes for linear fluxes, including spectral difference (SD) and nodal 

discontinuous Galerkin (NDG). Not like DG, FR method employs difference equations rather than 

integral equations. It discretize the numerical solution through expansions using piecewise high-order 

Lagrange polynomial basis functions, then choose a correction polynomial, for example, Raudu 

polynomial, to reconstruct a globally continuous flux from the piecewise discontinuous flux in each 

cell. Study in paper [investigation of 3d internal flow using new flux-reconstruction high order 

method] show that FR is 8 times faster than DG for p1, p2 and p3. Recently, flux reconstruction 

method has been successfully applied to aeroacoustics [2], large eddy simulation [3, 4] and so on,  and 

thus gain wider attention. However, there are still some issues when FR is applied in transonic and 

supersonic flows, where shock-capturing is still not fully satisfactory.  

Artificial viscosity and limiting are two common strategies to suppress spurious non-physical 

oscillations around shock. One important advantage of the artificial viscosity method is that only the 

information of current cell is needed, so it keeps the compact of the FR method. However, such a 

method can potentially change the order of the equations, and thus reduce the time step. The other 

drawback of artificial viscosity is that it is problem-dependent. It requires some experiences to get 

appropriate viscosity. Otherwise, excessive viscosity will affect the precision of the solution, or too 

small one cannot suppress spurious non-physical oscillations. Artificial viscosity was used to capture 

the shock successfully at 1.6 Ma for NACA0012 airfoil in paper [5]. Limiting is widely used  in FVM 

with much success. Limiting limits the solution to satisfy TVD or TVB properties, and can totally 

suppress oscillations around shocks. Since FR method is very similar to nodal DG, it would be natural 

to apply limiters designed for nodal DG to FR. MLP (hierarchical multi-dimensional limiting process) 

designed for DG was firstly introduced to FR in paper [6], which is able to capture the flow structures 

in detail. However, it requires wider stencils than traditional limiters for second-order CFD methods, 

and thus makes it more difficult to program. WENO schemes were also introduced to FR in paper [7]. 

It eliminates the oscillation while keeping high order accuracy. But it’s quite difficult to apply it to 

hybrid grid solver. In this paper, we introduce an improved Barth-Jesperson limiter to FR method, and 

employ a shock indicator, to maintain high order accuracy in smooth regions while suppressing 

oscillations around shocks. 

The paper is organized as follows. In the second section, the governing equations and FR method 
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are briefly reviewed. In the third section, shock detector and an improved Barth-Jesperson limiter are 

described in detail. In the final section, we draw a conclude and summarize some future works. 

 

2     Governing equations and Flux Reconstruction method 
 

2.1     Euler equations 
The oscillations around shock will be surpassed with limiter functions. However, the solution in 

smooth regions will also be limited and polluted. It’s essential to turn off limiter in smooth regions if 

we want to maintain high order accuracy. A smoothness indicator from the artificial viscosity method 

is employed as a shock detector [2].  

The unsteady Euler equations can be written in conservative form as 
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in which , ,e p denote density, total energy and pressure,  
iu  denote velocities. For a perfect 

gas, the pressure is given by 
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The specific heat ratio is assumed to be constant and equals to 1.4. 
 

2.2     Flux Reconstruction method 
Consider 1D hyperbolic law 
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Firstly, discrete the computational domain  0 , Nx x   into N non-overlapping elements,  

1[ , ], 0,1, , 1i n nx x n N    . We transform each element i  to transformed space [ 1,1]s    for 

both mathematical simplicity and computational efficiency. For 1D, mapping function for each 

element is 
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The governing equation Eq(4) in transformed space becomes 
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Then, define 1k   solution points in s , so the solution ˆ
iu  and flux ˆ

iF  can be approximated 

by following K-th order Lagrange interpolate polynomials 
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where  il   is Lagrange interpolate basis defined at solution points in s . The flux ˆ
iF  is generally 
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discontinuous across cell interfaces. To satisfy the conservation law, correction functions Lg  and Rg   

were introduced to keep the flux continuous at cell interfaces. VCHJ correction functions are the most 

frequently used correction functions [8]. They are 
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where kL  is the Legendre polynomial of degree p and 
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Figure 1. Figure shows the flux correction procedure in computational domain. 

 

The parameter c is called the VCJH parameter and we can recover several existing schemes with 

specific c, such as nodal DG, SD. The total continuous flux is written as 
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where ˆ CF   is correction component of the continuous flux, 
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ˆ I
LF  and ˆ I

RF  are fluxes at left and right interfaces computed with Riemann solver, ˆ D
LF  and ˆ D

RF  are 

discontinuous fluxes at cell boundary. The derivative of the continuous flux is 
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Finally, Eq(12) is used in Eq(6) to obtain an ODE which is then time-advanced using a high-

order time integration scheme, like RK45 in this paper. 

 

3     Shock detector and an improved Barth-Jesperson limiter 
 

3.1     Shock detector 
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The oscillations around shock will be surpassed with limiter functions. However, the solution in 

smooth regions will also be limited. It’s essential to turn off limiter in the smooth regions if we want 

to maintain high order accuracy. A smoothness indicator from the artificial viscosity method is 

employed as shock detector [9]. 

Firstly, compute the 
2L   projection to the lower-order space of the k-th order solution in cell i. 
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Next, define smoothness indicator 
eS  as 
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After that, we introduce 
i , 
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where 0 0 04, ( ), 3S C l Cog k     . Finally, if 0.99i  , the cell is identified as a “trouble cell”, 

and its solutions are going to be limited. 

3.2     An improved Barth-Jesperson limiter for FR 
As mentioned in section 2.2, the solution in cell   is a polynomial in the form Eq(7). The Gibb’s 

phenomenon would cause oscillations around shock and unphysical solutions. An improved Barth-

Jesperson limiter is introduced to FR method to avoid this at the average step. All steps required are 

listed below as  

1) Find all “trouble cells” with the help of shock detector mentioned in last section. 

2) Evaluate the average solutions of “trouble cells” and their neighbors sharing a face, iu  and nbu . 

3) Find the maximum average value maxu  and minimum average value minu  among “trouble cell” 

and its neighbors. 

4) Evaluate average gradient, iu  of “trouble cell”. 

5) For cell i , define a limiter function 
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where i2 ,Δ u Δ i crr  , ,Δ i crr is the vector from cell center to cell corner. 

6) Limit the solution at solution points 

 , ,i j i i i i ju u u r      (17) 

7) The limited solution is then used in FR procedure. 

We use cell corner to avoid evaluating solution at every flux point. Step 6 shows that solution at 

“trouble cell” is linearly distributed so all solutions at solution points and flux points have the TVD 

property. 

 

4     Numerical results 

 
4.1     1D sod shock tube problem 
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The sod shock tube problem is a common one-dimensional Riemann problem to test for the 

accuracy of computational fluid codes. The test can be described with Euler equation with following 

parameters, for left and right states of an ideal gas 
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The simulation is stopped at t=0.2 and with 100, 200 and 400 elements. The density distribution 

computed with third-order FR scheme with shock detector and the improved Barth-Jesperson limiter 

is shown in Figure 2. 

 
Figure 2: Density distribution with different elements at t=0.2s 

 

4.1     Supersonic flow in a convergent nozzle with a ramp 
The case is to test limiter for steady problem. Its computational domain and boundary conditions 

are shown in Figure 3. The initial conditions are as follows: 

 
1.4, 2.0, 0, 1.0

. ., 2.0

u v p

i e Ma
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
 (19).  

The velocity of supersonic inflow is also 2.0 Mach. Both structured and unstructured grids are 

employed. The density distributions computed with fourth order FR scheme with shock detector and 

the improved Barth-Jesperson limiter are shown in Figure 4. The shock captured here is very sharp 

and almost no overshot. It shows that the improved limiter here inherits advantages of Barth-

Jesperson limiter in second-order FVM, and is able to function for both structured and unstructured 

grids. 

 
Figure 3: Computational domain and boundary conditions of convergent nozzle problem. 
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Figure 4: Density distribution of convergent nozzle problem with structured and unstructured grids. 

 

4.3     Mach 3 wind tunnel with a forward step 
In this section, a standard test case is simulated to evaluate FR schemes with the improved 

limiter. The problem contains a supersonic Mach 3 uniform inflow in a wind tunnel with a forward 

step, multiple interactions of shocks, expansion fans and contact discontinuities. The computational 

domain and boundary conditions are shown in Figure 1. And a set of h=1/160 quadrilateral grids 

is employed. The initial conditions are listed as follows: 

 1.4, 3.0, 0, 1.0, 3.0u v p Ma       (20).  

Figure 2 and Figure 3 show the shock sensor and density distributions at t=4.0s computed with the 

third and the fourth order FR scheme with the improved limiter. Both shock sensors capture flow 

structures accurately and the higher order scheme yields more detailed features. The test case also 

validates the resolving capability of the improved Barth-Jesperson limiter for the Kelvin-Helmholtz 

instability from the shock triple point, which indicates that FR scheme with the new limiter is of low 

dissipation. 

 
Figure 5: Computational domain and boundary conditions of the forward step 

 

 
Figure 6: Shock sensor and density distribution for the 3

rd
 order FR scheme at t=4s. 

 
Figure 7: Shock sensor and density distribution for 4

th
 order FR scheme at t=4s. 

 

5     Conclusion 
 

An improved Barth-Jesperson limiter for FR scheme is developed in this paper. It keeps stencils 
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of the original Barth-Jesperson limiter for the second-order FVM scheme, and thus is easy to realize 

based on FVM codes. Some test cases are carried out up to examine the capability of the improved 

limiter in capturing supersonic flow physics. Results demonstrate the proposed limiter provides 

detailed flow structures without oscillations around shock region, and maintains the required accuracy 

in smooth region at the same time. 
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