
Tenth International Conference on
Computational Fluid Dynamics (ICCFD10),
Barcelona,Spain, July 9-13, 2018

ICCFD10-2018-186

Explicit local time stepping scheme for the unsteady
simulation of turbulent flows

G. Jeanmasson∗, I. Mary∗ and L. Mieussens∗,∗∗

Corresponding author: guillaume.jeanmasson@onera.fr

∗ ONERA, France.
∗∗ Université de Bordeaux, France.

Abstract: In this paper, two local time stepping schemes of order two and three in time are
proposed. By construction, they are not mass conservative but a correction stage is added to make
them conservative. These schemes are compared with some local time stepping schemes exisiting in
the literature (schemes of Constantinescu and Sandu). The comparisons are carried out on various
test cases. It reveals that our schemes can be more acurate and slightly faster than the schemes
of Constantinesu and Sandu. Our third order local time stepping scheme is used to perform a
simulation of airflow around an airfoil.

Keywords: Explicit local time stepping schemes, Runge-Kutta methods, Partitioned Runge-Kutta
methods, Computational Fluid dynamics.

1 Introduction
Numerical simulations are widely used to study fluid mechanics problems. Simulations are based on the
discretized form of the equation of fluid mechanics (Euler or Navier-Stokes equations). This discretized form
is obtained by applying spacial and temporal integration methods. Finite volume approach is one of the
most popular spacial integration method in CFD. For time integration, explicit Runge-Kutta methods are
very efficient. However, with these methods the time step is strongly restricted by the numerical stability
condition (CFL condition). This stability condition is defined in each cell and imposes that the time step
is lower than the ratio between the cell volume and the magnitude of the wave speed in the cell. The time
step for the entire domain is chosen to be lower than the smallest ratio in the mesh (generally imposed by
the smallest cell in the mesh). Consequently, the time step may be much smaller than necessary in the other
cells, which is not efficient. It is particularly true in most CFD meshes, which present some areas of mesh
refinements where the stability condition is much more restrictive than in the other areas.

Implicit, unconditionally stable timestepping methods allows to use larger time steps, which reduces the
computational time. However, parallel programming of implicit methods may be difficult. Moreover, implicit
methods are less accurate than explicit methods.

The use of an explicit local time stepping scheme seems to be a good compromise between fully explicit
and implicit methods. Indeed, an explicit local time stepping scheme allows a time step adaptation on the
mesh to satisfy local stability conditions. Small time steps are used on cells which present the most severe
CFL and larger time steps are applied on cells where CFL is less restrictive. This should result in a reduction
of the computational cost, keeping the advantages of explicit methods: accuracy and good compatibility with
parallel programming.

Two approaches are possible to construct explicit local time stepping schemes. In the first approach,
each cell of the computational domain is integrated with its maximal allowable time step [1, 2, 3]. In the

1

second approach, each time step is associated to a group of cells [4, 5, 6, 7, 8, 9, 10, 11, 12]. The ratio
between the different time steps may be an integer [4, 5, 6, 7, 10, 11, 12] or not [8, 9]. All the local time
stepping schemes presented in this article are constructed by following this second approach. The local
time stepping schemes seem to suffer of an important drawback: temporal high order is often incompatible
with mass conservation [13]. In the 1980’s, Osher and Sanders [5] proposed a locally varying time stepping
scheme. It is conservative but only of order one in time. The schemes presented in [6, 13, 8, 9] are second
order accurate but not mass-conservative. Note that [8, 9] can be higher order acurate in the case of linear
spatial discretization. The scheme developped in [12] is second order acurate and seems mass-conservative
but this property is not mentioned in the paper. In [7], a comparison is made between different multirate
Runge-Kutta schemes and a multirate time stepping scheme of order three in time is proposed. However, the
scheme is not mass-conservative. The strategy proposed by Constantinescu and Sandu [4] to construct local
time stepping schemes seems interesting. Indeed, their strategy allows to obtain second order accurate and
mass conservative local time stepping schemes. More over, the overall stability of their original local time
stepping scheme proposed in [4] can be improved using a higher order Runge-Kutta base method [7, 10].

In this article, we propose two local time stepping schemes which are second order and third order
accurate. Consistent solutions are calculated at the interface between domains of different time steps like in
[6, 7, 11, 8, 9] to obtain the desired orders of acuracy. More over, a correction stage is added to make these
schemes conservative. The aim of this article is to make a comparison between our strategy to construct
mass conservative local time stepping schemes and the strategy of Constantinescu and Sandu.

In the first part of this article, we present some theoretical concepts for the construction of local time
stepping schemes and we introduce the strategy used by Constantinescu and Sandu. In the second part, we
introduce our approach to construct mass conservative local time stepping schemes of order two and three.
The final part is dedicated to the comparison between the two strategies through several numerical test
cases.

2 Local time stepping scheme and Partitionned Runge-Kutta meth-
ods

2.1 Semi-discretisation of a one-dimensional hyperbolic equation
We consider the one-dimensional hyperbolic equation :

∂y(t, x)

∂t
+
∂f(y(t, x))

∂x
= 0, (1)

with y(0, x) = y0(x), x ∈] −∞,+∞[and t > 0. We also consider a 1D computational domain divided into
cells of variable length ∆xi. Cell i is bounded by points xi− 1

2
and xi+ 1

2
. The Finite Volume method is

applied to (1). After space integration over cell i, we obtain :

∂yi
∂t

= − 1

∆xi
(Fi+ 1

2
− Fi− 1

2
), (2)

where yi =
∫ x

i+1
2

x
i− 1

2

y(t, x)dx. The numerical flux at point xi+ 1
2

is denoted by Fi+ 1
2

and reads Fi+ 1
2

=

F (yi−1, yi, yi+1, yi+2) in the case of a flux function with a four cell stencil, for instance. Now (2) can be
viewed as an ordinary differential system that can be solved with an explicit Runge-Kutta (RK) method, as
described in the following section. This is then so called the Method Of Lines (MOL).

2.2 Explicit Runge-Kutta methods
We consider an Ordinary Differential Equation :

dy

dt
= f(t, y) y(t = 0) = y0. (3)

The solution of (3) at time time tn is yn. A s-step explicit Runge-Kutta method allows to compute yn+1

2

(solution of (3) at time tn+1 = tn + ∆t) thanks to yn and s− 1 intermediate values. In [14], a s-step explicit
Runge-Kutta method is defined by the formulas :

yn+1 = yn + ∆t

s∑
i=1

biKi, (4)

Ki = f(tn + ci∆t, y
n + ∆t

i−1∑
j=1

aijKj) (5)

= f(tn + ci∆t, y
i−1), (6)

where 1 ≤ i ≤ s with K1 = f(tn, yn). The method is defined by its coefficients A = {aij}, b = {bi} and
c = {ci} that can be represented in a Butcher tableau (see [14]) :

c A

b

c1 = 0 0

c2 a21

c3 a31 a32

. .

. .

. .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

Table 1: Butcher tableau of an s-stage explicit Runge-Kutta method

All Runge-Kutta methods in this article satisfy the property of consistency :

ci =

i−1∑
j=1

aij . (7)

2.3 Partitioned Runge-Kutta methods
In [4] and [13], Partitioned Runge-Kutta (PRK) methods are applied to temporal multiscale problems.

Let us consider a 1D computational domain composed of n cells (figure 1). The Finite Volume method
applied to the one-dimensional hyperbolic equation (1) on the whole domain leads to the autonomous system
of Ordinary Differential Equations

dy

dt
= f(y), y ∈ Rn. (8)

As shown in figure (1), the computational domain is divided into two subdomains which have different
time scales. The first subdomain has a large time scale and contains cells from cell 1 to cell i0 (large cells).
The second subdomain has a short time scale and contains cells from cell i0+1 to cell n (small cells).

3

|
x 1

2

y1

cell 1

|
x 3

2

| | |
xi0− 1

2

yi0

cell i0

xi0+ 1
2

|
xi0+ 3

2

yi0+1

cell i0+1

| | | || | |
xn− 1

2
xn+ 1

2

yn

cell n

∆xi0

Subdomain with large time scale Subdomain with short time scale

Figure 1: Partitionned computational domain

We denote by YL = [y1, y2, ..., yi0] the vector of unknowns in the large time scale subdomain and by
YS = [yi0+1 , yi0+2 , ..., yn] the vector of unknowns in the short time scale subdomain. System (8) can be
rewritten using the variables YL and YS : 

dYL
dt = fL(YL, YS)

dYS
dt = fS(YL, YS)

(9)

The dependency between vectors YL and YS in each equation of (9) occurs at the interface between the
subdomains. The two equations can be solved with different Runge-Kutta methods since YL and YS do not
evolve with the same time scale. We denote by RKL the s-stage Runge-Kutta method for the Large time
scale subdomain. It is used to solve the first equation and its coefficients are : AL, bL, cL. Similarly, we
denote by RKS the s-stage Runge-Kutta method for the Short time scale subdomain. It is used to solve the
second equation and its coefficients are : AS , bS , cS . According to [14], the PRK method using RKL and
RKS is given by the following formulas:

Y n+1
L = Y nL + ∆t

∑s
i=1 b

L
i K

i
L Y n+1

S = Y nS + ∆t
∑s
i=1 b

S
i K

i
S

Y iL = Y nL + ∆t
∑i−1
j=1 a

L
ijK

i
L Y iS = Y nS + ∆t

∑i−1
j=1 a

S
ijK

i
S

Ki
L = fL(Y i−1

L , Y i−1
S) Ki

S = fS(Y i−1
L , Y i−1

S)

(10)

with K1
L = fL(Y nL , Y

n
S) and K1

S = fS(Y nL , Y
n
S). We remind that Y nL and Y nS denote the vectors of unknowns

at time tn in the large time scale subdomain and in the short time scale subdomain, respectively. Y n+1
L and

Y n+1
S are the vectors of unknowns at time tn + ∆t.
In most explicit local time stepping schemes (for instance [4], [6], [5] and [7]), RKL and RKS methods

are based on the same RK method. RKS method is obtained by applying twice successively the base method
with the time step ∆t

2 . RKL method is composed of the base method with the time step ∆t, and some
additional values calculated at the interface between the two subdomains. With this strategy, an explicit
local time stepping scheme with times steps ∆t and ∆t

2 is obtained. To have a Partitioned Runge-Kutta
method of order p and therefore, a local time stepping scheme of order p, both RKL and RKS methods must
be of order p but this is not sufficient. The coefficients of the methods have to satisfy additional coupling
conditions. Following the methodology of [14] we can derive the following conditions on the Runge-Kutta
coefficients to obtain a PRK method of order two and three, respectively (tables 2 and 3).

RKL of order 2 RKS of order 2 Coupling conditions∑s
i=1 b

L
i = 1

∑s
i=1 b

S
i = 1

∑s
i=1 b

L
i c
S
i = 1

2∑s
i=1 b

L
i c
L
i = 1

2

∑s
i=1 b

S
i c
S
i = 1

2

∑s
i=1 b

S
i c
L
i = 1

2

Table 2: Conditions to obtain a second order accurate PRK method

4

RKL of order 3 RKS of order 3 Coupling conditions∑s
i=1 b

L
i = 1

∑s
i=1 b

S
i = 1

∑s
i=1 b

L
i c
S
i = 1

2

∑s
i=1 b

S
i c
L
i = 1

2∑s
i=1 b

L
i c
L
i = 1

2

∑s
i=1 b

S
i c
S
i = 1

2

∑s
i=1

∑i−1
j=1 b

L
i a

S
ijc

L
j = 1

6

∑s
i=1

∑i−1
j=1 b

S
i a

S
ijc

L
j = 1

6∑s
i=1 b

L
i (cLi)2 = 1

3

∑s
i=1 b

S
i (cSi)2 = 1

3

∑s
i=1

∑i−1
j=1 b

L
i a

S
ijc

S
j = 1

6

∑s
i=1

∑i−1
j=1 b

S
i a

L
ijc

L
j = 1

6∑s
i=1

∑i−1
j=1 b

L
i a

L
ijc

L
j = 1

6

∑s
i=1

∑i−1
j=1 b

S
i a

S
ijc

S
j = 1

6

∑s
i=1

∑i−1
j=1 b

L
i a

L
ijc

S
j = 1

6

∑s
i=1

∑i−1
j=1 b

S
i a

L
ijc

S
j = 1

6∑s
i=1 b

L
i c
S
i c
L
i = 1

3

∑s
i=1 b

S
i c
S
i c
L
i = 1

3

Table 3: Conditions to obtain a third order accurate PRK method

The number of conditions quickly increases with the order of accuracy which makes the implementation of
high order local time stepping schemes difficult.

2.4 Constantinescu and Sandu strategy
In [4], Constantinescu and Sandu have developped a strategy, based on PRK methods, to obtain conservative
and second order accurate local time stepping schemes. In this subsection, we briefly describe two schemes
based on this strategy. The first one is the original scheme, based on a RK2 method [4]. The second one
follows the same strategy but is based on a RK3 method (see [7, 10]). A comparison between these schemes
and the schemes we propose (that are based on a different strategy, see part 3) is performed in part 4.

2.4.1 First scheme : original scheme of Constantinescu and Sandu

The original scheme developed by Constantinescu and Sandu is based on the second order Heun’s method:

0 0

1 1 0
1
2

1
2

Table 4: Base method for the original scheme of Constantinescu and Sandu

The RKS method (Table 6) is obtained by applying twice successively the base method with the time
step ∆t

2 . The RKL method (Table 5) is obtained by applying twice successively the base method with the
time step ∆t.

0 0

1 1 0

0 0 0 0

1 0 0 1 0
1
4

1
4

1
4

1
4

Table 5: RKL method

0 0
1
2

1
2 0

1
2

1
4

1
4 0

1 1
4

1
4

1
2 0

1
4

1
4

1
4

1
4

Table 6: RKS method

Both RKL and RKS methods are second order accurate and we have bLi = bSi for every i. These properties
ensure that this local time stepping scheme is second order accurate [4]. The equality of coefficents bi ensures
that the scheme is mass conservative [4]. In [4], the authors demonstrate that the RKL method described
in Table 5 is only applied in a buffer zone: an area of variable length (it depends on the spatial stencil)
adjacent to the interface. Outside this buffer zone, RKL reduces to the Heun method described in Table
4. Finally, our semi-discrete approximation (2) is solved by the algorithm shown in table 7, in which
Dk
i = 1

∆x (Fi+ 1
2
(yki , y

k
i+1)− Fi− 1

2
(yki−1, y

k
i)).

5

Large-time-scale-subdomain Short-time-scale-subdomain

1 y1
i = yni −∆tDn

i y1
i = yni −∆tDn

i y1
i = yni − ∆t

2 D
n
i

2 y2
i = yni y2

i = yni − ∆t
4 [Dn

i +D1
i]

3 y3
i = yni −∆tD2

i y3
i = y2

i − ∆t
2 D

2
i

4 yn+1
i = yni − ∆t

2 [Dn
i +D1

i] yn+1
i = yni − ∆t

4 [Dn
i yn+1

i = y2
i − ∆t

4 [D2
i +D3

i]

+D1
i +D2

i +D3
i]

Buffer zone

Table 7: Algorithm of the original scheme of Constantinescu and Sandu

We can notice that this scheme is internally non consistent because at the interface values estimated at
different times are mixed in flux balance D. For instance, at the interface, D2

i contains values estimated at
time tn (y2

i from the buffer zone) and values estimated at time tn+ 1
2 (y2

i from the short time scale subdomain).
Despite this inconsistency, the scheme is second order accurate and conservative.

For each cell in the buffer zone, four flux balances have to be calculated, therefore the computational
cost is the same as in the short time scale subdomain. In our applications, we use a flux function with a four
cell stencil. In this case, it can be proven that the size of the buffer zone is equal to four cells.

2.4.2 Second scheme

In [7] and [10], a RK3 method is used as the base method and the strategy of Constantinescu and Sandu is
applied. Here, we extend this approach using a RK3 low-storage scheme [15] as the base method. Low-storage
Runge-Kutta schemes require less storage than "classical" Runge-Kutta schemes. The RK3 low-storage
method applied to (8) reads :

Step 1 K1 = ∆tf(tn, yn)

y1 = yn + β1K1 β1 = 1
2

Step 2 K2 = α2K1 + ∆tf(tn + c2∆t, y1) α2 = −0.6830127

y2 = y1 + β2K2 c2 = 1
2

β2 = 0.9106836

Step 3 K3 = α3K2 + ∆tf(tn + c3∆t, y2) α3 = − 4
3

yn+1 = y3 = y2 + β3K3 β3 = 0.3660254

c3 = 0.7886751

Table 8: The RK3 low-storage scheme written in "low-storage form"

The values of the coefficients α and β have been proposed by Lowery and Reynolds [16]. Successive values
of K and y overwrite the previous ones so that at any stage only 2N storage locations are required. The
same method can be written in the "classical Runge-Kutta form" and a Butcher tableau can be associated:

6

Step 1 K1 = ∆tf(tn, yn)

y1 = yn + a21K1 a21 = β1

Step 2 K2 = ∆tf(tn + c2∆t, y1) a31 = β1 + β2α2

y2 = yn + a31K1 + a32K2 a32 = β2

c2 = 1
2

Step 3 K3 = ∆tf(tn + c3∆t, y2) b1 = a31 + β3α2α3

yn+1 = y3 = yn + b1K1 + b2K2 + b3K3 b2 = β3 + β3α2

b3 = β3

c3 = 0.7886751

0 0

c2 a21

c3 a31 a32

b1 b2 b3

Table 9: The RK3 low-storage scheme written in "classical form" and its associated Butcher tableau

In the following, we only use the "classical form" described in table 9 for our RK3 scheme. Indeed, its
associated Butcher tableau is very useful for constructing and describing local time stepping schemes.

Following the strategy of Constantinescu and Sandu, the base method is duplicated to constuct RKL
(table 10) and RKS (table 11) methods.

0 0

c2 a21

c3 a31 a32

0 0 0 0

c2 0 0 0 a21

c3 0 0 0 a31 a32

b1
2

b2
2

b3
2

b1
2

b2
2

b3
2

Table 10: RKL method

0 0
c2
2

a21
2

c3
2

a31
2

a32
2

1
2

b1
2

b2
2

b3
2

1+c2
2

b1
2

b2
2

b3
2

a21
2

1+c3
2

b1
2

b2
2

b3
2

a31
2

a32
2

b1
2

b2
2

b3
2

b1
2

b2
2

b3
2

Table 11: RKS method
Even though both RKL and RKS methods are third order accurate, the local time stepping scheme is

only second order accurate because some third order coupling conditions are not satisfied [4]. However, the
local time stepping is mass conservative [10]. Like for the original scheme of Constantinescu and Sandu,
there is a buffer zone at the interface, in the large time scale subdomain. Outside this buffer zone, the RKL
method reduces to the base method described in table 9. Finally, our semi-discrete approximation (2) is
solved by the algorithm shown in table 12, in which Dk

i = 1
∆x (Fi+ 1

2
(yki , y

k
i+1)− Fi− 1

2
(yki−1, y

k
i)).

7

Large-time-scale-subdomain Short-time-scale-subdomain

1 y1
i = yni − a21∆tDn

i y1
i = yni − a21∆tDn

i y1
i = yni − a21

2 ∆tDn
i

2 y2
i = yni − a31∆tDn

i y2
i = yni − a31∆tDn

i y2
i = yni − a31

2 ∆tDn
i

−a32∆tD1
i −a32∆tD1

i −a322 ∆tD1
i

3 y3
i = yni y3

i = yni − b1
2 ∆tDn

i

− b22 ∆tD1
i − b3

2 ∆tD2
i

4 y4
i = yni − a21∆tD3

i y4
i = y3

i − a21
2 ∆tD3

i

5 y5
i = yni − a31∆tD3

i y5
i = y3

i − a31
2 ∆tD3

i

−a32∆tD4
i −a322 ∆tD4

i

6 yn+1
i = yni − b1∆tDn

i yn+1
i = yni − b1

2 ∆t(Dn
i +D3

i) yn+1
i = y3

i − b1
2 ∆tD3

i

−b2∆tD1
i − b3∆tD2

i − b22 ∆t(D1
i +D4

i)− b3
2 ∆t(D2

i +D5
i) − b22 ∆tD4

i − b3
2 ∆tD5

i

Buffer zone

Table 12: Algorithm of the second locally varying time stepping scheme

The algorithm is written in "classical form" but it can be easily implemented in the low storage form
since these two formulations are equivalent.

In this case, with a flux function with a four cell stencil, the size of the buffer zone is equal to 6 cells.

3 Schemes proposed
In this section, we present a different approach to construct local time stepping schemes. Like in the
strategy of Constantinescu and Sandu, we use the theory of PRK methods but here we guarantee the
internal consistency of the scheme. This allows to obtain higher order accuracy, since we are able to design
a third order scheme. Note that our schemes require a correction step to make them mass conservative.

3.1 Scheme of order 2
Again, we use the second order Heun’s method (table 4) as the base method. It is applied twice with the
step ∆t

2 to obtain the RKS method (table 14). Our RKL method is composed of the base method and some
additional values to perform the transition with the RKS method and achieve the desired order of accuracy.
Thus, both RKL and RKS methods are of order 2. Now, we impose internal consistency by the relation
cLi = cSi , for every i. Then, it can be easily seen that second order coupling conditions (see table 2) are
satisfied. Note that the intermediate time coefficients of RKS are already fixed (we have cS = {0; 1

2 ; 1
2 ; 1}).

For RKL, we have cL1 = 0 and cL4 = 1, but cL2 and cL3 are still undetermined. Then the consistency property
is obtained with cL2 = cL3 = 1

2 . This requires to define additional intermediate values at time tn + 1
2∆t at

the interface, in the large time scale subdomain. Finally, the coefficients aij are determined to satisfy the
consistency relation (7). The Butcher tableau of RKL and RKS methods read :

0 0
1
2

1
2 0

1
2

1
2 0 0

1 1 0 0 0
1
2 0 0 1

2

Table 13: RKL method

0 0
1
2

1
2 0

1
2

1
4

1
4 0

1 1
4

1
4

1
2 0

1
4

1
4

1
4

1
4

Table 14: RKS method

8

However, this local time stepping scheme defined by RKL and RKS is not mass conservative. It can be
shown by applying RKL and RKS methods to (2) on cells i0 and i0+1, respectively. We remind that cell
i0 is the last cell of the large time scale subdomain while cell i0+1 is the first cell of the short time scale
subdomain (see figure 1). The application of RKL and RKS methods on cells i0 and i0+1 is shown in table
15. Note that to clarify the presentation, we assume a 2 cell stencil flux function: F k

i+ 1
2

= Fi+ 1
2
(yki , y

k
i+1).

step Solution on cell i0 Solution on cell i0+1

1 y1
i0 = yni0 − ∆t

2∆xi0
(Fn
i0+ 1

2

− Fn
i0− 1

2

) y1
i0+1 = yni0+1 − ∆t

2∆xi0+1
(Fn
i0+ 3

2

− Fn
i0+ 1

2

)

2 y2
i0 = y1

i0 y2
i0+1 = yni0+1 − ∆t

4∆xi0+1
(Fn
i0+ 3

2

+ F 1
i0+ 3

2

− Fn
i0+ 1

2

− F 1
i0+ 1

2

)

3 y3
i0 = yni0 − ∆t

∆xi0
(Fn
i0+ 1

2

− Fn
i0− 1

2

) y3
i0+1 = y2

i0+1 − ∆t
2∆xi0+1

(F 2
i0+ 3

2

− F 2
i0+ 1

2

)

4 yn+1
i0 = yni0 − ∆t

2∆xi0
(Fn
i0+ 1

2

+ F 1
i0+ 1

2

yn+1
i0+1 = y2

i0+1 − ∆t
4∆xi0+1

(F 2
i0+ 3

2

+ F 3
i0+ 3

2

−Fn
i0− 1

2

− F 1
i0− 1

2

) −F 2
i0+ 1

2

− F 3
i0+ 1

2

)

Table 15: RKL and RKS methods applied on cells i0 and i0+1

We analyse the expression of yn+1
i0 . We notice that, between tn and tn + ∆t, the Total Flux Lost by the

large time scale subdomain through the interface xi0+ 1
2
, denoted by TFLi0+ 1

2
, is :

TFLi0+ 1
2

=
1

2
[Fni0+ 1

2
+ F 1

i0+ 1
2
] (11)

The same analysis can be made on the other side of the interface. The Total Flux Received by the short
time scale subdomain through the interface xi0+ 1

2
, denoted by TFRi0+ 1

2
, is:

TFRi0+ 1
2

=
1

4
[Fni0+ 1

2
+ F 1

i0+ 1
2

+ F 2
i0+ 1

2
+ F 3

i0+ 1
2
] (12)

It is clear that total fluxes TFLi0+ 1
2
and TFRi0+ 1

2
are different and consequently the local time stepping

scheme is not mass preserving at the interface between the subdomains.

We propose a correction step to make the scheme conservative. Following the notations given above,
yn+1
i0 reads :

yn+1
i0 = yni0 −

∆t

∆xi0
TFLi0+ 1

2
+

∆t

2∆xi0
(Fni0− 1

2
+ F 1

i0− 1
2
) (13)

This value is corrected by adding the total flux difference. This leads to the following expression for the
corrected value yn+1,c

i0 :

yn+1,c
i0 = yn+1

i0 +
∆t

∆xi0
TFLi0+ 1

2
− ∆t

∆xi0
TFRi0+ 1

2
(14)

We substitute yn+1
i0 by its expression given by (13). The corrected value yn+1,c

i0 now reads:

yn+1,c
i0 = yni0 −

∆t

∆xi0
TFRi0+ 1

2
+

∆t

2∆xi0
(Fni0− 1

2
+ F 1

i0− 1
2
) (15)

In (15), the total flux lost by the large time scale subdomain through the interface xi0+ 1
2
now is exactly

TFRi0+ 1
2
, defined in (12). Consequently, the corrected scheme is mass conservative.

The algorithm of this local time stepping applied to our semi-discrete approximation (2) is shown in table
16. In this algorithm, Dk

i = 1
∆x (Fi+ 1

2
(yki , y

k
i+1)− Fi− 1

2
(yki−1, y

k
i)).

9

Large-time-scale-subdomain Short-time-scale-subdomain

1 y3
i = yni −∆tDn

i y1
i = yni − ∆t

2 D
n
i y1

i = yni − ∆t
2 D

n
i

2 y2
i = y1

i y2
i = yni − ∆t

4 [Dn
i +D1

i]

3 y3
i = yni −∆tDn

i y3
i = y2

i − ∆t
2 D

2
i

4 yn+1
i = yni − ∆t

2 [Dn
i +D3

i] yn+1
i = yni − ∆t

2 [Dn
i +D3

i] yn+1
i = y2

i − ∆t
4 [D2

i +D3
i]

5 Correction step (last cell)

Buffer zone

Table 16: Algorithm of the proposed scheme of order 2

In our applications, with a four cell stencil flux function, the size of the buffer zone is equal to two cells,
while it is equal to four cells for the original scheme of Constanintescu and Sandu. Moreover, only two
flux evaluations (Dn

i and D3
i) are needed in the buffer zone whereas the original scheme of Constantinescu

and Sandu requires four flux evaluations in this zone. Our new scheme, despite the additional count due
to the correction step, seems to lead to a small computational speedup compared to the original scheme of
Constantinescu and Sandu (see section 4).

3.2 Scheme of order 3
The base method used to construct this local time stepping scheme is the RK3 low storage method described
in table 9. The construction of RKS method is performed with two successive applications of the base method
with the time step ∆t

2 . Consequently, the RKS method has the following intermediate time coefficients:
cS = {0; c22 ; c32 ; 1

2 ; 1+c2
2 ; 1+c3

2 }. For the construction of RKL method, the base method is applied once with a
time step ∆t, which leads to the following intermediate time coefficients: cL = {0; c2 = 1

2 ; c3}. As for the first
proposed scheme, we impose internal consistency by the relations cLi = cSi , for every i. Indeed, this property
implies that some of the third order coupling conditions of table 3 are necessarily satisfied (namely that of
lines 1,4,5). To satisfy internal consistency, an additional value at time t+ c3∆t must be calculated in RKS
method. In RKL method, additional values at times t + c2

2 ∆t, t + c3
2 ∆t, t + 1+c2

2 ∆t and t + 1+c3
2 ∆t must

be computed. RKL and RKS methods are now two third order Runge-Kutta methods with 7 stages. Their
intermediate time coefficients are the same and read: { 0; c22 ; c32 ; 1

2 ; 1+c2
2 ;c3; 1+c3

2 }. The Runge-Kutta
coefficients for the calculation of additional values are denoted by αL in RKL method and by αS in RKS
method. The Butcher tableaus of RKL and RKS methods are shown in tables 17 and 18, respectively.

0 0
c2
2 αL1
c3
2 αL2 αL3
1
2 a21 0 0

1+c2
2 αL4 αL5 αL6 αL7

c3 a31 0 0 a32 0
1+c3

2 αL8 αL9 αL10 αL11 αL12 αL13

b1 0 0 b2 0 b3 0

Table 17: RKL method

0 0
c2
2

a21
2

c3
2

a31
2

a32
2

1
2

b1
2

b2
2

b3
2

1+c2
2

b1
2

b2
2

b3
2

a21
2

c3 αS1 αS2 αS3 αS4 αS5
1+c3

2
b1
2

b2
2

b3
2

a31
2

a32
2 0

b1
2

b2
2

b3
2

b1
2

b2
2 0 b3

2

Table 18: RKS method
As explained below, the internal consistency implies that some of third order coupling conditions of table

3 are automatically satisfied. The 4 coupling conditions of lines 2 and 3 of table 3 are unsatisfied. Some of
them are equivalent, therefore the remaining unsatisfied coupling coniditions read:

10

s∑
i=1

s∑
j=1

bLi a
S
ijc

S
j =

1

6
, (16)

s∑
i=1

s∑
j=1

bSi a
L
ijc

L
j =

1

6
, (17)

The coefficients for the computation of additional values in RKL method have to satisfy (17) and four
relations given by the consistency property (7). This gives 5 relations that can be used to determine 5
unknowns only. The other eight coefficients can be set to any arbitrary value. A simple and natural choice
is to set: αL3 = αL5 = αL6 = αL7 = αL9 = αL10 = αL12 = αL13 = 0. The resolution of the system leads to the
following values for the other coefficients:

αL1 = c2
2

αL2 = c3
2

αL4 = 1+c2
2

αL11 = 2
3b3
≈ 1.821

αL8 = 1+c3
2 − 2

3b3
≈ −0.9270

(18)

A similar analysis leads to the following values for the coefficients dedicated to the calculation of additional
values in RKS method: 

αS2 = (2
3 −

b2
2) 1

b3
≈ 1.2440

αS1 = c3 − αS2 ≈ −0.45534

αS3 = 0

αS4 = 0

αS5 = 0

(19)

As for our previous second order scheme, the local time stepping scheme defined by RKL and RKS
methods described in tables 17 and 18 is not mass conservative. The strategy based on the Total Flux
Lost and the Total Flux Received at the interface between subdomains can be applied to make the scheme
conservative. The algorithm of this local time stepping scheme applied to solve (2) is shown in table 19. In
this table, Dk

i = 1
∆xi

(Fi+ 1
2
(yki , y

k
i+1)− Fi− 1

2
(yki−1, y

k
i)).

11

Large-time-scale-subdomain Short-time-scale-subdomain

1 y1
i = yni − αL1 ∆tDn

i y1
i = yni − a21∆t

2 Dn
i y1

i = yni − a21∆t
2 Dn

i

2 y2
i = yni − a31∆t

2 Dn
i y2

i = yni − a31∆t
2 Dn

i

y2
i = yni − αL2 ∆tDn

i −a32∆t
2 D1

i −a32∆t
2 D1

i

3 y3
i = yni − b1∆t

2 Dn
i y3

i = yni − b1∆t
2 Dn

i

y3
i = yni − a21∆tDn

i y3
i = yni − a21∆tDn

i − b2∆t
2 D1

i − b3∆t
2 D2

i − b2∆t
2 D1

i − b3∆t
2 D2

i

4 y4
i = yni − αL4 ∆tDn

i y4
i = y3

i − a21∆t
2 D3

i y4
i = y3

i − a21∆t
2 D3

i

−a32∆tD3
i

5 y5
i = yni − a31∆tDn

i y5
i = yni − a31∆tDn

i yi5 = yni − αS1 ∆tDn
i

−a32∆tD3
i −a32∆tD3

i −αS2 ∆tD1
i

6 y6
i = yni − αL8 ∆tDn

i y6
i = y3

i − a31∆t
2 D3

i y6
i = y3

i − a31∆t
2 D3

i

−αL11∆tD4
i −a32∆t

2 D4
i −a32∆t

2 D4
i

7 yn+1
i = yni − b1∆tDn

i yn+1
i = y5

i − b1∆tDn
i yn+1

i = y3
i − b1∆t

2 D3
i yn+1

i = y3
i − b1∆t

2 D3
i

−b2∆tD3
i − b3∆tD5

i −b2∆tD3
i − b3∆tD5

i − b2∆t
2 D4

i − b3∆t
2 D6

i − b2∆t
2 D4

i − b3∆t
2 D6

i

8 Correction step

Buffer zone Buffer zone

Table 19: Algorithm of the second proposed scheme

This algorithm is written in the Runge-Kutta "classical form" but it can be implemented in the "low-
storage form" because these forms are equivalent. In this scheme, there are two buffer zones because both
RKL and RKS methods provide one or several additional values. The size of each buffer zone is equal
to two cells in our applications (flux function with a four cell stencil). We remind that for the scheme of
Constantinescu and Sandu based on RK3, there is one buffer zone of six cells. Our new scheme, despite the
additional count due to the correction step, seems to lead to a small computational speedup compared to
the scheme of Constantinescu and Sandu based on RK3 method (see section 4).

4 Numerical tests
In this section, some numerical test cases are used to perform comparisons between our schemes and the
schemes developed with the strategy of Constantinescu and Sandu. The schemes based on RK2 and RK3
wich follow the strategy of Constantinescu and Sandu are denoted by CSRK2 and CSRK3, respectively. The
schemes that we propose based on RK2 and RK3 are denoted by Prop. RK2 and Prop. RK3, respectively.

4.1 Two-dimensional vortex advection
This test case is based on 2D compressible Euler equations :

∂tρ+ ∂xj (ρuj) = 0

∂tρ+ ∂xj (ρuiuj + pδij) = 0

∂t(ρe) + ∂xj (ρeuj + puj) = 0

(20)

where ρ, u1, u2, p are the fluid density, the fluid velocity in directions ~x and ~y and the fluid pressure,
respectively. Total energy is denoted by e and reads : e = 1

γ−1
p
ρ +

u2
1+u2

2

2 , with γ ≈ 1.40.

12

The initial state is a 2D uniform flow (ρ = 1, u1 = 1, u2 = 0, p = 1) with the superposition of perturbations
(δρ, δu1, δu2, δp) which simulate a vortex. The perturbations read:

δρ = (1 + δT)
1

γ−1

δu1 = ε
2π e

0.5(1−r2)(yc − y)

δu2 = ε
2π e

0.5(1−r2)(x− xc)

δp = (1 + δT)
γ
γ−1

(21)

where δT = − (γ−1)ε2

8γπ2 e1−r2 , is the temperature perturbation around the value T = 1. Note that the corre-
sponding initial value and perturbation for the entropy are S = 1 and δS = 0, respectively. The coordinates
(xc, yc) are the coordinates of the the vortex center, r =

√
(x− xc)2 + (y − yc)2 is the radius of the vortex

and ε = 5 is the vortex strength. The initial solution of this problem reads:

ρ0 = 1 + δρ

u0
1 = 1 + δu1

u0
2 = 0 + δu2

p0 = 1 + δp

(22)

The solution of this problem is a simple advection of the vortex in the ~x direction. For more information
about this test case, see [17].

The computational domain is rectangular (dimensions : 30 × 20) with periodic boundary conditions.
It is divided into three zones. In the first and last zones, the grid spacings in directions ~x and ~y are
∆x = ∆y = 0.05. In the middle zone, the grid spacing in the ~x direction is refined by a factor 2 (∆x = 0.025
and ∆y = 0.05). Thus, the time step ∆t

2 is used in this zone and the time step ∆t is applied in the first and
last zones. The mesh and the density ρ at initial state are shown in figure 2. Figure 3 also shows the density
profile at initial state and at y = 10. The spacial scheme used for the Euler flux discretization is a hybrid
centred/upwind version of the scheme AUSM+(P) proposed by Mary and Sagaut [18].

Figure 4 shows the logarithm (log10) of the L2 error against the logarithm of the time step ∆t after the
simulation time 14.5, for each local time stepping scheme. The L2 error is the difference (computed in L2

norm) between the density obtained with the local time stepping schemes and the density computed with a
reference scheme. The reference scheme is the classical RK4 explicit method used with the reference time
step ∆tref = 5.10−4 (CFL = 0.04). For each scheme, we make four simulations in which the time step for
the first and last zones are: 2∆tref , 4∆tref , 8∆tref and 16∆tref , respectively. In this figure, each mark’s
ordinate corresponds to the L2 error and the abscissa is the time step used for the first and last zones. Note
that the slope of each curve is in accordance with the theoretical temporal order of the local time stepping
schemes. We can notice that the L2 errors of the original scheme of Constantinescu and Sandu and our
proposed scheme based on RK2 are the same. Our proposed scheme based on RK3 has the lowest L2 error.

13

Figure 2: Variable density and mesh at initial state
in 2D

Figure 3: Variable density at initial state and at
y = 10

Figure 4: Logarithm (log10) of the L2 errors against the logarithm of the time step ∆t for each local time
stepping scheme

Other characteristics of each scheme are studied. They are listed in the table 20 below. For this study,
the computation is performed to achieve the simulation time 43.5. At this time, the vortex has returned
approximately to its initial position (we remind that we are using periodic boundary conditions). Each
scheme has been used with its maximum allowable CFL(its maximum allowable time step), shown in the
row "CFLmax (∆tmax)" of table 20. The row "speedup" is the relative difference between the computational
time of the classical RK2 explicit scheme used with its maximum allowable time step and the computational
time of the local time stepping schemes. Finally, the row "Conservation defect" is the relative difference
between the total fluid mass in the computational domain at final time m(tf) and at initial time m(t0) :

Conservation defect =
m(tf)−m(t0)

m(t0)

14

CFLmax(∆tmax) Speedup Conservation deffect

CS RK2 0.25 (∆tmax = 0.007) 21% 3.4 10−16

Prop. RK2 0.25 (∆tmax = 0.007) 25% 1.7 10−16

CS RK3 1.1 (∆tmax = 0.029) 73% 1.7 10−16

Prop. RK3 1.1 (∆tmax = 0.029) 74% 9.1 10−16

Table 20: Comparison of some indicators for the local time stepping schemes

Figure 5: "Zoom" on the minimum of Density for
schemes Prop.RK2 and CS RK2

Figure 6: "Zoom" on the minimum of Density for
schemes Prop.RK3 and CS RK3

Table 20 shows that our proposed local time stepping schemes have equivalent or slight better speedup
than schemes of Constantinescu and Sandu based on the same method. Our proposed scheme based on RK3
has a slightly larger conservation defect than the other schemes. The local time stepping schemes based
on RK3 method are more stable than the local time stepping schemes based on RK2 method. This better
stability allows to use larger time steps, which significantly improves the speedup.

Finally, figures 5 and 6 show the minimum of the density profile along y = 10 for each local time stepping
scheme and for the reference solution, at the final time 43.5. The reference solution mentioned in this figure is
obtained with a classical RK4 explicit scheme with ∆t = 0.0035. These figures show that solutions obtained
with the local time stepping schemes based on RK3 method are closer to the reference solution, already as
shown with the L2 error curves (figure 4).

4.2 Sod shock tube
This test case is based on compressible 2D Euler equations (20). The initial state is given by :

• ρ0(x) = 1, p0(x) = 1 for x ≤ 9,

• ρ0(x) = 0.125, p0(x) = 0.1 for x > 9,

while the initial velocity is zero in the whole domain.
The computational domain is rectangular (18 × 0.6). It is divided into three zones of length 6. In the first

and last zones, the grid spacings in the ~x direction (∆x) and in the ~y direction (∆y) are: ∆x = ∆y = 0.03.
In the middle zone, ∆x = 0.015 and ∆y = 0.03. Thus, the time step ∆t

2 is used in the middle zone and the

15

time step ∆t is applied in the first and last zones. The different zones and the initial state for the density
profile at y = 0.3 are shown in figure (7). The spacial scheme used for this test case is the Roe scheme [19]
with the minmod flux limiter [20].

Figure 8 shows the density profile at y = 0.3 for each local time stepping scheme and for the reference
solution at the final time 4.96. The reference solution mentioned in this figure is obtained by using the
classical RK4 explicit scheme with the time step ∆t = 0.001 (CFL = 0.14). The local time stepping schemes
are used with their maximal allowable time step shown in table 21 below. Figure 8 shows a very good
agreement between the reference solution and the solutions obtained with the local time stepping schemes.

Figures 9 and 10 present a "zoom" on the shock area for the density at final time. These figures show
that the solutions obtained with schemes CS RK3 and Prop. RK3 are closer to the reference solution than
solutions obtained with schemes CS RK2 and Prop. RK2.

Finally, table 21 also shows the speedup as compared to a classical RK2 explicit scheme used with its
maximal allowable time step. Our local time stepping schemes have an equivalent or a slight better speedup
than the schemes of Constantinescu and Sandu based on the same RK method.

Figure 7: Density at initial time and the different
zones with their time step

Figure 8: Density at final time

Figure 9: Density at final time in the shock area for
the schemes CS RK2 and Prop. RK2

Figure 10: Density at final time in the shock area
for the schemes CS RK3 and Prop. RK3

16

CFLmax (∆tmax) Speedup

CS RK2 0.75 (∆tmax = 0.01) 19%

Prop. RK2 0.75 (∆tmax = 0.01) 19%

CS RK3 0.92 (∆tmax = 0.0125) 26%

Prop. RK3 0.92 (∆tmax = 0.0125) 29%

Table 21: Comparison of the maximum CFL and the speedup of the local time stepping schemes for the Sod
shock tube.

4.3 Taylor-Green Vortex
This test case is based on 3D Navier-Stokes equations :

∂tρ+ ∂xj (ρuj) = 0

∂tρ+ ∂xj (ρuiuj + pδij − τij) = 0

∂t(ρe) + ∂xj (ρeuj + puj − τjkuk + qj) = 0

(23)

where ρ is the fluid density, ui are the fluid velocity components, e is the total specific energy of the fluid, p
is the fluid pressure and qj is the heat flux. The fluid follows the law of perfect gases. The tensor of viscous
constraints τij follows the law of Newtonian fluids.

The computational domain is a cube of dimension 2πL0 (L0 = 1 is a reference length), with periodic
boundary conditions. The initial conditions for variables u1, u2, u3, p and ρ read :

u0
1 = U0 sin(x/L0) cos(y/L0) cos(z/L0)

u0
2 = −U0 cos(x/L0) sin(y/L0) cos(z/L0)

u0
3 = 0

p0 = P0 + ρ0U
2
0 /16(cos(x/L0) + cos(y/L0))(cos(2z/L0) + 2)

ρ0 = p/(RT0)

(24)

where P0 = 101183Pa, ρ0 = 1.2kg.m−3, T0 = 294K and U0 = 34.38m.s−1. At the initial state, the
computational domain contains several vortices. The spacial scheme used for the Euler flux discretization
is a hybrid centred/upwind version of the scheme AUSM+(P) proposed by Mary and Sagaut [18]. Viscous
fluxes are discretized with a classical second order centered scheme. The simulation is performed during a
period of 16L0/U0. At the final state, numerous turbulent scales are developped.

The computational domain is divided into three zones of equal length, as shown in figure 11. In the
first and last zones, the grid spacings in the ~x direction (∆x), ~y direction (∆y) and ~z direction (∆z)are
∆x = ∆y = ∆z = 0.05, respectively. In the middle zone, the mesh is refined by a factor two in the ~x
direction (∆x = 0.025, ∆y = ∆z = 0.05). In this zone, the time step ∆t

2 is used while the time step ∆t is
applied in the other zones. For each scheme, the enstrophy ε is computed at different times of the simulation.
This variable reads :

ε =
L0

U2
0 ρ0

∫
Ω

ρ~w.~wdΩ, (25)

where ~w denotes the vorticity, defined by : ~w = ~∇ ∧ ~V (where ~V = (u1, u2, u3)). The enstrophy has a
high sensibility to the numerical method. Figure 12 shows the evolution of the enstrophy for each scheme.
The reference solution mentioned in this figure is obtained with a classical RK4 explicit scheme used with

17

the time step ∆tref = 0.00015 (CFL = 0.03). Each local time stepping is used with its maximal allowable
time step, shown in the first row of table 22. A good agreement is observed between the reference solution
and the solutions obtained with the local time stepping schemes.

Table 22 also shows the speedup obtained with the local time stepping schemes as compared to a clas-
sical RK2 explicit scheme, and the conservation defect for each scheme. Our local time stepping schemes
are slightly faster than the schemes based on the strategy of Constantinescu and Sandu. Moreover, the
conservation defects obtained with our schemes are very close to the ones calculated with the schemes of
Constantinescu and Sandu.

Finally, figure 13 shows the logarithm of L2 error as a function of the logarithm of the time step ∆t for
each local time stepping scheme. The calculation of the L2 error is carried out with respect to the density
obtained with the reference solution. In this figure, each mark is associated to the use of the time steps :
2∆tref , 4∆tref and 8∆tref , for the first and last zones. The slope of each curve is in accordance with the
theoretical temporal order of each local time stepping scheme. Our proposed scheme based on RK3 has the
lowest L2 error.

Figure 11: Mesh used for the Taylor-Green Vortex
test case

Figure 12: Evolution of enstrophy for each scheme

CFLmax(∆tmax) Speedup Conservation defect

CS RK2 0.3 (∆tmax = 0.0014) 20% 8, 1.10−12

Prop. RK2 0.3 (∆tmax = 0.0014) 27% 7, 9.10−12

CS RK3 0.9 (∆tmax = 0.004) 57% 7, 5.10−12

Prop. RK3 0.9 (∆tmax = 0.004) 59% 8, 5.10−12

Table 22: Taylor-Green Vortex: comparison of some indicators ofr the different local time stepping schemes

18

Figure 13: Logarithm (log10) of the L2 errors as functions of the logarithm of the time step ∆t for each local
time stepping scheme

4.4 Turbulent flow around an airfoil
The previous test cases show that our third order local time stepping scheme is the most accurate. Moreover,
it is slightly faster than the other local time stepping schemes presented in this article. Consequently, our
third order local time steeping scheme (Prop. RK3) is chosen to compute a more complex test case.

The test case is based on 3D Navier-Stokes equations (24). The airfoil is the SD7003 model. For the
computation, the Mach number M and the Reynolds number Re are set to M = 0.1 and Re = 60000,
respectively. The value of the angle of attacks α is: α = 8◦. The computational domain is a 3D structured
mesh with approximately 90 million cells. Figure 14 shows a section (in the xy map) of the mesh, with a
reduced number of cells. The outer boundary conditions are set to "subsonic outflow". The airfoil surface
is an isothermal wall, and periodic boundary conditions are set in the ~z direction. With the initial solution,
the CFL number is calculated in each cell. Thanks to the repartition of the CFL number, the mesh is
divided into zones of different time steps. The repartition of the different time steps is shown in figure 15.
The smallest time steps (∆t

2 , ∆t
4 , ∆t

8) are localized close to the airfoil. The maximum time step ∆t is set to
∆t = 1.10−4. The spacial scheme used for convective fluxes discretization is a hybrid centred/upwind version
of the scheme AUSM+(P) [18]. Viscous fluxes discretization is carried out with a spacial centered scheme.
We run 5.104 time iterations to achieve the final time tf = 5. 5000 Statistical samples are accumulated
during the simulation.

A simulation with a classical explicit scheme (RK3) is also performed. The time step used for this
simulation is ∆t = 1.25.10−5. We run 4.105 time iterations to achieve the final time tf = 5. 40 0000
Statistical samples are accumulated during the simulation.

The Q-criterion Q (that is an indicator of turbulent structures) is computed for the local time stepping
scheme. The Q-criterion is defined by the formula:

Q =
1

2

[
(tr(∇u))2 − tr(∇u.∇u)

]
, (26)

where u = (u1, u2, u3), is the vector of the fluid velocity components. Figure 16 shows the iso-surface of
Q = 1.5, coloured with the fluid velocity magnitude.

19

Figure 14: Mesh used for the computation of a flow
over a SD7003 Wing

Figure 15: Repartition of the different time steps
over the mesh

Figure 16: Iso-surface of Q = 1.5 coloured with the fluid velocity magnitude

The transition occurs in a laminar separation bubble. After reattachment, a 3D turbulent flow is observed.
The mean x-velocity < u > and the mean Reynolds stresses < ρu

′
v
′
> are computed in the transition,

reattachment and mid-chord zones for each scheme. The curves are shown in figures 18 and 17, respectively.

20

Figure 17: Mean x-velocity in the transition, reattachement and mid-chord zones

Figure 18: Mean Reynolds stresses in the transition, reattachement and mid-chord zones

A perfect agreement is observed between the local time stepping scheme and the global time stepping
scheme. Note that our local time stepping turns out to be about three times as fast as the classical explicit
scheme on this test case.

21

5 Conclusion
The diversity of spatial scales in fluid mechanics problems leads to the use of several cell sizes in CFD
meshes. It is accompanied by a wide range of numerical stability conditions for explicit time integration
methods. Local time stepping schemes are well suited to this problems and allow to obtain computational
speedup as compared to classical explicit schemes. However, the construction of local time stepping schemes
requires a particular attention to ensure temporal high order and mass conservation. Constantinescu and
Sandu [4] have developped an interesting strategy which allows to construct mass conservative and second
order accurate local time stepping schemes. Their strategy is based on the theory of Partitionned Runge-
Kutta (PRK) methods. We also use the theory of PRK methods as well as consistent interpolations to
develop two local time stepping schemes of order two and three. Our schemes are made conservative with
an additional correction step. Our numerical tests reveal that our schemes are equivalent or more accurate
than the schemes of [4], and slightly faster. Our strategy seems to be a good approach to construct efficient,
accurate and conservative local time stepping schemes. Parallel implementation of our local time stepping
schemes is a topic that we have not work on yet. A well balanced parrallelization strategy is necessary to
perform large scale simulations. The implementation of an efficient parallelization strategy for our local time
stepping schemes is the next step of our work.

Acknowledgement
This work has been supported by ONERA (Office Nationale d’Etudes et de Recherches Aérospatiales) and
DGA (Direction Générale de l’Armement)

22

References
[1] T. Unfer. An asynchronous framework for the simulation of the plasma/flow interaction. Journal of

Computational Physics, 2013.

[2] A. Toumi. Asynchronous numerical scheme for modeling hyperbolic systems. C. R. Acad. Sci. Paris,
Ser I, 2015.

[3] V. Semiletov and S. Karabasov. Cabaret scheme for computational aero acoustics: Extension to asyn-
chronous time stepping and 3d flow modelling. International Journal of Aeroacoustics, 2014.

[4] E. M. Constantinescu and A. Sandu. Multirate timestepping methods for hyperbolic conservation laws.
Journal of Scientific Computing , Vol 33, pages 239-278, 2007.

[5] S. Osher and R. Sanders. Numerical approximations to nonlinear conservation laws with locally varying
time and space grids. Mathematics of computation, Vol 41, Number 164, October 1983.

[6] H. Tang and G. Warnecke. A class of high resolution schemes for hyperbolic conservation laws and
convection-diffusion equations with varying time and space grids. Journal of Scientific Computing,
2005.

[7] M.Schlegel, O.Knoth, M.Arnold, and R.Wolke. Multirate runge-kutta schemes for advection equations.
Journal of computational and applied mathematics, 2009.

[8] L. Liu, X. Li, and F.Q. Hu. Nonuniform time-step runge-kutta discontinuous galerkin method for
computational aeroacoustics. Journal of Computational Physics, 2010.

[9] L. Liu, X. Li, and F.Q. Hu. Nonuniform time-step explicit runge-kutta scheme for high-order finite
difference method. Computers and Fluids, 2014.

[10] B. Seny, J. Lambrechts, R. Comblen, V. Legat, and J.-F. Remacle. Multirate time stepping for acceler-
ating explicit discontinuous galerkin computations with application to geophysical flows. International
Journal For Numerical Mehtods In Fluids, 2007.

[11] V. Savcenco, W. Hundsdorfer, and J. G. Verwer. A multirate time stepping strategy for stiff ordinary
differential equations. BIT numerical mathematics, 2006.

[12] C. Dawson and R. Kirby. High resolution schemes for conservation laws with locally varying time steps.
Society for Industrial and Applied Mathematics, 2001.

[13] W. Hundsdorfer, A. Mozartova, and V. Savcenco. Analysis of explicit multirate and partitioned runge-
kutta schemes for conservation laws. Report of Centrum voor Wiskunde en Informatica, 2007.

[14] E.Hairer, G.Wanner, and S.P. Norsett. Solving ordinary differential equations I : Nonstiff Problems.
Springer, Berlin, 1993.

[15] J.H. Williamson. Low-storage runge-kutta schemes. Journal of computational physics, 1980.

[16] P.S. Lowery and W. C. Reynolds. Numerical simulation of a spatially-developping, forced, plane mixing
layer. Report of the Stanford University, TF26, 1986.

[17] C. Hu and C. W. Shu. Weighted essentially non-oscillatory schemes on triangular meshes. Journal of
Computational Physics, 1999.

[18] I. Mary and P. Sagaut. Large eddy simulation of flow around an airfoil near stall. AIAA Journal, 2002.

[19] P. L. Roe. Approximate riemann solvers, parameter vectors and difference schemes. Journal of compu-
tational physics, 1981.

[20] P. L. Roe. Characteristic-based schemes for the euler equations. Annu. Rev. Fluid Mech., 1986.

23

