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Abstract: The viscous flow past a prolate spheroid, which is always complicated 

and often three-dimensional, has fascinated scientists in fluid mechanics and aero-

dynamics for decades. The objective of this paper is to investigate the wake 

instabilities and flow state of the flow past a 6:1 prolate spheroid at 45° angle of 

attack by means of Large-Eddy simulations(LESs). The calculation was performed 

at a Reynolds number of 10000, based on the free stream velocity U0 and minor 

axis length D. The helical vortex tube is formed by the vortex sheets generated by 

the three-dimensional separating flow on the side of prolate spheroid. The fluid 

generated vorticity after separating from the prolate spheroid along the inclined line 

of separation. The vorticity component along the line of separation results in the 

rolling of vortex sheets while the one perpendicular to separation line contributes to 

the axial velocity. These two components form the helical vortex tube together. 

The right tube develops along major axis of spheroid from the very beginning and 

then skews rightward because of asymmetry of the whole flow field. The complex 

vortex composition is observed and helical advance changes during the formation 

of helical vortex tube. The helical vortex is dextral with jet-like axial velocity 

profile in front of a specific position while it suddenly becomes sinistral with wake-

like axial velocity profile behind the position, which is the feature of vortex 

breakdown. 
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1     Introduction 
 
The flow around submarines as well as other underwater vehicles are usually complicated and three-

dimensional (3D). Motions of these objects are examples of a significant role of prolate spheroid, 

which can be considered as a simplified model. The flow past a prolate spheroid by means of Direct 

Numerical Simulation (DNS) and Large-Eddy Simulations (LES) at different angle of attack have 

been studied [1-5]. The prolate spheroid is geometrically simple but the flow is complex, characterized 

by cross-flow separation, wake asymmetry and transition. Apart from the complexity of flows, 

undesired phenomena, such as loss of lift, increase of drag and unsteady forces and moments, occur 

when the angle of attack presents. The great importance of prolate spheroid in engineering have 

fascinated scientists in fluid dynamics and aerodynamics for decades. Besides, researches on prolate 

spheroid vary with different combinations of parameters, such as the ratio between the semi-major 

and semi-minor axes, angle of attack and Reynolds number. The change of each parameters has an 

influence on the flow and therefore people need more effort to gain a comprehensive insight on 
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prolate spheroid. 

The main purpose of this paper is to investigate the instability of asymmetric wake behind a 6:1 

inclined prolate spheroid by means of Large-Eddy simulations(LESs). The asymmetric wake arises 

due to flow instabilities which develop above a certain Reynolds number. Since the frequency 

analysis can illustrate lots of features of instability, this paper mainly focus on frequency domain.  

Firstly, we obtained turbulence energy spectra concerning Strouhal number at 25 points by means of 

simple FFT. In this way, we can get more information than the Fourier transform of the velocity 

amplitude. These energy spectra were used when we determined the flow state at Re=10000. Then the 

Fourier transform of the force was conducted in order to obtain two dominant frequency. In present 

study, two dominant frequency, St1=0.1462 and St2=0.2436 could be observed. Generally, there are 

two types of the instability feature captured on the frequency domain, i.e. the shear layer instability 

and the vortex shedding frequency. The former type usually shows high frequency characteristic, with 

the curve on frequency domain behaving flat and smooth and spanning a slightly larger range. While 

another one shows in low frequency region, observed as a peak, such as von Karman Vortex Street 

behind a two-dimensional cylinder where Strouhal number ≈ 0.21 at Re =300~3×105. However, 

when we considered St2=0.2436 as a secondary harmonic frequency, the low frequency, St1=0.1462, 

was attributed to three-dimensional effect.  

The reason to study the flow state is that the instability problem always have a relationship with the 

transition. To be specific, it is because of the instability, the steady laminar flow develops into the 

turbulence. Hence the Kolmogorov’s hypothesis was used to judge the flow state. However, due to the 

processing method and numerical errors of LES, some part of the figure got distorted. 

The organization of this paper is as follows. Section 2 is devoted to describe LES and sub-grid scale 

model used in this work is present. This is followed in section 3 by the description of flow 

configuration and grid independence study. In section 4, numerical analysis and discussion are given. 

Finally some conclusions are drawn in Section 5. 

 

 

2 Numerical method 

 
2.1 Large-Eddy Simulation 
As numerical methods are developed to compute the flows encountered in many areas, one major 

problem that remains to be solved is how to take turbulence effects into account. Turbulent flows are 

composed of a set of movements on very various scales, especially when the characteristic Reynolds 

number of the flow is much greater than unity. The ratio of the largest to the smallest length scales 

can be extremely high. It is generally agreed that the Navier-Stokes equations are valid for describing 

such flows, but the direct numerical solution of these equations is difficult in practice due to the large 

number of degrees of freedom to be taken into account to correctly represent the flow. One technique 

to consider turbulence effects is Large-Eddy Simulation (LES), which divides the eddy in turbulence 

into the large scale and the small scale [6].  

LES, firstly proposed in 1963, is a mathematical model for turbulence in computational fluid 

dynamics. The simulation of turbulent flows by numerically solving the Navier–Stokes 

equations requires resolving a very wide range of time and length scales, all of which affect the flow 

field. LES is fast becoming a viable alternative to solve this problem. 

In LES, the large eddy have strong interaction with the mean flow, and a strong dependent 

relationship exists in its initial condition and boundary geology; the state and the intensity of large 

eddy vary as the flow, which is highly anisotropic. Most of the transportation of mass, momentum, 

and energy depend on the large eddy. However, the small eddy have less relationship with the mean 

flow and the boundary condition, and therefore can be regarded as isotropic, which is more 

independent of the specific flow. In LES only the contribution of the large, energy-carrying structures 

to momentum and energy transfer is computed exactly, and the effect of the small scales of turbulence 

https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
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is modelled. As the small scales are the most computationally expensive to resolve, LES is able to 

reduce the computational cost greatly compared to DNS, in which all the turbulent motions are 

resolved accurately. In addition, since the small scales tend to be more homogeneous and less affected 

by the boundary conditions than the large ones, it might be possible that their models can be simpler 

and require fewer adjustments when applied to different flows than similar models for the Reynolds-

averaged Navier–Stokes (RANS) equations. 

LES are based on the use of a filtering operation: a filtered variable, denoted by an overbar, is 

defined as[7]  

 𝑓̅(𝑥) = ∫ 𝑓(𝑥′)𝐺(𝑥, 𝑥′, ∆)𝑑𝑥′
𝐷

  (2.1) 
where D is the entire domain, G is the filter function and the filter width is denoted here by ∆. If the 

filtering operation (2.1) is applied to the governing equations, one obtains the filtered equations of 

motion. For an incompressible flow of a Newtonian fluid, they take the form: 

 
𝜕𝑢𝑖̅̅ ̅

𝜕𝑥𝑖
= 0 (2.2) 

 
𝜕𝑢𝑖̅̅ ̅

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝑢𝑖̅𝑢𝑗̅) = −

1

𝜌

𝜕𝑝̅

𝜕𝑥𝑖
−

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
+ 𝜈𝛻2𝑢𝑖̅ (2.3) 

where 𝑢̅𝑖, i = 1, 2, 3 is the filtered velocity component in streamwise (x), crossflow (y) and 

spanwise (z) direction respectively (𝑥𝑖 is assigned to the respective directions), 𝜌 is the density of the 

fluid and p is the filtered pressure. All these filtered quantities are paramount and they must be 

measured physically and accurately if we want to apply LES to solving practical flow problems [8]. 

These equations govern the evolution of the large, energy-carrying scales of motion. While the 

effect of the small scales is described through a residual stress term, namely the subgrid-scale (SGS, a 

more appropriate definition is subfilter-scale, i.e. SFS) stress, 𝜏𝑖𝑗 = 𝑢𝑖̅𝑢𝑗̅ − 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅, in order to use a SGS 

model and get a full solution for filtered equations. 

LES is used not only on academic researches but also in engineering, such as airfoil [9], a plane 

impinging jet [10], turbine and submarine [11]. As the present study mainly focus on the flow field at 

𝑅𝑒𝐷=10000, the reliability and capability of LES at high Re number is particularly significant. In 

2000, G. Q. Chen et al pointed out that LES hold great promise at the high Re number of practical 

engineering interest with the development of LES models that could make good use of the 

information on the energy cascade process from large scales to small ones, such as dynamic subgrid-

scale model [12]. Recently, A. Feymark et al [12] have investigated four cases in their study, to 

improve the understanding of high Re number turbulent flows around realistic objects and to examine 

the capability of LES for such flow configurations. After a short review of LES and subgrid models, 

focusing on subgrid viscosity and mixed models, near-wall models and numerical methods, four 

experimentally examined flows, containing different surface flow and separation physics, are 

computed, validated and analyzed. Although there are some differences, the results match well with 

experiment data, which indicates LES is a reliable method.  

In the past decades, LES have developed fast and researchers have made advances in this method. 

For example, efficient treatment of complex geometries for LES was put forward [14], and two 

numerical methods (immersed boundary method and an unstructured mesh scheme [15]) and a 

parallel, finite-volume algorithm [16] have been developed. These advances enable the application of 

LES in complex domains. However, there are also challenges that pervade the transition process from 

RANS to LES in industry. These challenges are attributed to several factors inherent to LES itself, 

including the choice of filtering, the problems posed by numerically solving the equations, validation 

of the computation results, closure of modelling and near-wall treatment [17]. 

2.2 Smogarinsky-Lilly Model 
If the filtered small scale fluctuation can achieve local equilibrium, then the energy transform form 

the solved scale to the modeled scale is equal to the turbulence dissipation rate. The subgrid-scale 

motions are modelled by a commonly used Smagorinsky model, the most widely used SGS model. It 

assumes that the eddy viscosity is proportional to the subgrid scale characteristic length and to the 

characteristic subgrid scale velocity. This model could be summarized as 

 𝜏𝑖𝑗 −
1

3
𝜏𝑘𝑘𝛿𝑖𝑗 = −2𝜇𝑡𝑆𝑖𝑗

̅̅̅̅  (2.4) 
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where 𝑆𝑖𝑗
̅̅̅̅  is strain rate tensor and 𝑆𝑖𝑗

̅̅̅̅ =
1

2
(

𝜕𝑢𝑖̅̅ ̅

𝜕𝑥𝑗
+

𝜕𝑢𝑗̅̅̅̅

𝜕𝑥𝑖
), and 𝜇𝑡 is subgrid-scale turbulent viscosity 

coefficient.  

In the Smagorinsky-Lilly model, the eddy viscosity is modeled by 𝜈𝑡 = ρ(𝐶𝑠∆)2|S̅|, where the filter 

width is usually taken to be ∆ = 𝑉1/3 (V is the volume of the computational cell) and S̅ = √2SijSij. 

Cs is the Smagorinsky constant, and is the local grid scale. The Smagorinsky constant is fixed; Cs = 

0.1 in the present study. Lilly derived a value of 0.23 for Cs for homogeneous isotropic turbulence in 

the inertial subrange. However, this value was found to cause excessive damping of large-scale 

fluctuations in the presence of mean shear and in transitional flows as near solid [18][19]. 
 

3 Flow Configuration and Grid Independence Study 

 
3.1 Flow Configuration 
For the prolate spheroid used in this paper, the ratio between the semi-major and semi-minor axes, 

namely the aspect ratio, is 6:1. The equatorial diameter D of prolate spheroid in current cases is 0.02 

m. The geometrical arrangement for the prolate spheroid in computation domain is shown in Figure 1. 

The geometrical configuration where the major axis of the prolate spheroid is fixed at a 45° angle of 

attack with respect to the uniform inflow U0. The prolate spheroid is placed in a computational 

domain with an upstream length 8D, a downstream length 30D, the width 21D and the height 24D.  

 
Figure 1 Flow configuration and orientation of the global coordinate 

The Reynolds number 𝑅𝑒𝐷 in this study is 10000, where 𝑅𝑒𝐷=𝑈0𝐷/𝜈 is based on the equatorial 

diameter D, the uniform inflow velocity 𝑈0 (0.5, 0, 0) and the kinematic viscosity 𝜈 of the fluid. 

The topology of the computation domain is presented in Figure (a).A central block with scale of 

7.94D×3.08D×2.94D, shown in Figure (b), wraps the spheroid with finest mesh in order to ensure an 

accurate result of the body force. Near wall view of surface grid is also shown in Figure (c). The non-

dimensional near wall distance(y+) for all the mesh are maintained to be less than 1. The blocks 

behind the spheroid gradually bending from 45° to 0° and wrapping the main vortex structure, the 

shape of which is obtained from pre-test, are also arranged with fine mesh to capture the characteristic 

of the wake field. 

 
(a)                                               (b)                                                    (c) 
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Figure 2 The topology of computational domain (b) The central block wrapping 

the prolate spheroid (c) Near wall view of surface grid 

With regard to boundary conditions, at the inlet, a uniform flow with velocity 𝑈0 (0.5, 0, 0) is 

prescribed and at the outlet is defined as pressure-outlet (0 Pa). A non-slip boundary condition is 

imposed on the surface of the spheroid and the side of the domain is defined as symmetry.  

As mentioned in Section 2, the Smagorinsky-Lily model is employed with Cs=0.1. The solution 

method of pressure-velocity coupling is SIMPLEC. For the spatial discretization, the least square cell 

based method is performed for gradient, a second order method for pressure and bounded central 

differencing method for momentum. The bounded second order implicit method is used for transition 

formulation.  

To facilitate the forthcoming discussions, the force coefficients here are defined with the same 

method with Jiang.F [4]: 

 𝐶𝑝𝑖
=

𝐹𝑖
1

2
𝜌𝑈0

2𝜋

4
𝑑2 (3.1) 

where 𝐹𝑖 is the 𝑥i-components of the force vector 𝐹⃗=(𝐹𝑥,𝐹𝑦,𝐹𝑧) which the viscous fluid exerts on 

the spheroidal body. Here, d is the diameter of a volume-equivalent sphere which for the 6:1 prolate 

spheroid becomes d = 1.817D. 

3.2 Grid Independence Study 
The grid independence study is simply illustrated with the mean values of forces coefficients in x and 

y direction, which were defined above. The Table 1 presents the mean values of Cfx and Cfy. 

 

Table 1 Grid independence study 

Case Coarse Medium Fine Deviation 

Grid cells 21M 32M 50M C&M M&F 

Time step 0.0002s 0.0002s 0.0002s 
  

Cfx 0.7127 0.7086 0.7120 0.58% 0.48% 

Cfy -0.768 -0.765 -0.772 0.39% 0.86% 

In this study, three different types of grid cells are employed. In the three grid configurations, the 

data obtained from the coarse mesh simulation are higher than those from the other meshes, except 

the value of Cfy obtained from fine mesh simulation. With the increase of the 𝑅𝑒𝐷, the Cfx, i.e. the 

Cfd, declined, which match well with the basic regulation between 𝑅𝑒𝐷 and resistance in cases of 

other geometry. Also, from the table above, it is obvious that deviation between different cases is 

extremely low, with difference of all cases less than 1%. To be specific, the differences in Cfx and 

Cfy between medium and fine grids are 0.48% and 0.86% respectively. As these values in three cases 

are already indistinguishable, the comparisons support the adequacy of fine mesh at 𝑅𝑒𝐷 =10000. 

Therefore, fine grid mesh is used for the following simulation based on the available computational 

resources and the pursuit of high accuracy.



 6 

 

4 Numerical analysis and discussion 

4.1 Wake instabilities and spectrum analysis 

Asymmetric wakes, a conspicuous phenomenon in the flow fields of sharp-nose slender fore-

bodies (e.g. a cone-cylinder), always arise at high attack angles because of flow instabilities. 

The origin of such instability has triggered debates for decades and there are two opposing 

standpoints: convective and global instability [20]. One of the principle pieces of evidence for 

the convective instability of the vortex wake is the necessity for an initial perturbation, such 

as a small bump or an actuator on the models. In the case of convective instability, all 

disturbances in a flow will be convected away once the initial source of the disturbances has 

been removed. It is assumed that small asymmetries of the models result in initial perturbation 

that is them amplified in the wake. On the contrary, if an initial disturbance is not required in 

an asymmetric wake, the global instability should be regarded as the accurate instability 

mechanics for the asymmetric wake. As in present study, no such disturbance was exerted in 

any location of the flow field, and all the boundary condition, the topological structure and the 

distribution of the grids is totally symmetric about z=0 plane, it’s therefore assumed that the 

global instability could explain asymmetric wake. 

In Figure , 25 turbulence energy spectra of different points are present in order to have a 

comprehensive understanding of the frequency component of the whole flow field. 
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Figure 3 25 turbulence energy spectra of different monitor points  

and the red line indicates the Kolmogorov’s -5/3 reference line  

Generally, the correct processing method is to add window functions to the original data 

before we do the FFT to obtain smooth curves, in order to minimize the effect of spectral 

leakages. Basically, what a window function does is that it tapers the finite length sequence at 

the ends, so that when tiled, it has a periodic structure without discontinuities, and hence less 

spectral leakage. However, these smooth curves with less noise signal require more data, and 

therefore more computational time and power, which can be hardly achieved in present study. 

Therefore, simple FFT is employed to obtain all the turbulence energy spectra. Nevertheless, 

even if the data in present study didn’t get the average-treatment, the dominant frequency 
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obtained still should not be regarded as “coincidence” because the number of point we 

selected in the flow field is quite adequate, and they show the similar dominant frequency.  

Table 2 The coordinate of monitor points 

 

The locations of these point, as listed in Table 2 The coordinate of monitor points, are 

selected carefully according to some principles. These points start at x = 2D and end with x = 

29D along x-axis so they can represent the whole flow field. For the z direction, they are 

arranged in three planes, i.e. z=0, 0.5, and -0.5, as asymmetry is one of the most important 

feature in this flow field. The selection of y-coordinate is based on the development of the 

vortex tube. 

From turbulence energy spectra, it is hard to observed the dimensionless dominant 

frequency St=fD/U0. One reason is the error caused by simple FFT. As mentioned before, the 

correct procedure is to use window functions, while it is not realizable in current study. 

Another one is that the amount of data is inadequate. The Fourier transform of force F =

√F𝑥
2 + F𝑦

2 + F𝑧
2 is given in Figure to give a better understanding of the effect of shortage 

of data. The data obtained by Fourier transform is marked by “×”. Obviously, the spacing of 

adjacent point along the horizontal axis is relatively large, which may bring error when we 

determine dimensionless dominant frequency in low-frequency area. In other words, the more 

data we get, the smaller spacing and the more accurate result can be obtained.  

 

Figure 4 The Fourier transform of the force with two dominant frequency marked by red 

circle 

x/D y/D z/D x/D y/D z/D x/D y/D z/D
2001 2 0.9 0 2010 12 4 0.5 2018 20 4 0.5
2002 4 2.2 0.5 2011 13 4 0 2019 21 4 0
2003 4 2.2 0 2012 14 4 -0.5 2020 22 4 -0.5
2004 6 3 -0.5 2013 15 4 0 2021 23 4 0
2005 6 3 0 2014 16 4 0.5 2022 24 4 0.5
2006 8 3.3 0.5 2015 17 4 0 2023 25 4 0
2007 8 3.3 0 2016 18 4 -0.5 2024 27 4 0
2008 10 3.9 -0.5 2017 19 4 0 2025 29 4 0
2009 11 4 0

point
coordinate

point
coordinate

point
coordinate
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While in Figure, two dominant frequency, St1=0.1462 and St2=0.2436 can still be 

observed. In Jiang. F’s study [4], two dominant frequency is St1=0.0733 and St2=0.15, see 

Figure . As St2≈2 St1, St2 should be regarded as a secondary harmonic frequency. Although 

a double relationship is captured in current study, the result is quite different with Jiang’s. 

Therefore, the most important frequency is St1=0.1462. In general, the low frequency is 

always related to vortex shedding. However, the dominating frequency St1 is lower than 

vortex shedding frequency, such as a typical von Karman vortex street behind a two-

dimensional cylinder where St≈0.21 and no such phenomenon is observed in this study. 

According to Jiang’s study [4], this low frequency is the very-low-frequency three-

dimensional effect, another type of instability that is less known. Such 3-D effect were first 

hypothesized by Ayoub and Karamcheti[21] as a possible cause of very-low-frequency 

unsteadiness. However, what is different with the results in present study is the almost in all 

cases where a very-low-frequency has been reported, there is not the dominant frequency. The 

alternative explanation has recently been put forward by Ma and Liu [22]. In their study, they 

observed a dimensionless frequency of 0.054 in the asymmetric wake behind an ogive-

cylinder body at 70° angle of attack by means of LES. The very-low-frequency observed was 

associated with a vortex pair oscillating around the asymmetric mean flow. No such 

phenomenon could be detected in the present wake flow. However, while their wake was 

associated with a vortex pair oscillating around the mean flow, this phenomenon could not be 

detected in this study. 

 

 
Figure 5 Energy spectra of the three velocity components in Jiang F’s study. (a) In the 

intermediate wake at x/D= 4, y/D= 2, z/D= 1; (b)near the spheroid at x/D= 0, y/D= -1, z/D= 

0.31. 

 4.3 Flow state analysis and Kolmogorov’s -5 /3 law 

The turbulence energy spectra obtained in this study show a steeper slope than the reference 

line, see Figure . Which means the amount of energy passed down from the large scales of 

motion to the smaller eddies is less than the amount defined from Kolomogorov’s -5/3 law. 

Take the case in this study as an example, with the length of major axe of the prolate spheroid 

set as 6D = 0.12m, and the velocity 0.5m/s. We can get a time scale with T=0.24s and 

corresponding frequency at 4.2 Hz, which means the largest eddy in this flow field (no larger 

than the object itself ) possess the 4.2 Hz frequency. In this way, the range deserves our 

attention should be f=1~10 Hz, which section is used to compare with the reference line.  
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These energy spectra give a simple and clear conclusion that the Reynolds number in 

present study is not high sufficiently to achieve the turbulence state. On the other hand, 

energy spectra at some points, such as point2008 and 2010, match well with the reference line 

in the range of f=1~10 Hz. In Jiang’s study [4], the slope is steeper than that in present study, 

and the conclusion was drawn that the flow field at 𝑅𝑒𝐷 = 3000 was in transition state, taking 

the degree of the chaotic of the flow and steeper slope than the reference line into 

consideration. This conclusion is reasonable based on DNS method, in Figure 6 The 

difference in LES and DNS in the energy spectrum in terms of Kolomogorov’s -5/3 law, yet 

the error that LES itself brings should not be ignored. In other words, the energy dissipation 

(i.e. the distortion due to the filter operator) and error due to the numerical method may cause 

steeper slope. 

 

Figure 6 The difference in LES and DNS in the energy spectrum in terms of Kolomogorov’s -

5/3 law 

The image in Figure 7 The vertical structure is visualized by means of iso-surface of 

Q=3000. The surfaces areshows distinct asymmetries in the near-wake but yet with coherent 

vortical structures which partially also extend into the intermediate wake where the flow 

exhibits turbulent-like disorderly vortices. Also, the x-velocity histories at two points in 

Figure show the disorder of signal, a character of turbulence. Therefore, it is necessary to 

examine whether the flow at 𝑅𝑒𝐷 =10000 has developed to turbulence. This part focuses on 

analysis of the flow state by means of Kolmogorov’s -5 /3 law. 
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Figure 7 The vertical structure is visualized by means of iso-surface of Q=3000. The surfaces 

are  

flood by relative helicity. (a)perspective view (b)back view (c)side view (d)upward view 
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Figure 8 The x-velocity signal at two monitor points 

4.3 The discussion on energy dissipation and numerical error in LES 

4.3.1 The impact of filter operation 

In this part, the effect of filter operator on energy spectrum will be discussed first. As 

mentioned in Section 2, in LES only the contribution of the large, energy-carrying structures 

to momentum and energy transfer is computed exactly, and the effect of the small scales of 

turbulence is modelled, which is achieved through the filter operation, the most important 

turning point for LES. While the large eddies part still gets solved, the small eddies part is 

considered as isotropic, where the SFS was introduced. This is why the filter operator itself 

will have an impact on the solution. Let us take three operation as an example in Table  to 

understand their effect on energy spectrum. 

 

Table 3 Three filter operations 

 

As can be seen from the formulae of operators, both the Box and Gaussian method have 

high frequency component in the modelling process, in contrast to the Spectral method that 

only performs this treatment on the low frequency region while on the high frequency region 

maintains the “DNS shape”. Therefore, the impact of the Box and Gaussian method will be 

exerted on the whole frequency region, which will result in the distortion of the spectrum 

from LES in comparison with that from DNS. The filter method used in Fluent is kind of 

different with these three operators. In the process of spatial discretization, the finite volume 

method itself has provide the filter operator among the control volume. As we can apply such 

operator to the whole physical space, the method used in Fluent, called Implicit Filter, also 

causes some distortion in the whole frequency range. In addition, the dissipation region on the 

energy spectrum will definitely get distorted to some degree, with small eddies being modeled. 

However, such effect is not confined in dissipation region; the region out of the filter scale 

will all be impacted as well. 

The impact of filter is not confined in frequency region; it also causes problems in the 

measurement of force. To facilitate the discussion, SFS term is defined as 𝜕𝜏𝑖𝑗/𝜕𝑥𝑗  and total 

nonlinear term ∂ui̅uj̅/𝜕𝑥𝑗 . In ideal LES, the sum of these two terms is equal to the full 

nonlinear term  ∂𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅/𝜕𝑥𝑗 . However, in practice, the contribution to the total nonlinear 

depends on the SFS model used. One thing deserved to be mentioned is the importance of 

accurately representing the SFS term in the cases where the SFS term accounts for a larger 

proportion of the total force. However, numerical error also becomes more significant 

because fine-scale motions are not well-represented on the grid [25]. That is how the SGS 

model have an influence on the force. However, even if the SFS model is perfect, the filter 

size chosen also plays an important role, see Figure . The result of two dominant frequency 



 15 

St1=0.1462 and St2=0.2436 obtained from the Fourier transform of the force F =

√F𝑥
2 + F𝑦

2 + F𝑧
2  . Unlike DNS, where St2≈2St1, the double relationship in present study 

is not perfect, with St2≈1.7St1, which might be resulted from the SGS model and filter size; 

while to what extend that these factors influence the results is still unknown.  

 
Figure 9 Energy spectra of the spectrally computed nonlinear term and the SFS term for  

a fixed resolution (323 grid) and filter–grid ratios of one and two.[25] 

4.3.2 The numerical error in LES 

LES of turbulent flows are normally performed on grids that satisfy the need to resolve the 

important large flow structures, and numerical errors on such grids can have considerable 

effects on simulation results. In Navier-Stokes equations, numerical errors have different 

effects on different forms of nonlinear terms, which depends on the numerical schemes used.  

Numerical errors are usually divided into two types: truncation error (or discretization error) 

and aliasing error. Truncation errors, one of two sources of error in finite difference methods, 

result from discrete approximation of derivatives in simulations, which can exceed the 

magnitude of the SFS term for low-order finite-difference simulations. One thing should be 

mentioned is that finite-difference schemes show large errors at high wavenumbers. Even if 

more accurate finite-difference methods can provide better approximations at higher 

wavenumbers, the accuracy is always better at low wave-numbers than at high wavenumbers, 

see Figure . Another type of error, Aliasing error, occurs whenever nonlinear terms are 

multiplied in physical space and calculated numerically, which can have an influence on SFS 

term and thereby the results of simulation mentioned in 0; high frequency components 

produce higher ones which cannot be adequately represented on a finite grid. Thus, the 

frequencies beyond the grid wavenumber cutoff are incorrectly ‘‘aliased’’ to wavenumbers 

that are resolved. This type of error can be removed, but this is computationally expensive, 

even in spectral codes where the 3/2-rule for dealiasing is applicable and is relatively 

straightforward to implement, and complete dealiasing is difficult in complex geometries [25] 

[26]. 
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Figure 10 Modified wavenumbers: (——) Spectral; (–––) 2nd order finite difference; (···) 4th order 

finite difference; (- - -) 6th order Pade´ one also needs to employ the identity scheme. 

A. G. Kravchenko and P. Moin have studied the effect of truncation and aliasing errors [26]. 

They performed numerical simulations of turbulent channel flows using spectral and various 

finite difference methods. From their study, the conclusion was drawn that in low-order finite-

difference schemes, the high wavenumber part of the energy spectrum is heavily distorted by 

truncation errors. One way to avoid this distortion is to increase the order of the finite-

difference method, which can both improve the results of LES and the performance of a 

subgrid-scale model. As shown in Figure, the results of LES become closer to that obtained 

by spectral method with the order of finite-difference scheme increasing. When the 2nd order 

finite difference method is applied, the energy spectra exhibit steeper slope than that obtained 

by 6th order finite difference and spectral method in the high wavenumber part, i.e. high 

frequency region, where the slopes in Figure  steeper than Kolomogorov’s reference line. In 

present study, the least square cell based method is used, a 2nd order method for pressure and 

bounded central differencing method for momentum. Therefore, it is reasonable to assume 

that this 2nd order finite difference might result in the steeper slope and the flow field at 𝑅𝑒𝐷 

=10000 has developed to turbulent state. While this assumption need to be further examined 

by more accurate finite difference schemes. 

 

Figure 11 One-dimensional energy spectra at y+=15 in LES: (——) spectral; (– – –) 2nd order finite 

difference; (- - -) 6th order Pade´ scheme; (a) streamwise; (b) spanwise. [26] 
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5     Conclusion  

 

In this paper, the wake instability and flow state were analyzed. The relevant instability of 

the asymmetric wake behind the prolate spheroid was attributed to global instability, as we 

rules out initial perturbation that was required for the convective instability. Then the 

detailed analysis on the frequency was conducted by means of simple FFT. Two dominant 

frequency was observed at St1=0.1462 and St2=0.2436 from the Fourier transform of F, 

while St1 and St2 were hard to be distinguished from energy spectra because of the error 

caused by simple FFT and the shortage of data. 

As the flow at 𝑅𝑒𝐷 =10000 exhibited some turbulence-like features and the view of flow 

structures and x-velocity signals were not able to provide sufficient information, we analyzed 

the flow state by Kolmogorov’s-5/3 law and the results seemed that the flow did not develop 

to turbulent flow. 

However, it is not reasonable to determine the flow state when the steeper slope was 

observed, taking the energy dissipation and numerical error of LES into consideration. We 

found that filter operation and truncation and aliasing errors would have effects for the 

energy spectrum, and more accurate methods were necessary to authenticate our assumption. 
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