
Tenth International Conference on        
Computational Fluid Dynamics (ICCFD10), 
Barcelona, Spain, July 9-13, 2018 
 

ICCFD10-xxxx 

 

Nonlinear coupled constitutive relations model and its 

applications 
  

Zhenyu Yuan*, Wenwen Zhao*, Zhongzheng Jiang* and Weifang Chen* 

Corresponding author: wwzhao@zju.edu.cn 
 

*College of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China  

 
Abstract. In the hypersonic expansion flow, multiscale non-equilibrium effects always exist The well-

known NS equation is no longer applicable based on the continuum assumption. In order to get the real 

physical solution of the challenging flow problems, Eu proposed a set of generalized hydrodynamic 

equations (GHE) from the viewpoint of generalized hydrodynamics formulated in the non-equilibrium 

ensemble method. However, when it comes to multidimensional problems, GHE seems difficult to be put 

into the hyperbolic conservation system of partial differential equations. For this reason, Myong takes a 

form of nonlinear algebraic system and can be solved more easily coupled with the hyperbolic 

conservation laws by an uncoupled iterative method. In this paper, the hypersonic flow over expanding 

corner is studied. The NCCR model is used to analyze the flow field with different expansion angles 

( 45 90 135  ， ， ) by comparing flow field properties (velocity, temperature, density and pressure). The 

NCCR results are basically identical with the NS results at low Knudsen numbers. As the Knudsen 

number increasing, the gap between these two methods increases gradually and the NCCR result is much 

closer to the DSMC results. 
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1 Introduction 

 
In the flow of hypersonic expansion tube, there exists complex flow mechanism, such as the incident 

expansion wave and the reflection on the wall boundary. At the same time, due to the rapid expansion into 

the low density, the flow experiences continuum, transition and free molecular regions, which means 

traditional NS equation is no longer applicable due to the breakdown of continuum assumption. 

In order to remedy this issue, Eu proposed a set of generalized hydrodynamic equations (GHE) from 

the viewpoint of generalized hydrodynamics formulated in the non-equilibrium ensemble method
1,2

. 

However, the scope of GHE’s application is limited in the study of one-dimensional problems. Myong 

developed a set of nonlinear coupled algebraic equations based on GHE which is called nonlinear coupled 

constitutive relations (NCCR) model
3
. This model is validated subsequently by the cases of one-

dimensional shock wave structure and multidimensional flat plate and blunt-cone flows
3
. It proves the 

potential of this model to simulate the high-speed rarefied gas dynamic flows. In addition, the NCCR 

model is consistent with the generalized Newton's law and the Fourier heat conduction law in continuum 

region, and the non-linear effect increases gradually in the rarefied region. Therefore, it could be widely 



used to describe the multi-scale effects in the hypersonic rarefied flow.  

 

2 Numerical methods  

 
2.1     Governing equation and nonlinear coupled constitutive relations 
 

In order to simulate non-equilibrium flows, Eu proposed a set of generalized hydrodynamic 

equations (GHE) based on the generalized theory of fluid dynamics and the unbalanced integration 

method. Starting from the Boltzmann equation, GHE skillfully constructs a non-equilibrium distribution 

function and accumulates the integrals of its collisions. The unbalanced distribution function is as 

follows: 
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where   is the normalization factor. 
kX are functions of macroscopic variables and occupy the status 

similar to the coefficients of Maxwell-Grad moment method. T , 
Bk , m  and 

rotH  represent temperature, 

Boltzmann constant, molecular mass and rotational Hamiltonian of molecule respectively. Finally, a set of 

evolution equations of non-conserved variables for diatomic gases (GHE) could be obtained as 
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where  , p , T , Π ,   and Q denote density, hydrostatic pressure, temperature, the shear stress, the 

excess normal stress and the heat flux respectively. '  is equal to (5 3 ) / 2  and the nonlinear 

dissipation factor    sinhq    . 
4 , 

5  and 
6  are the flux of high-order moments. In order to 

make above evolution equations closed, Eu provided a closure different from Grad’s by assuming 
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In present work, the non-dimensional parameters
4
 can be introduced as  
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where the subscript   represents the reference value of the free stream state. Here 
0L  is the characteristic 

length; a  denotes the speed of sound; x , y , z , u , v , w  denote the coordinate and the velocity 

components in three directions respectively; t , p ,  , T , E  and h  stand for time, pressure, density, 

temperature, inner energy and enthalpy respectively;  , 
b ,   mean the coefficients of viscosity, bulk 

viscosity and heat conduction and R ,  , pc , 
vc  represent the gas constant, specific heat ratio, specify 

heat capacity per mass at constant pressure and at constant volume respectively. For notational brevity, 

the asterisks are omitted in following non-dimensional equations and the final forms are 
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where 0Π̂ , 0̂  and 0Q̂  denote shear stress of the linear Newtonian law, linear excess normal stress and 

heat conduction of the Fourier law, respectively, 
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2.2      Modified coupled solutions of nonlinear coupled constitutive relations 
 
Based on Myong’s uncoupled computational method, three-dimensional problems are simplified 

approximately into three one-dimensional non-interfering problems in x, y, z directions and the 

computation of stress and heat flux components on a surface is achieved by the two uncoupled solvers
5, 6

. 

Nevertheless, this method overlooks the interactional effect of three directions in real flows and weakens 

the coupled effect of non-conserved variables  , , , ,xx xy xz xQ     in constitutive relations. The most 



unsatisfied feature is the computational instability caused by the existence of a phenomenon that density 

might come to be negative particularly in some expansion flow regions of wake stream. Therefore, our 

work would rather focus on the direct solutions of the nonlinear coupled constitutive equations by a 

coupled solver. Owning to the computation complexity of the coupled constitutive equations, above three 

equations have to be merged into one formulation firstly by using the Rayleigh-Onsager dissipation 

function
7
. From tensor expressions above, we can get 
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Here a simple iterative method will be adopted to solve equation (14) as  
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And the initial values of shear stress, excess normal stress and heat flux in above equation are calculated 

below by the linear values 
0Π , 

0  and 
0Q  from NSF model as 

 

 

 

 

1 2

2

0 0 0 0 0 0

1

0

1 0

0

1

0

1 0

0

1

0

1 0

0

2 ˆ ˆˆ ˆ ˆ ˆ:

ˆsinh
ˆ ˆ

ˆ

ˆsinh
ˆ ˆ

ˆ

ˆsinh
ˆ ˆ=

ˆ

b

R
f

cR

cR

cR

cR

cR

cR









 
     
 



  

Π Π Q Q

Π Π

Q Q

 (15) 

The complete solutions of NCCR model
8,9

 are also considered to be converged when 5

1
ˆ ˆ 10n nR R 

   . 

 

3 Computational results  

 
In this section, the computation results of expending tubes with different expansion angles using 

nonlinear coupled constitutive relations（NCCR）are presented and compared with DSMC and NS 

validation data. The configurations of different tubes are depicted in Fig. 1. Maxwell-Smoluchowski slip 



and jump boundary conditions are applied at the solid surface. The working diatomic gas is assumed pure 

nitrogen with 0.72Pr  , 1.4  , 1.02029c   and 0.74s  . The specific inputs for the inflow conditions 

are listed as 
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(a)  expansion degree 45    (b)  expansion degree 90    

 
(c)  expansion degree 135   

FIGURE 1. Schematic of expansion tube configurations 

 

The Mach number fields predicted by both NCCR and NS equation can be seen in Figures 2, 3, and 

4. As it is compared, in the region of stream entrance, the Mach number simulated by the NCCR solver is 

coincident with NS solver. However, it exists great difference in the expansion region, especially the 

cases with larger expending corner. Before we start to research the reason that results in this kind of 

phenomenon, the contour of continuum breakdown parameter is shown in Fig. 3. The gradient-length-

local Knudsen number6 is above 0.05 extremely at the expending region. In this condition, NSF equation 

will lose its accuracy and be no longer validated. We assume that in the low Knudsen number part, the 

NCCR result is in good agreement with NS solver and they will be vary with the increasing of non-

equilibrium. 

  
FIG 2. Mach number contour  45    FIG 3. Mach number contour  90    



  
FIG 4. Mach number contour  135    FIG 5. 

GLLKn  contour 

 

These assumptions are confirmed by the results that are shown in Figure 6, which are extracted at the 

line of X 0.2mm . As it is displayed, the temperature is sensitive to non-equilibrium of the flow field. In 

the section from 0.01 to 0.05 mm, the 
GLLKn  less than 0.05, value provides well agreement. In the rest 

expending region, as the flow becomes more rarefied, temperature of two methods becomes totally 

different. The result simulated by NS solver exceeds the NCCR equation, especially in the part with high 

GLLKn . 

  
(a)  expansion degree 45    (b)  expansion degree 90    

 



(c)  expansion degree 135   
FIG 6.  Distribution profiles of temperature and 

GLLKn  

 

To verify the accuracy of NCCR model in non-equilibrium flow region, we use the open-source 

software SPARTA to model the same cases. SPARTA is a Direct Simulation Montel Carlo (DSMC) 

simulator, developed at Sandia National Laboratories, a US Department of Energy facility in 2014. Figure 

7 compare the whole flow field temperature of DSMC with NCCR and NS method. It is obviously that 

temperature simulated by DSMC method is lower than NS solver and in accord with NCCR model in the 

expansion region. 

  
(a)  DSMC and NS (b)  DSMC and NCCR 

FIG 7. Temperature contours by different methods 

 
In Figure 8, we extract the line of x=0.25mm to compare flow properties, such as Mach number, 

pressure, density and temperature. In Figure (b) and (c), log scale in y axis is used to make comparison 

much more fairly. All results show that NCCR results computed by the coupled iterative solver are in 

outstanding agreement with the DSMC results and the NSF results cannot match with DSMC results, 

especially in the expansion domain which is considered to be removed from local thermodynamic 

equilibrium based on continuum breakdown parameter
GLLKn . 

  
(a) Mach number (b) Pressure 



  
(c) Density (d) Temperature 

FIG 8. Comparison of flow property profiles at x=0.25mm 

 

4 Conclusions 

 
The main point of this paper is focused on the further extension of NCCR model into multi-scale 

problem and the validation of a reliable coupled solution for this model with three-dimensional FVM 

schemes. Based on the new modified solution, three kinds of expansion tubes for a diatomic gas are on 

detailed researches. The NCCR model is shown to yield some quantitative agreement with DSMC data in 

the prediction of hypersonic and rarefied flows compared with linear constitutive relation NSF. The 

successful applications in these far-from-equilibrium cases have implied the potential of NCCR model as 

an alternative to more computationally intensive DSMC and less accurate NSF linear constitutive 

relations in prediction of hypersonic and rarefied flow. 
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