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Abstract: In this work, we plan to shed light on the following research aiestion: can we nd a
nonlinear tensorial subgrid-scale (SGS) heat ux model with god physical and numerical properties,
such that we can obtain satisfactory predictions for buoyanc driven turbulent ows? This is
motivated by our recent ndings showing that the classical (linear) eddy-di usivity assumption,
g% /r T, fails to provide a reasonable approximation for the SGS helaux, g = uT TUT.
This has been shown in our recent work [Dabbagtet al., Phys. Fluids 29, 105103 (2017)] where
SGS features have been studied priori for a Rayleigh-Bénard convection (RBC). We have also
concluded that nonlinear (or tensorial) models can give god approximations of the actual SGS
heat ux. The nonlinear Leonard model, g™ /r ur T, is an example thereof. However, this
model is unstable and therefore it cannot be used as standat@ SGS heat ux model. Apart from
being numerically stable we also want to have the proper culi near-wall behavior. Corrections in
this regard will be presented together with a priori/posteriori  studies of nonlinear SGS heat ux
models for RBC. Results from LES simulations will be compard with the DNS results obtained
in the on-going PRACE project Exploring new frontiers in Rayleigh-Bénard convection.
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1 Introduction

Turbulent ows driven by thermal buoyancy are present in many technological applications, such as governing
ows in nuclear reactors, solar thermal power plants, indoa space heating and cooling, electronic devices,
and convection in the atmosphere, oceans and deep mantle. Mbof these ows are ruled by turbulent regime
purely sustained by buoyancy, the reason that imparts a sighcant complexity into the ow system. Mainly,
the chief dynamics therein such as the vortical structures ad thermal plumes are essentially associated
with immanent unsteadiness, energy nonequilibriums, strog pressure uctuations and hardly interacted
di erent size scales of motions [1]. Following the self-susined cycle of the plumes, they produce alternative
nonequilibriums between the buoyant production and the visous dissipation, which are mainly compensated
by the pressure transport mechanisms [2]. As a consequenagaredicting the complex coherent dynamics in
a turbulent buoyancy-driven ow derives formidable challenges, particularly within the scope of turbulence
modeling.

Direct numerical simulations (DNS) have provided a fruitful knowledge about the problem in the elds of
coherent dynamics and turbulence physics [3, 4]. Apart fronovercoming the uncertainties pertaining to the
experimental studies, DNS has allowed to investigate and r&lve many queries in Rayleigh-Bénard convection
(RBC) at relatively high Rayleigh (Ra) numbers [5, 6]. However, the full resolution of every genetad



Figure 1. Schema of the Rayleigh-Bénard con guration studed in Refs. [4, 8]. Displayed together with a
developed instantaneous temperature eld taken of the DNS & Ra = 101°.

vortical lament in DNS requires increasing computational demands with Ra. Therefore, in the foreseeable
future, the numerical simulations of hard turbulent RBC wil | have to resort to turbulence modeling. We
therefore turn to large-eddy simulation (LES) to predict th e large-scale behavior of incompressible turbulent
ows driven by buoyancy. In LES, the large scales of motionsm a ow are explicitly computed, whereas
e ects of small-scale motions are modeled. Since the advemtf computational uid dynamics many subgrid-
scale models have been proposed and successfully appliedaowide range of ows (see, for instance, the
encyclopedic work of Sagaut [7]). The main goal of the currenproject is to improve the di usive (linear)
description of turbulent ows that is provided by eddy-diu sivity models for the subgrid-scale (SGS) heat
ux. To that end, we will consider nonlinear SGS heat ux models that can properly represent the dynamics
of the smallest (unresolved) scales, overcoming the inhemné limitations of the eddy-di usivity models [8].
Related with this, we also aim to nd a proper de nition of the subgrid characteristic length scale for
simulations on anisotropic or unstructured grids. This is particularly important for highly anisotropic grids,
on which the smallest grid spacing may start dominating the wsually chosen characteristic length scale.

The speci ¢ SGS models that we consider consist of a linear ely-viscosity term for momentum supple-
mented by a nonlinear model for the SGS heat ux. The model tems are designed to preserve important
mathematical and physical properties, such as symmetriesfahe Navier-Stokes equations, and the near-wall
scaling and the dissipative nature of the SGS. The desired mperties are already included in existing models
for the SGS stresses. Examples of eddy-viscosity models thaxhibit the proper near-wall behavior are
given by the WALE model [9], the -model [10] and the S3PQR model proposed in our previous worKL1].
However, the (linear) eddy-di usivity assumption fails to provide a reasonable approximation for the SGS
heat ux. This has been clearly shown in our very recent work B] where the SGS features have been studied
a priori fora RBC at Ra = 10'°. We have also conclude that nonlinear (or tensorial) modelgan give a good
approximation of the actual SGS heat ux. Among them, the models proposed by Daly and Harlow [12] (for
RANS modeling) and Peng and Davidson [13] will be consideredogether with the new approach recently
proposed on the basis of ouma priori studies [8].

The rest of the paper is organized as follows. In the next semn, the theoretical background of LES
simulation of buoyancy-driven ows is presented. Then, in Sction 3 di erent nonlinear SGS heat ux models
are discussed and analyzed. Finally, conclusions are given Section 4.

2 Background

2.1 Large-eddy simulation of buoyancy-driven ows

In large-eddy simulation, a ltering or coarse-graining operation is employed to distinguish between large
and small scales of motion. This operation is denoted by an @rbar in what follows. The evolution of the



incompressible large-scale velocitylr, and temperature, T, elds can be described by the ltered Navier-
Stokes and thermal energy equations, supplemented by the @ompressibility constraint,

@u+(T r)r=(Pr=Ra)*2 r2u r p+f r . r U=0; (1)
@T + (T r )T =(Ra=Pr) ¥2r 2T rooq; 2)

wherew, T and p are respectively the Itered velocity, temperature and pressure. The SGS stress tensor,,
and the SGS heat ux vector, g, represents the e ect of the unresolved scales,

=u u

| o

o, 3
; (4)
and they need to be modeled in order to close the system. The nsbpopular approach is the eddy-viscosity

assumption, where the SGS stress tensor is computed in aligment with the local rate-of-strain tensor,
S=1=2(r u+r u'), i.e.

—

q=uT T

2 (U): (5)

In analogy to , the SGS heat ux is often approximated employing the gradient-di usion hypothesis (linear
modeling), given by _
q o T ( g*¥): (6)

Then, the Reynolds analogy assumption is applied to evalua the eddy-di usivity, : the heat ux is
assumed to be analogous to the momentum ux and its ratio theefore, is constant. In this case, the
eddy-di usivity, ¢, is derived from the eddy-viscosity, ., by a constant turbulent Prandtl number, Pry,
independent of the instantaneous ow conditions,i.e. { = =Pr;. These assumptions have been shown to
be erroneous to provide accurate predictions of the SGS heatix in our recent work [8]. Namely, a priori
analysis has shown that the eddy-di usivity assumption, g®¢% (Eq. 6), is completely misaligned with the
actual subgrid heat ux, q (see Figure 2, top left). In conclusion, one can corroboratehe failure of the
isotropic eddy-di usivity parametrization ( q%9%) in turbulent buoyancy driven ows. In contrast, the tensor

di usivity (nonlinear) Leonard model [14], which is obtain ed by taking the leading term of the Taylor series
expansion ofq,

2
g 5O T () ™

provides a much more accuratea priori representation ofq (see Figure 2, top left). Here,G represents the
gradient of the resolved velocity eld, i.e. G r U. Then, the rate-of-strain, S, and the rate-of-rotation,
tensors are respectively given by the symmetric and anti-spametric parts,

S= %(G+ G") = %(G G): (8)

It can be argued that the rotational geometries are prevalehin the bulk region over the strain slots, i.e. | | >
iSi (see Refs [4, 8]). Then, the dominant anti-symmetric tensoy , rotates the thermal gradient vector, r T
to be almost perpendicular toq" (see Eq.7). Therefore, the eddy-di usivity paradigm is only applicable in
the not-so-frequent strain-dominated areas. This also mathes with the observations of Chumakov [15], who
performed a priori study of the SGS ux of a passive scalar in isotropic homogenaus turbulence.

2.2 Nonlinear SGS heat ux models for large-eddy simulation

Since the eddy-di usivity, g%, cannot provide an accurate representation of the SGS heatux, we turn

our attention to nonlinear models. As mentioned above, the leonard model [14] given in Eq.(7) can provide
a very accurate a priori representation of the SGS heat ux (see Figure 2, top left). However, the local
dissipation (in the L2-norm sense) is proportionaltor T Gt T=r T SS T+r T rT=r T S T. Since
the velocity eld is divergence-free, $+ 5+ 3 =0, and the eigensystem can be ordered? > 5> 3
with $ > 0 (extensive eigendirection) and § 6 0 (compressive eigendirection), and 5 is either positive or

negative. Hence, the local dissipation introduced by the mdel can take on negative values; therefore, the
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Figure 2: Joint probability distribution functions (PDF) o f the angles(; ) de ned in the top right gure
and plotted on a half unit sphere to show the orientation trends in the space of the mixed model. The
PDF of is shown along the bottom strip of each chart. Alignment trends of the actual SGS heat ux, q
(top, left), the Daly and Harlow [12] model (seeqP" in Eq. 11) (bottom, left) and the Peng and Davidson
model [13] (seegPP in Eq. 9) (bottom, right). For comparative and simplicity re asons, the JPDF and the
PDF magnitudes are normalized by its maximal. For further details the reader is referred to our recent
paper [8].

Leonard model cannot be used as a standalone SGS heat ux mollesince it produces a nite-time blow-up.
A similar problem is encountered with the nonlinear tensoral model proposed by Peng and Davidson [13],

q C 3T ( g°P): 9)

An attempt to overcome these instability issues is the so-ckhed mixed model [16], where the Leonard model
(Eqg. 7) is linearly combined with an eddy-di usivity model ( Eqg. 6),

2 .
9 G T jSrT) ¢ a™); (10)

where is the ratio of the corresponding model coe cients. Another interesting nonlinear model was
proposed by Daly and Harlow [12] for modeling the SGS heat uxfor RANS,

_ 12 4 DH .
g T sgs rT= ETzGGrT ( 9 ) (11)
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Figure 3: Energy spectra for decaying isotropic turbulencecorresponding to the experiment of Comte-Bellot
and Corrsin [18]. Results obtained with the new de nition 54 proposed in Eq.(27) are compared with the
classical de nition proposed by Deardor given in Eq.(29). For clarity, latter results are shifted one decade
down. For details the reader is referred to our recent paper]9].

where Tsgs = 15§ is an appropriate SGS timescale [15] and the SGS stress tenso , is approximated

with the gradient model [17], i.e. ( 2=12)GG . Notice that the model proposed by Peng and Davidson
(Eq. 9) can be viewed in the same framework if the SGS stress msor is estimated by an eddy-viscosity
model, i.e. 2 Sand Tsgs / 2= . These two models have shown a much bettea priori alignment

with the actual SGS heat ux (see Figure 2, bottom).

2.3 Wall-resolved LES: computational costs and mesh anisot ropies. Choice of
the characteristic length scale

In his 1979 pioneering paper, Chapman [20] estimated the nuber of grid points for an LES of turbulent
boundary layers with and without wall modeling as

Nwm Re[° and Ny Rel>; (12)

respectively, whereRe. . = ULy= is the Reynolds number based on the free-stream velocityJ, and the
at plate length in the streamwise direction, L. To reach these scalings, Chapman used the following skin
friction correlation

¢ =0:045Re (13)

where Re = U = is the Reynolds number based on the boundary layer thickness (x), and assumed a
seventh-power velocity distribution law, i.e. u  y'*’. The later leads to an exact relation between the
momemtum thickness, , and given by =7 =72 Then, using Eq.(13) and¢ = 2d =dx leads to

- = 0:37Re, 1% and ¢ =0:057Re, (14)
where Re, = Ux= is the Reynolds number based on the streamwise distance frorihe leading edge,x.
From these equations it is relatively easy to show the scalig given by Chapman in Eq.(12). Recently, Choi

and Moin [21] gave new estimations based on a more accurate iskfriction correlation for high Reynolds
numbers (1° Re, 10°) given by

¢ =0:020Re *°: (15)

In this case, the analysis leads to

Nwm Re., and Ny Re’: (16)



These ndings are extensively used to emphasize the prohilive costs of LES without wall-modeling and the
necessity, in the foreseeable future, of wall-modeling témiques for applications at high Reynolds numbers.
However, under some assumptions, these scalings are onlylidafor a range of Rex; moreover, they do not
include the costs associated with temporal scales which extally can be even more restrictive due to the
inherent di culty (impossibility?) to parallelize LES equ ations in time. These two issues are addressed in
the next paragraphs. Let us consider a general power-law fothe skin friction coe cient

G = aRe : a7

Then, following the above explained reasonings it leads to

" = bRg, and ¢ =7b=36( +1)Re,; (18)
whereb=(36a(1 )=7)"¢ J)and = =(1 ). Notice that with a=0:045and = 1=4it leads to
the Chapman's scalings given in Egs.(14). Following the sam reasonings as in Ref.[21] the number of grid
points in the outer layer and the viscous wall region can be dsnated as follows

!

1+2

1 L, Re,

N°“ = nnyn, —————— —%Re ? 1 19
YT R@A+2 ) Ly Rey, (19)
|
!
NViS - n;v 7_b£ 2+ Rexo ’ . (20)
Xt zh 72Ly  “x ReL, ’

wherenynyn; is the number of grid points to resolve the cubic volume 3(x) in the outer layer (typically in the
range1C® 10*[21]), L, is the spanwise length andx is the initial streamwise location where the skin friction
correlation (18) holds. Then, xj, z; andny are respectively the grid resolutions (in wall units) and the
number of grid points in the wall-normal direction in the vis cous wall region,i.e. 0 y* . I;,‘ 100. Typical
values for WRLES lead to ny/=( Xy Zy) 0:01[21]. This analysis can be extended giving estimations of
the number of time-steps for the outer layer and the viscous wll region

Nty ny i i i
t _ 1+ ). _ . .
NE = TR Re )i NS = max(NS NS, ); 1)
where s
; Nty 7b +1 ; Nty 7b 1 =2
1S Re . ,Re, ; NY° = — Re_, Re_ <; 22
L x X0 teonv Cconv 72( XJV)Z Lx Xo ( )

tarr Cuits 7_2( K

where Nty is the number of time-units, Ly=U, to be computed; Csony and Cqiis are the convective and
di usive constants in the CFL condition. In summary, combining Egs.(19), (20) and (21) leads to the
following costs for LES with and without wall-modeling:

NY"Num Ref ~ and NN, Re : (23)

Nowadays, this represents the main limitation of (wall-relved) LES. On the other hand, it is also possible to
give estimations of the mesh anisotropyj.e. x= vy, in the boundary layer. Namely, in the viscous sublayer,
max( x= y)= Xy= Yy 50 100is not expected to change with the Reynolds number. Howeverin

the overlap region (y* & 50, y= < 0:1) where control volumes of the viscous wall region and the owr layer
(y* & 50) must be smoothly connected, the grid anisotropy can be esthated as

X ( Xout _ _n_y; (24)
y overlap ( Y)vis nX |y
where ly is the size of the viscous wall regionj.e. Iy = u ly= 50 100 Recalling the de nition of the

skin friction coe cient, ¢ = ,=( U 2=2), and using the relation given in Eq.(18), an expression in tems of



Re, can be obtained r
X 1 ny b 7o 1+3 = 2
— p=——"—— —=( +1)Re ™" “: 25
y overlap 2 Ny I; 36( ) X ( )
Therefore, for any value of >  2=3 the mesh anisotropy, x= Y, tends to grow with Rex. Taking typical

values for ny =10, nf =20 and I;,‘ =100, and using, respectively, the skin friction coe cient corr elations

used by Chapman [20],.e. = 1=5and b=0:37, and Choi and Moin [21],i.,e. = 1=7andb=0:17, it
simpli es
X Chapman ~ X Choi & Moin ~
— 0:0012Re/0; = 4:.047 10 *Rel™4: (26)
y overlap y overlap

Just as examples, this leads to mesh anisotropies df2:9 and 20:96 at Re, = 10°, and 99:7 and 127:97 at
Re, = 107. Therefore, numerical techniques that behave robustly in sch meshes are of great interest.

In this context, the question that arises is how to compute the subgrid characteristic length, , that needs
to be speci ed for all the models. It is usually associated wth the local grid size. That is, for isotropic grids,
is taken equal to the mesh size, = x =y = z. However, for anisotropic or unstructured grids, a
consensus has not been reached yet. With the aim to overcomée limitation of the Deardor de nition [22]
(cube root of the cell volume), the following de nition for  was proposed and studied in a recent paper [19],
r—
GG :GG

“* GE 60 @7

whereG r U, G G and diag( x; y; 2z) (for a Cartesian grid). This de nition of  fullls a
set of desirable properties. Namely, it is locally de ned am well bounded, x Isq z (assuming that

X y z). Moreover, it is sensitive to ow orientation and applicab le to unstructured meshes (by
simply replacing the tensor by the Jacobian of the mapping from the physical to the compugtional space).
This de nition (27) is obtained minimizing (in a least-squa res sense) the di erence between the leading terms
of the Taylor series of the SGS tensor, (), for an isotropic and an anisotropic Iters lengths; namely,

2
T 12

Results displayed in Figure 3 correspond to the classical gerimental results obtained by Comte-Bellot and
Corrsin [18]. LES results have been obtained using the Smagasky model, for a set of (arti cially) stretched
meshes. In contrast with the results obtained using the Deador de nition [22],

() GG +0(%; (= %ZG G+ O(%; (28)

vl =( Xy 2)1:3; (29)

the proposed de nition of the subgrid characteristic length, sq, signi cantly minimizes the e ect of mesh
anisotropies on the performance of SGS stress tensor model&or further details the reader is referred to
our recent paper [19].

3 Building a proper SGS heat ux model

3.1 Exploring nonlinear SGS heat ux models

In this work we focus on nding a nonlinear SGS heat ux model with good physical and mathematical
properties, that provides both accuratea priori representation of the actual SGS heat ux, q, and satisfactory
a posteriori predictions for turbulent buoyancy driven ows.

Let us remark that the focus of this study is not on the eddy-viscosity part of the model (see Eq. 5),
but on the nonlinear approximation of the SGS heat ux, g (see Eq. 4). We do, however, have to make a
speci ¢ choice for the SGS stress tensor model. We can, for #tance, take one of the previously mentioned
models: the WALE model [9], the -model [10] or the S3PQR models [11] (with the same near-wa#icaling
as the true turbulent stresses). Aiming to include several 6the desirable properties according to which these
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Figure 4: Joint PDF for the Peng and Davidson model (Eq. 9) in the space(jq”P j=jq™ j; ) where the angle
is de ned in Figure 2. The analized data corresponds to the bik region of the air- lled Rayleigh-Bénard
con guration at Ra = 10'° studied in Refs. [4, 8].

models have been designed, we suggest to take the S3QR modebposed in our work [11],

eSSQR = (CSSqr )ZQGéT RZZGT ) (30)

where Qg and Rggr , are the second and the third invariants of the GG tensor, respectively. This model
exhibits the same near-wall scaling behavior as the turbulet stresses and it vanishes in all two-component
ows, as well as in states of pure shear and pure rotation. Moeover, from a numerical point-of-view, it
is solely based on the local ow topology contained in the tesor of the resolved velocity eld, G, it is
well-conditioned and it always provides non-negative vales for o 0.

As mentioned before, (linear) eddy-di usivity (see Eq. 6) assumption cannot provide an accurate repre-
sentation of the SGS heat ux, q; hence, we turn our attention to nonlinear models. The leasto be expected
from a SGS model is to keep the stability of the numerical soltion. This is not the case of the Leonard
(Eg. 7) and the Peng and Davidson models (Eqg. 9). Both of them lave directions of negative di usive that
make the model numerical unstable. This is clearly observeiéh Figure 4 where the joint PDF for the Peng
and Davidson model (Eq. 9) in the spacgjq”P jsjq™ j; ) is displayed. It is worth noticing that both models
collapse to the same formula for =0, i.e. q°P = gq" / %%, since they corresponds to ows with null
rate-of-rotation, = 0. This is also observed in Figure 4. On the other hand, the modeproposed by Daly
and Harlow [12] (see Eq. 11) does not su er these problems sie the tensorGG' is positive semi-de nite.
Moreover, this model has shown a rather gooé priori alignment with the actual SGS heat ux (see Figure 2,
bottom left). Therefore, hereafter we will consider nonlinear models based on the tensoiGG' .

3.2 Near-wall scaling

It can be shown that due to the no-slip condition and the inconpressibility constraint, the production of
turbulent kinetic energy follows a cubic behavior near the vall [23], i.e. y* . 5. The major drawback of
the classical Smagorinsky model is that the di erential opeator it is based on does not vanish in near-wall
regions. First attempts to overcome this inherent problem d the Smagorinsky model made use of wall
functions [24, 25]. However, the rst outstanding improvement was the dynamic procedure proposed by
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Figure 5: Near-wall scaling of W°T4 for the air- lled Rayleigh-Bénard con gurations at Ra = 108 and
Ra = 1010 studied on Refs. [4, 8].

Germanoet al. [26] in the early 90s. Alternatively, it is possible to build models based on invariants that do
not have this limitation. Examples thereof are the WALE [9], the Vreman's [27], the Verstappen's [28] and
the -model [10] described in the previous section. This list carbe completed with a novel eddy-viscosity
model proposed by Ryu and laccarino [29] and two eddy-viscity models recently proposed by the authors
of this paper: namely, the S3PQR models [11] and the vortexisetching-based eddy-viscosity model [30].

A similar analysis can be performed for the subgrid heat ux,q. Namely, due to the no-slip condition and
the incompressibility constraint, r u = 0, the stream-wise, wall-normal and span-wise velocity compnents
and the temperature have the following scalings

u=ay+ O(y?); v=by+O0(°%; w=cy+O(y?);, T=dy+O(y?); (31)

wherey is the distance to the wall anda(x; z); b(x; z); c(x; z); d(x; z) are smooth functions that do not depend
ony. Hence, the actual subgrid heat ux, g, also follows a cubic behavior near the wallj.e.

q/hvoT4 = O(y®): (32)

The results displayed in Figure 5 con rms that this cubic scding is valid for y* . 8. Let us consider now
the near-wall scaling of the Daly and Harlow model given in Eq(11),

0 1 0 1 0 1
y 1.y y . y
Gl @y2 y y2A: T/ @1A =) GGrT/ @y2 A=0O(): (33)
y 1y y y

Therefore, the near-wall cubic behaviour is also recovered the SGS timescale,Tsgs , would scale quadrati-
cally. This is not the case of the timescale used in the Daly aa Harlow [12] model,i.e. Tsgs = 155 = O(yY).

At this point it is interesting to observe that new timescales can be derived by imposing restrictions
on the di erential operators they are based on. For instance let us consider models that are based on the
invariants of the tensor GG'

2
4 Cu PlegQigReer 6CrT ( 0%) (34)
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Poar Qcgr Raar
Formula 2Q Qs) VE+Q% RE
Wall-behavior o(y®) oy O°
Units T 2 L R R
Table 1: Properties of the rst, second and third invariants of the GG tensor whereQ = 1=2tr ( ?),

Qs = 1=2trS?, Qg = 1=2tr G are the second invariants of , S and G, respectively, and Rg = det(G)
is the third invariants of G. Finally, the invariant VZ is equal to the L2-norm of the vortex-stretching
term, i.e. VZ = jS! j2. For further details the reader is referred to Ref. [11].

where Pger, Qo and Rggr are the rst, second and third invariant of the GG tensor. This tensor is
proportional to the gradient model [17] given by the leading term of the Taylor series expansion of the
subgrid stress tensor (U) = ( 2=12)GG + O( #). Formulae of these invariants, their wall behavior and ther
units are given in Table 1. Then, the exponentsp, q and r in Eqg.(34), must satisfy the following equations

6r 4q 2p=1; 6r +2q=s; (35)

to guarantee that the di erential operator has units of time , i.e. [PG"GT QqGGT Rear 1= [T'] and a slopes for the
asymptotic near-wall behavior,i.e. O(y®). Solutions forg(p;s)= (1+s)=2 pandr(p;s)=(2s+1)=6+p=3
are displayed in Figure 6. It we restrict ourselves to solutons with the proper near-wall scaling,i.e. s =2
(blue lines in Figure 6), a family of p-dependent models follow. Hereafter, this family of modelswill be
referred as S2PQR-model. Restricting ourselves to solutits involving only two invariants of GG three

models are found. Namely,

2
0°%Q = CoopaPeg Qoo 156G T T (36)
— -— 2 j—
0°*"R = CaaprPogr Rear 1500 1 T (37)
— — 2 J—
G = CoqQoa Reg 3601 T (38)

forp= 5=2,p= 1.5andp=0, respectively. These three solutions are also representad Figure 6. The

10
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Figure 7: Joint PDF for the S2PR model (Eq. 37) in the space(jqFP j5jq™j; ) where the angle is de ned
in Figure 2. The analized data corresponds to the bulk regiorof the air- lled Rayleigh-Bénard con guration
at Ra = 1019 studied in Refs. [4, 8].

alingment trends of all these three new models have also beestudied a priori. For the sake of brevity, only
results for the S2PR (Eqg. 37) are shown in Figure 7. Apart frombeing unconditionally stable, this model
displays the best alignment with the actual subgrid heat ux, g. Hence, we consider that this a very good
candidate for a posteriori LES simulations of buoyancy-driven ows.

4 Concluding remarks and future research

Motivated by our recent ndings showing that the classical (linear) eddy-di usivity assumption, g% /r T,

fails to provide a reasonable approximation for the SGS heatux, q= uT UT (see Figure 2), in this work
we plan to shed light on the following research question:can we nd a nonlinear SGS heat ux model
with good physical and numerical properties, such that we canbtain satisfactory predictions for a turbulent
Rayleigh-Bénard convection? We aim to answer this question by rst studying the capability of the eddy-
viscosity assumption (see Eq. 5) to model the SGS stress teas , without any modelization of the SGS
heat ux. To do so, we will carry out LES simulations for very | ow Pr numbers. In this case, the ratio
between the Kolmogorov length scale and the Obukhov-Corrsi length scale is given byP r1=2 [7]; therefore,
for a Pr = 0:005 (liquid sodium) we have a separation of more than one decadeHence, it is possible to
combine a LES simulation for the velocity eld, T, with the numerical resolution of all the relevant scales of
the thermal eld, T. Furthermore, we will study the performance of the above-mationed nonlinear SGS heat
ux models. Results from LES simulations will be compared wth those obtained from DNS. In this regard,
it is expected to play an important role the results obtained from the on-going PRACE supercomputing
project Exploring new frontiers in Rayleigh-Bénard convection awarded with 33.1Mh in last PRACE 15th

call. Results will be presented during the conference.
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