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Abstract: The study aims to examine various aerodynamic phenomena and flow configurations
that elucidate the principles of lift generation in minuscule insects. Simulations are conducted on
three-dimensional wings that execute a "clap-and-peel" motion, inspired by the flying of Drosophila
melanogaster. A numerical fluid solver is created using the multiple relaxation time (MRT) model
of the lattice Boltzmann method (LBM). A dynamic mesh refinement technique was employed to
enhance the resolution of the grid region encompassing the mobile geometry. Validations were
performed to verify the applicability of LBM for deforming borders. The tests involved flapping
rectangular wings with time-varying changes in chordwise camber and twist. The study investigates
the impact of the pitching-sweeping overlap ξ, ranging from 0% to 100%, on the characteristics
of lift and drag. At ξ = 100%, the mean lift is approximately 36.4% higher compared to when
ξ = 0% at a Reynolds number of 200. This significant increase is related to the formation of a
strong leading edge vortex (LEV) during the clap phase in the former case. The aerodynamics of
the clap-and-peel mechanism were compared to a single-wing flapping, resulting in a 31.7% increase
in the average lift coefficient.

Keywords: Lattice Boltzmann Method, Insect aerodynamics, Clap-and-Peel, Overlap.

1 INTRODUCTION
Flapping-wing aerodynamics has captured the attention of researchers, driven by the escalating design
initiatives in the domain of Micro Aerial Vehicles (MAVs). These compact unmanned air vehicles are
characterized by dimensions not exceeding 15 cm [1]. Advancements in various technological domains
have paved the way for utilizing MAVs as agile and discreet sensing platforms capable of gathering
intelligence in hazardous and physically inaccessible areas. To successfully execute such missions, MAVs
need to exhibit effortless manoeuvrability, sustained flight, and efficient propulsion. However, traditional
methods of generating thrust and lift prove inefficient in meeting the required capabilities at these scales,
leading to the essential adoption of flapping-wing propulsion [2]. Flapping wing Micro Air Vehicles
(FWMAVs) demonstrate enhanced efficiency, especially in areas that requires hovering conditions and
a compact size. However, downsizing introduces aerodynamic and flight control challenges. Numerous
research efforts have been undertaken to comprehend the aerodynamic principles around flapping wings
through both numerical simulations and experimental approaches.

Previously, researchers have primarily focused on the flapping movement of rigid wings and examined
flexibility mainly in two dimensions for the wings of small insects [3, 4, 5]. Flexibility has been observed
to transform the fling phase of clap-and-fling motion into a motion that resembles a peel, while the clap
phase can be compared to a reverse-peel [6]. In the fling phase, flexible wings enhance lift by enhancing
circulation, and in the clap phase, they enhance the downward momentum flow [7]. Miller and Peskin [3]
computationally investigated this phenomenon in two dimensions at Re=10. Their results indicate that
clap-and-fling with flexible wings generates a higher lift and less drag than clap-and-fling with rigid
wings. Tian et al. [4] numerically investigated the effect of flexible wing sections on the generation of
forces during forward flight. They noticed that the wing’s dynamic pitching can significantly enhance
both thrust and thrust-to-power ratio while also maintaining or increasing lift and lift-to-power ratio at
the same time. Percin et al. [5] experimentally investigated the clap-and-peel motion on Delfly wings
and observed that during the peeling phase, the vortex pairs generated induce a strong inflow, forming a
low-pressure region between upper and lower wings. This, along with leading-edge vortices and increased
momentum from the clap, formed a higher force during the downstroke. Jankauski et al. [8] found that the
presence of flexibility in wings decreases power by 25% when compared to wings that are rigid. Lehmann
et al. [9] discovered an unconventional energy recuperation mechanism in an insect that recaptures the
rotational energy of vortices and transfers this kinetic energy to the wing instantly. They observed a
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Figure 1: A schematic of wing planform of fruit fly [18] illustrating important geometry parameters:
wing span R, mean chord C and the axis of wing rotation during pitching.

reduction in flight power requirement by utilizing kinetic energy from the motion of the surrounding air
through chordwise wing bending.

The temporal variation of wing deformation over time was initially outlined by Ellington [6] and
Ennos [10] through their qualitative analysis of hovering insects captured on a single high-speed camera.
Recently, Walker et al. [11] obtained qualitative data using four high-speed digital cameras to observe
free-flying droneflies. Du and Sun [12] numerically investigated the effect of camber and twist as recorded
by Walker and observed an increase in lift coefficient by 10% to 20% as compared to the rigid wing. It was
hypothesised that the camber and twist initially rose from zero to a specific constant value, remained
constant in the middle portion of the half-stroke, and then began to decline in the later part of the
half-stroke, ultimately reaching zero at the end.

In the present study, we build upon our previous work on clap-and-fling [13] and extend it to deforming
wings with more realistic kinematics using an in-house fluid solver based on the multi-relaxation time
(MRT) lattice Boltzmann method (LBM) [14, 15]. The objective of our study is to analyse how the timing
of pitching and sweeping, measured by the parameter ξ, affect the average lift and drag coefficients,
denoted as < CL > and < CD >, respectively. This study aims to enhance our comprehension of the
diverse flow structures linked to the "clap-and-peel" motion and its influence on lift production. This
knowledge will assist in the advancement of next-generation bio-inspired Micro Air Vehicles (MAVs).
Hence, the primary objectives of this investigation are:

(a) Development of a three-dimensional in-house numerical solver based on the MRT-LBM to analyze
various aerodynamic phenomena and flow structures, elucidating the dynamics of force generation
by deforming wings using the "clap-and-peel" mechanism.

(b) Perform a parametric study to quantify the dependence of average lift and drag by varying degrees
of overlap between pitching and sweeping (ξ).

(c) Identify the optimum “clap-and-peel" operating conditions with respect to lift to drag ratio.

2 PROBLEM DESCRIPTION
A model wing based on the planform of Drosophila melanogaster (fruit fly) has been recreated from [16]
using image processing tools [17]. The section thickness of the wing model is 1.5% of the mean chord
length with rounded leading and trailing edges. The wing has a span (R) of 2.16 mm and a mean chord
(C) of 0.77 mm. An idealised wing kinematics for three-dimensional clap-and-peel motion is proposed
based on the experimental data of Miller and Peskin [3]. The wing’s flight cycle begins with the fling
phase, during which it rotates around its trailing edge. As the wings fling apart, they are deformed
along the chord, creating a peel effect. Following this, the wings perform the downstroke with a positive
camber by rotating around its root, during which the angle of attack varies from root to tip, obtaining a
higher angle of attack at the tip. Towards the end of the downstroke, the wing flips around its rotation
axis, obtaining a positive angle of attack while sweeping in the reverse direction, marking the start of the
upstroke. During this phase, the wings reverses its deformation to maintain a positive camber. Upon
completing the upstroke, the wing returns to its original position and straightens while rotating about
the leading edge to complete the clap phase.
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Figure 2: Time history of (a) pitching angle and (b) percentage camber at different wing sections over
one stroke cycle.

Table 1: Details of kinematics parameters used in the numerical simulation.

Parameter Value
α∗
m,root 45◦

α∗
m,tip 35◦

ϕ0 0◦

ϕm 65◦

hm,root 0× C
hm,tip 0.125× C

2.1 Kinematic modelling
The wing movements were estimated with certain approximations to simulate the dynamic morphing
of an actual fruit fly wing. The wing pair is positioned with a gap equal to 7.5% of the average chord
length. A linear relationship was assumed between the Euler angle in the spanwise direction, radius (r),
and time (τ). The time-dependent stroke angles were considered uniform across all wing cross-sections,
as shown in Fig. 2. The pitching and sweeping velocities are given as,

α̇(r, τ) =
α∗
m(r)

∆τ∗
(1− cos [2π (τ − τ∗) /∆τ∗]) (1)

ϕ̇(τ) =
ϕm

∆τ∗
(1− cos [2π (τ − τ∗) /∆τ∗]) (2)

where αm(r) and ϕm is the maximum angular amplitude at any wing length r. The time sequence of
a cycle is governed by their starting time τ∗ and time duration ∆τ∗ for different phases. The amplitude
of the angle of attack over the length of the wing varies linearly according to the following equation:

α∗
m(r) = α∗

m,root + (α∗
m,root − α∗

m,tip)
r

R
(3)

where α∗
m,root and α∗

m,tip are the amplitude of attack angle at root and tip, respectively. Figure. 2a
illustrates the time-dependent variation in the pitching angle across different wing sections. The twist is
assumed to be linear and can, therefore, be determined by the twist angle, which is the difference in the
geometrical angle of attack between the wing tip (α∗

m,tip) and the wing root (α∗
m,root).

The equation of the mean lines of the NACA four-digit wing sections is used for the modelling of the
camber in the wing cross sections [12], as

h(r, x, τ) =

{
hm(r,τ)

p2 (2px− x2), (0 ≤ x ≤ p)
hm(r,τ)
(1−p)2 ((1− 2p) + 2px− x2), (p < x ≤ 1)

(4)

where x is the chordwise position normalized by the local chord length c(r), hm(r, τ) is the maximum
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Figure 3: Sweeping and pitching velocities as a function of dimensionless time during the clap-and-peel.
For 0% overlap during the peel phase, the wing completes the pitching motion before the sweeping begins.
For 100% overlap, the wing begins to pitch and sweep simultaneously.

camber of the wing section as a function of spanwise position r and time τ , p is the non-dimensional
chordwise position at which the maximum height of the local chord appears. The maximum ordinate of
the mean line is assumed to be in the mid-chord position [12], i.e., p = 0.5. The instantaneous maximum
camber hm(r, τ) is expressed as

hm(r, τ) =
hm(r)

∆τ∗

(
τ − τ∗ − ∆τ∗

2π
sin [2π (τ − τ∗) /∆τ∗]

)
(5)

where hm(r) represents the maximum camber of the wing, which varies linearly from the wing’s root to
its tip and is defined as,

hm(r)

c(r)
=

(
hm,root

Cr2

− hm,root

Cr2

r

R

)
(6)

where hm,root and hm,tip are the maximum height at the root and tip of the wing, respectively. Cr2

is the chord at the radius of the second moment of wing area (r2). Figure. 2b shows the variation in
the camber across different wing sections. An essential parameter, denoted as ξ, is introduced in this
study, which determines the degree of overlap between pitching and sweeping motions. This parameter
previously discussed in the two-dimensional work by Arora et al. [13] played an important role in the lift
enhancement, and its contribution to the three-dimensional lift will be examined here. It is expressed
here in % and dictates the timings of downstroke, flip, upstroke and clap. Figure 3 shows the angular
velocities of pitching and sweeping as a function of dimensionless time at various degrees of overlap. The
various kinematic parameters used in the study are listed in Table 1.

Figure 4 illustrates the schematics of wing kinematics at various time instants during one cycle, along
with their corresponding wing and inertial coordinates. The trajectory of any arbitrary point on the
wing(W) is described by orienting the wing with respect to the reference inertial frame N, which is fixed
to the stroke plane, using a (1–3) sequence of Euler angles, ϕ(τ) and α(τ).XN

Y N

ZN

 =

cos(ϕ) − cos(α) sin(ϕ) sin(α) sin(ϕ)
sin(ϕ) cos(α) cos(ϕ) − cos(ϕ) sin(α)

0 sin(α) cos(α)

XW

Y W

ZW

 (7)

Therefore, the lift CL and drag CD coefficients were calculated as follows:

CL =
2FN

Z

ρSU2
(8)

CD =


2(FN

X sinϕ−FN
Y cosϕ)

ρSU2 , τ ≤ T/2
2(−FN

X sinϕ+FN
Y cosϕ)

ρSU2 , τ > T/2
(9)

where FN
X , FN

Y and FN
Z are the resultant forces in the inertial frame.

The Reynolds number is defined as Re = Uc̄/ν, where U is the reference velocity (U = 2fr2ϕm), ν
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Figure 4: Schematics of wing kinematics during one stroke cycle.

is the kinematic viscosity, f is the wingbeat frequency, r2 is the radius of second moment of wing area,
and ϕm is the sweep amplitude. The fruit-fly exhibits a Reynolds number approximately in the order of
(∼ 102). In the present study, we examine the aerodynamic forces and flow structures on the wing with
a flapping frequency of approximately 200 Hz, operating at a Reynolds number of 200.

3 NUMERICAL METHODOLOGY
The present study involves the applicability of an in-house fluid solver based on the LBM [19, 14, 20, 15],
which is used to analyze the flow behaviour around deforming wings performing clap-and-peel and to
calculate the forces resulting from fluid-structure interaction.

3.1 Fluid solver
The density, velocity, and temperature fields in Navier-Stokes equation-based computational fluid dy-
namics (CFD) solvers are found by solving the governing equations of these variables, which include the
conservation of mass, momentum, and energy. Conversely, the LBM solves a discretized version of the
non-dimensionalized lattice Boltzmann equation (LBE) as a function of space (x), time (t), and phase
space (eα). In this case, the particle distribution functions change at each time step due to streaming
and collision processes [21].

The LBE includes a collision operator that simulates the effects of atomic or molecular collisions in
a gas or liquid system. The Bhatnagar-Gross-Krook (BGK) or single relaxation time (SRT) model is
the most popular model [22, 23, 24, 25]. However, the SRT model faces numerical instability at high
Reynolds numbers, especially when using low relaxation time values. Furthermore, it often exhibits
spurious oscillations in force measurements, as noted by [14]. A more robust multi-relaxation-time
(MRT) model has been implemented to address these disadvantages [26]. Rather than relaxing particle
distribution functions toward their equilibrium distribution functions, a transformation is performed
into moment space. This method enables the independent relaxation of individual moments, allowing
the relaxation rates of higher-order moments to be adjusted for improved stability. The proposed MRT
approach addresses the limitations of the previous method (SRT) and provides more accurate and stable
solutions for analyzing fluid flow. Additionally, a dynamic mesh refinement technique is used where a
high-resolution grid region surrounds and moves with the wing. This approach significantly improves
the accuracy of force measurements while being efficient in terms of computational resources. Further
details about the fluid solver, mesh refinement, and validations can be found in [15].

3.2 Validation of a test case
In order to validate the solver for the simulation of deforming geometries, a case of a single rectangular
wing performing flapping motion with time-varying camber and twist is simulated at Re=800. The plate
with an aspect ratio (R/c) of 3.33 is placed at the centre of the flow domain, executing pitching and
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Figure 5: Time history of (a) lift and (b) drag coefficient compared with the results of Du and Sun [27]
over one stroke cycle.

sweep (upstroke/downstroke) motion about its root. The axis of the pitching rotation is located at a
quarter chord from the leading edge. The plate has a chord 100 lattice units with a thickness of 1%
of the chord. The outflow boundary condition is enforced on all six faces of the fluid computational
domain. The boundary was placed at a distance of 6 × c from the centre in all six directions. The
comparison of instantaneous lift and drag coefficients is shown in Fig. 5. The results obtained match well
with the results of Du and Sun [27], indicating that the solver’s ability to solve the deforming geometry
problems accurately. The difference between these two estimations could be due to the unspecified
boundary conditions in the literature and slight variations in the wing kinematics, which were digitized
from images in the reference paper.

3.3 Computational Domain and Grid Convergence Test
In the current study, a computational domain measuring 10C × 10C × 10C (where C represents the
chord length) was utilized for performing the clap-and-peel simulation. The domain was strategically
positioned with wings at the centre. Outflow boundary condition was imposed on all six faces of the
cubical domain. As mentioned earlier, a finely meshed conformal block is employed around the wings in
order to enhance resolution and mitigate spurious force oscillations commonly encountered in LBM. This
conformal block, measuring 3C×1.5C×3C, moves synchronously with the wings and effectively ensures
improved simulation accuracy and stability. Before conducting extensive numerical simulations, the test
for grid convergence was performed for the case with the highest degree of overlap. The simulations
were performed on four progressively refined spatial resolutions of ∆x = 0.0113C, ∆x = 0.0075C and
∆x = 0.0065C to evaluate the influence of grid size on simulation results. It is important to mention that
the forces generated by both wings are identical. Therefore, all subsequent references to instantaneous
lift and drag coefficients represent values per unit wing. A comparison of instantaneous lift and drag
coefficients with the mesh resolution is shown in Figure 6. Observations indicate that curves with
refinements of ∆x = 0.0075C exhibit strong concordance. Consequently, a grid size of ∆x = 0.0075C is
deemed adequately refined for the present study and has been utilized for all the simulations.

4 RESULTS AND DISCUSSION
In this section, results obtained from three-dimensional numerical simulation of flapping wings employing
"clap-and-peel" motion using LBM are presented and discussed. The pitching and sweeping overlap (ξ)
effect on the average lift and drag over a cycle is also discussed in detail. To examine the aerodynamic
impacts of ξ, we have established multiple simulation scenarios with varying values of ξ (0%, 25%, 50%,
75%, and 100%). We first study the result obtained for the case with ξ = 100%. Figure 7a presents
the temporal behaviour of the instantaneous lift coefficient and the flow field at a specific point in the
cycle. In addition, the corresponding drag coefficients are shown in Fig 7b. Furthermore, the impact
of clap-and-peel between a pair of wings is compared to the behaviour of a single wing without any
interaction between wings. All simulations are evaluated based on the findings from the second cycle
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Figure 6: Effect of mesh size on the instantaneous (a) lift and (b) drag coefficients.
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Figure 7: Time history of (a) lift coefficient and flow field (Qcriterion=5E-6) coloured with velocity
magnitude (b) drag coefficient.

under all circumstances. Given the similarity between the forces and flows of the left and right wings,
we will focus solely on discussing the left wing.

During the peel phase, the initial peak in the force coefficient is due to the wing’s acceleration from
a stationary position followed by a negative value of lift coefficient at the end of the phase. The positive
peak in lift coefficient is observed due to the rapid formation of a strong vortex pair at the leading edge
of the wings. The dip in force coefficients at the end of the peel phase is caused by the deceleration of
the wings. As the angular velocity decreases, the wings experience a decrease in force coefficients due to
the flow pushing on their upper surface.

Next, we examine the forces and flows in the successive period (t/T = 0.07-0.88), during which the
wing executes the downstroke, flip, and upstroke. During this phase, the wing performs a sweeping
motion consisting of the downstroke (t/T = 0.07-0.45 ), the flip (t/T = 0.45-0.49), and the upstroke
(t/T = 0.49-0.88). Figure 8 shows the normalised spanwise vorticity (ω̂ = ω · C/U) and velocity vectors
at the pitching axis in a plane perpendicular to the stroke plane. The attached negative LEV grows as
the downstroke progresses, and the lift coefficient reaches a local maximum around mid-stroke. At the
end of the downstroke (t/T= 0.4-0.5), the wing flips to maintain a positive angle of attack during the
upstroke. The acceleration of the wings’ pitching causes the force coefficient to increase, followed by a
decrease in the lift coefficient. This is due to the angular deceleration at the end of the flip phase. As the
upstroke commences, the lift coefficient increases due to the wing’s acceleration and the growth of the
attached positive LEV. Observations indicate the presence of spanwise flow moving from the wing root to
the wing tip, which helps to stabilise the LEV during downstroke and upstroke. The lift reaches a local
maximum before declining as the wing decelerates. The upstroke is followed by the clap phase (t/T=
0.88 - 0.96), during which the wings execute a clapping motion around the leading edge. Significant peaks
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Figure 8: Normalised spanwise vorticity and velocity vectors at the pitching axis in plane normal to the
stroke plane during (a) downstroke and (b) upstroke
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Figure 9: (a) Instantaneous and (b) average lift coefficient compared with the single wing performing
clap-and-peel kinematics.

were detected in both CL and CD, such as during the fling phase. This is due to the rapid formation of
a strong vortex pair near the trailing edge, accompanied by the addition of downward jet momentum.

The flow of the single-wing performing the same kinematics has been computed, and the results are
presented here subsequently. Figure 9a compares the time history of lift coefficients for one complete
cycle. First, we compare the instantaneous lift and drag coefficient during the peel and clap phase; the
peaks in force coefficient are lower compared to the pair of wings. This is due to the non-existence
of wing-wing interaction for the single wing. As the cycle approaches its end (t/T = 0.96 − 1.0), a
negative peak in CL can be observed for the single wing. This can be explained by the wing’s angular
deceleration in the later portion of the clap, as well as by the associated flows on the wings forcing it
downward. However, during the downstroke, flip and upstroke phases CL remains the same. There is
a slight difference in the peaks of CL during the downstroke. This is due to the shed vortices from the
peel phase aiding in the formation of stronger and more stable LEV during the downstroke.

Averaging CL over one cycle gives the mean lift < CL > and drag coefficient < CD >. The value of
< CL > for the described flapping motion with clap-and-peel compared to the single wing performing
the same kinematics is shown in Fig. 9b. The < CL > increased by 31.2% for the wing-pair compared
to the single wing. This is caused by the wing-wing interaction, which creates resistance during the
clap-and-peel phases, increasing the lift coefficient.

4.1 Effect of Overlap
In order to investigate the effect of overlap (ξ), we vary ξ during wing during wing pitching for peel, flip
and clap phases. For the wing with ξ = 0%, the wings come to rest at the end of the pitching motion,
and then only the sweep starts. However, for the wings with a degree of overlap of 100%, the pitching
and sweeping motion start simultaneously. Similarly, this corresponds to 25%, 50% and 75% overlap
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Figure 10: Time history of (a) lift and (b) drag coefficient for varying overlap parameter.

Figure 11: Normalised vorticity and velocity vector in a vertical plane at the middle of wing length at
(a) end of peel phase, (b) start of clap phase and, (c) maximum lift during clap phase.

between pitching and sweeping. Time history of Lift and drag coefficients for the five cases (ξ =0%,
25%, 50%, 75%, and 100%) are shown in Fig. 10. For the peel phase, the first peak in force coefficient
is similar for all the cases. However, a lower negative CL at the end of the peel phase is observed for
the case with a higher degree of ξ. Figure 11 shows the normalised vorticity and velocity vector in a
vertical plane at the midpoint of the wing’s length. It can be observed that the downward momentum
of the flow generated during the peel phase impacts the wing’s upper surface at 0% overlap. However,
at ξ = 100%, the downwash moves through the space between the wings as they sweep apart.

During the clap phase, the acceleration of the wing pitching occurs earlier during the clap phase
when ξ has a greater value. Figure 11(b) and 11(c) shows the spanwise vorticity and velocity vector at
the onset of the clap phase and at the point of maximum lift coefficient. The LEV from the end of the
upstroke remains attached at higher degrees of overlap as the wing claps; however, it gets dissipated at
ξ = 0% before the start of the clap phase. This corresponds to the initial increase in force coefficients,
resulting in a higher peak CL. During the downstroke, flip, and upstroke phases, the peaks in force
coefficients are identical. However, the values of CL and CD remain consistently higher throughout the
phase when ξ is higher. Figure 12 shows the normalized spanwise vorticity at various spanwise locations
at the end of the peel phase. The shed vortices generated during the peel phase attach to the LEV
generated during the downstroke for cases with a higher degree of overlap. These vortices increase CL as
the downstroke progresses. In contrast, for ξ = 0%, the vortices dissipate before the downstroke begins.

To compare the average forces generated in each case, the lift and drag coefficients were averaged
over a cycle, as shown in Fig. 13. The average lift < CL > and drag < CD > coefficient produced by
the wing is higher as we increase the degree of overlap ξ. For the case with the highest value of ξ, the
increase in < CL > is almost 36.4% higher as compared to the case with ξ = 0%. Also, the average drag
coefficient (< CD >) produced in the ξ = 100% is higher than the corresponding lower ξ cases. However,
the slope of increase in < CD > is larger from ξ = 0 to 50%, as compared to the rest of the cases.
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(a) (b)

Figure 12: Normalized spanwise vorticity at the end of peel phase at location 0.2R, 0.5R and 0.8R from
the wing root for (a) ξ = 0% and (b) 100%
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Figure 13: Mean lift and drag with varying overlap parameter.

5 CONCLUSION AND FUTURE WORK
The current study focuses on examining the aerodynamics of thrust generation and measuring the aver-
age lift and drag in the tiniest insects using the "clap-and-peel" motion. The kinematics of Drosophila
melanogaster flight is determined by characteristics, including Reynolds number, pitching-sweeping over-
lap, sweep angle, angle of attack, wing separation, twist, camber, and others. For this purpose, we use
an in-house numerical fluid solver that is based on the MRT version of LBM. This solver features a dy-
namic mesh refinement technique that enhances the resolution of the grid region surrounding the moving
geometry. It is parallelized using OpenMP and can run on multiple cores with excellent scalability.
The oscillations in force measurements that are frequently observed in LBM are eliminated by applying
Grad’s boundary condition to deformable boundary scenarios. The benchmark case of flapping rectan-
gular wings with time-varying chordwise camber and twist was used to validate the solver’s applicability
for simulating moving and deforming boundary problems, resulting in outstanding agreement.

Numerical simulations of a three-dimensional wing planform of fruit-fly emulating “clap-and-peel"
kinematics at different combinations of pitching-sweeping overlaps (ξ = 0%, 25%, 50%, 75% and 100%)
at Re=200 are performed. It is found that the mean lift increases by 36.4% with increase in overlap.
Upon further analysis of vortical structures, it is observed that a strong LEV is consistently present
when ξ = 100%. This occurs because the shed vortices during the clap-and-peel phases are captured by
the wings during the upstroke and downstroke, accumulating a stronger influx of fluid and resulting in
higher net circulation compared to 0% overlap. Future work will focus on assessing the combined effect
of variations in all the listed parameters and determining the optimal kinematics that minimise power
consumption during flapping.
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