Oral presentation | Fluid-structure interaction **Fluid-structure interaction-l** Mon. Jul 15, 2024 10:45 AM - 12:45 PM Room A

[1-A-04] Numerical investigation of correlation between thrust and angle of attack in a cyclorotor system

*Manabu Saito¹, Jun Nagao¹, Ryoichi Kurose¹ (1. Kyoto University) Keywords: Cyclorotor, Large-eddy simulation, Propulsion system

Background For Urban Air Mobility (UAM), Vertical Take-Off and Landing (VTOL) Propellers aircraft is considered. https://eaglepubs.erau.edu/introductiontoaerospaceflightvehicles/chapter/noise-of-flight-vehicles/ Fuselage impacted by propeller noise S4 ©Joby Aviation Propellers Noise propagation Noise propagation Propellers are used as a propulsion system Intense noise generation has been the biggest problem \rightarrow To overcome the noise problem in UAM, "Cyclorotor" is gaining attention as an alternative propulsion system VX4 ©Vertical Aerospace ICCFD12

Geometrical optimization of a cyclorotor	
Optimization properties:	
Number of blades	
To conduct an in-depth study of the aerodynamic characteristics of the airflow produced by cyclorotors using large-eddy simulations and find an optimal AoA schedule to maximize the aerodynamic performance of a cyclorotor.	
 Span length Angle of attack schedule 	-
ICCFD12	

