# [1-B-02] Sound Generation and Shock Wave Deformation in Shock Wave - Vortex Ring Interaction

\*Swapnil Ashok Ahire<sup>1</sup>, Avijit Chatterjee<sup>1</sup> (1. Indian Institute of Technology Bombay)

Keywords: Vortex ring shock wave interaction, Compressible ring vortex, Naturally generated vortex

ring

## Sound Generation and Shock Wave Deformation in Shock Wave - Vortex Ring Interaction The 12th International Conference on Computational Fluid Dynamics

July 15, 2024

Swapnil Ahire, Prof. Avijit Chatterjee

Aerospace Engineering, Indian Institute of Technology Bombay, India





# Outline

Introduction

Numerical Method

Grid Independence Study

Results

Characteristics based Filter

Summary



Shock Wave Interaction with a Naturally Generated Vortex Ring

Swapnil Ahire, Prof. Avijit Chatterjee

Introduction Numerical Method

Grid Independence Study

Results Characteristics based Filter

Summary



# Introduction

- ► Shock wave vortex ring interaction → noise generation
   ► Noise in supersonic jets
  - Turbulent mixing noise
    - Screech noise
    - Broadband shock noise



Figure: Schematics of noise generation from report<sup>1</sup>



Shock Wave Interaction with a Naturally Generated Vortex Ring Swapnil Ahire, Prof. Avijit Chatterjee

Introduction Numerical Method Grid Independence Study Results

Characteristics based Filter

Summary



<sup>1</sup> Meadows, K.R., 1997. A study of fundamental shock noise mechanisms, NASA Technical Report (No. NASA-TP-3605).

# Motivation

- Commonly used Vortex ring models  $\rightarrow$  incompressible<sup>1 2</sup>
- $\blacktriangleright$  Meadow's model ^  $\rightarrow$  high vortex ring radius to vortex c/s radius ratio
- $\blacktriangleright$  Inoue's model^2  $\rightarrow$  complicated far-field conditions
- $\blacktriangleright \text{ Naturally generated vortex ring} \rightarrow \text{compressible}$



Figure: Meadows K.R<sup>1</sup> Vortex Ring model

<sup>1</sup> Meadows, K.R., 1997. A study of fundamental shock noise mechanisms, NASA Technical Report (No. NASA-TP-3605).
<sup>2</sup> Inoue, O. et. al, 2000. Successive generation of sounds by shock–strong vortex interaction. Physics of Fluids, 12(12)



### Shock Wave Interaction with a Naturally Generated Vortex Ring Swapnil Ahire, Prof. Avijit Chatterjee

Numerical Method Grid Independence Study Results

3

Characteristics based Filter Summary





## Numerical Method

Unsteady axisymmetric Navier-Stokes equations are solved to model the viscous flow <sup>1</sup>,

$$\boldsymbol{U}_t + \boldsymbol{F}_x + \boldsymbol{G}_y = \boldsymbol{Q}$$

- Closure is done with  $\gamma$ , *Pr*,  $\mu$  (laminar) and R
- Fifth order WENO is used to discretize convective fluxes
- Time advancement by TVD Runge-Kutta second order scheme
- Non-reflective boundary conditions (NRBC) are imposed at boundaries





<sup>&</sup>lt;sup>1</sup> Avijit Chatterjee et. al Screech frequency prediction in underexpanded axisymmetric screeching jets. International Journal of Aeroacoustics, 8(5):499–510, 2009



ICCFD12





### ICCFD12









# Summary



Shock Wave Interaction with a Naturally Generated Vortex Ring

Swapnil Ahire, Prof. Avijit Chatterjee

Numerical Method

Grid Independence Study

Characteristics based Filter

Results

(13)Summary

- Proposed a new method to study vortex ring and shock interaction
- ► Compressible Vortex ring → No limitation on vortex ring Mach number
- Characteristic based filtering (CBF) is used to separate hydrodynamic and acoustic fluctuations
- Results found to be in agreement with observations reported by Inoue et al.<sup>1</sup>



<sup>1</sup>Inoue, O. et. al, 2000. Successive generation of sounds by shock-strong vortex interaction. Physics of Fluids, 12(12)

Thank you !! Contact Info. Swapnil Ahire, PhD student Aerospace Engineering, IIT Bombay, India swapnilahire15@iitb.ac.in



