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Abstract

This paper outlines advancements in predicting sonic boom loudness within the Launch, Ascent,
and Vehicle Aerodynamics (LAVA) computational framework. Traditionally, a two step process con-
sisting of a steady state computational fluid dynamics problem for near-field analysis and a far-field
propagation solver for calculation of loudness metrics has been used. Improvements to this process
made in this work include utilizing a high-order space marching method for mid-field computations,
developing a novel output-based mesh adaptation method targeting error in near-field pressure sig-
natures, and developing a robust scripting system using curvilinear grids to increase robustness and
simplify the process of running large databases of simulation cases. These advancements are detailed
and applied to the simulation of the X-59, presenting comparative cost and timing analyses between
the prior two step workflow and the current three step procedure. We achieve increased accuracy
and robustness for loudness predictions with at least a 50% computational cost reduction.

1 Introduction
Loudness predictions for supersonic flight vehicles using CFD-based methods are traditionally made
using a two step procedure first introduced in [1]. The first step uses computational fluid dynamics
(CFD) to solve the steady Euler or Reynolds-Averaged Navier Stokes (RANS) equations in a domain
around the aircraft out to a distance of 3 or more vehicle body lengths (the near-field). The second step
propagates the signature from the near-field down to the ground (the far-field) and computes various
loudness metrics, using a dedicated propagation solver. Decomposing the problem in this way has been
used with success on other supersonic geometries and, for example, on the X-59 and its previous design
iterations [2]. In Section 2, this standard two step loudness prediction procedure using the Launch,
Ascent, and Vehicle Aerodynamics (LAVA) CFD framework is presented, in particular by using its
structured curvilinear grid paradigm. There, a loudness prediction for a demonstrative flight condition
of the X-59 will be made, and the grid, computational domain and methodology, and computational
cost will be presented. The LAVA framework has been thoroughly validated against experimental wind
tunnel results from the NASA Ames 9x7 ft. Supersonic Wind Tunnel [3] and the NASA Glenn 8x6 ft.
Supersonic Wind Tunnel [4], as well as in supersonic jet noise predictions [5, 6].

Figure 1: Artist rendering of the X-59 flying
over land.

The X-59 is an experimental aircraft being designed
and built by industry partners in collaboration with
NASA, shown in Figure 1. It has been designed to min-
imize the sonic boom generated when flying over land
at supersonic speeds. Throughout its design process,
and going forward into its first flight tests, simulation
teams at NASA and in industry have built simulation
workflows to analyze and predict the X-59’s sonic boom
loudness for a given flight configuration. It was de-
signed around a target loudness of 75 dB for a particu-
lar baseline flight configuration, but due to the complex
flow physics involved, certain changes in the flight con-
figuration can result in louder or softer sonic booms on
the ground. It is the role of the simulation teams to
rapidly respond to changing requirements to make ro-
bust and accurate loudness predictions as the first flight of the X-59 approaches. There is also an ongoing
collaboration between NASA teams to develop a flight planning software that requires large databases of
training data in the form of near-field pressure signals for a wide variety of potential flight configurations.
This software is responsible for generating flight conditions for a given desired loudness, so it requires
high-fidelity, representative near-field solutions for reliability.
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Several advancements on the traditional two step loudness prediction procedure have been developed
to meet the increased accuracy and robustness requirements, such as introducing a third step by way
of a high-order Space Marching (SM) method for mid-field computations, and developing a scripting
system using curvilinear grids to increase robustness and simplify the process of running large databases
of simulation cases. These will be introduced in Section 3 and applied to the X-59 in Section 3.3.
Comparisons of the near-field and far-field results and costs between the original two step workflow and
the new three step procedure will be made, and more robust and accurate predictions with a reduced
computational cost are obtained using the new three step procedure.

High fidelity loudness predictions also require a well-designed CFD mesh to capture the shock-
dominated flowfield. This typically requires careful placement of grid refinement regions in locations
of known shock-inducing geometric features, with the capability of transforming depending on the flight
condition. To address this, a novel output-based mesh adaptation method targeting error in near-field
pressure signatures has been developed and it will be explored and applied to X-59 loudness prediction
in Section 4.

2 Two Step Solution Procedure
In order to predict the loudness of any particular X-59 flight configuration, the problem is decomposed
here into a two step procedure. First the flowfield around the vehicle is computed using the LAVA [7]
Curvilinear CFD solver with a steady RANS formulation on a structured overset mesh that extends radi-
ally out from the vehicle to a predetermined distance. The pressure disturbance dP/P∞ = (P − P∞)/P∞
is interpolated onto computational line probes at this distance at regularly spaced azimuths around the
vehicle, forming an enclosing extraction cylinder. These pressure disturbance signals are then propagated
to the ground using a specialized far-field propagation solver sBOOM [8], which solves the augmented
Burgers’ equation along acoustic ray paths.

sBOOM assumes that azimuthal correlations in the near-field pressure signals are negligible. This
assumption only holds when the extracted pressure signals are sufficiently far enough away from the
vehicle such that azimuthal variations have attenuated. The X-59 vehicle uses a standard length L = 90
feet to represent the length of the vehicle, and the radial distance from the vehicle centerline is expressed
with R. Previous sonic boom prediction efforts such as the third Sonic Boom Prediction Workshop
(SBPW3) [3] have used R/L = 3 as a standard location for the transition from near-field CFD to far-
field propagation for earlier design iterations of the X-59; it has been verified to be at a sufficient distance
to ensure azimuthal independence of each off-track angle.

Flight conditions specifying a flight Mach number of 1.4, an altitude of 53,200 feet, and an angle of
attack of 2.04 degrees will be used as a representative flight condition for the X-59 for the remainder of
this section.

2.1 LAVA Curvilinear Grid Generation
X-59 simulations in the LAVA Curvilinear module use structured overset meshes. These meshes are
constructed to conform to the X-59 CAD geometry used in this study, shown in Figure 2. Though
mostly span-wise symmetrical, the vehicle includes some vents and cameras that are not mirrored across
the centerline. Some initial geometry cleanup in ANSA [9] was required in order to close gaps and create
a watertight surface. Overlapping structured surface meshes were then created in Pointwise [10], shown
in Figure 3. Meshing guidelines followed the best practices learned from creating similar meshes on earlier
design iterations of the X-59, like the C608 design simulated in SBPW3 [3]. 0.1% local chord spacing
was specified for leading edges, at least 5 points across blunt trailing edges was ensured, and the global
maximum stretching ratio governing surface and volume growth was set to 1.25 for the coarsest grid
level. A minimum 5 points of overlap between adjacent surface domains was also ensured for adequate
communication between fringe points of overlapping grids. Chimera Grid Tools [11] is then used to
grow the volume grids hyperbolically from the body-fitted surface grids. When growing from viscous
surfaces, the initial cell height is designed to maintain y+ ≈ 1.0. The full X-59 grid system consists
of 774 grids. The vehicle geometry is rotated to the required angle of attack in place so that the off-
body grids can remain aligned with the Mach angle for any given flight configuration, with the incoming
flow directionally fixed at α = 0◦. Grids were also carefully segmented into modular groups for later
manipulation, which will be discussed in Section 3.2.1.
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(a) Isometric view from upstream (b) Isometric view from downstream

(c) Top view (d) Bottom view

Figure 2: Several views of the X-59 geometry.

Figure 3: Surface grids from Pointwise,
exported and viewed in CGT.

Off-body grids are generated using a quasi-1D method,
where nonuniform refinements are placed only in the axial
direction. The grids are uniform in the circumferential di-
rection, and expand outward using the global stretching ratio
(SR = 1.25) radially. An axial point distribution is defined
on the centerline, where additional points can be placed to
generate refinement regions for known shock-inducing parts
of the geometry. Such refinement locations include the for-
ward probes and cameras, forward and aft vents, antennas,
and a large region for the aft deck and plume. This cen-
terline is then extruded along the Mach angle out to the
desired off-body distance, with a small offset of 0.2◦ applied
to compensate for skewness in the Mach angle introduced by
numerical artifacts. The radial extent for off-body grids is
chosen as R/L = 3.1 to ensure the near-field pressure probe
extraction location is sufficiently enclosed by the domain.
This surface is then revolved to form an enclosing cylindrical
domain. Due to memory constraints, the off-body cylinder
is split into 8 point-matched abutting blocks, which will be-

come relevant in Section 4.
All surface meshes were constructed at their coarsest level before uniform mesh refinement was ap-

plied. Following the results observed in [3], a refinement level of 1.4 was determined to be sufficient for
accurate loudness predictions. The final grid on the full CFD domain extending out to R/L = 3.1 has
545 million nodes and takes about 35 minutes to generate on a modern high-end workstation.

3



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

2.2 Problem Setup
The LAVA Curvilinear solver uses a second-order accurate finite-difference discretization to the steady-
state compressible RANS equations in strong conservation law form. The convective fluxes are evaluated
using a modified Roe scheme with third-order upwind-biased flux reconstruction [12, 13] and utilize the
Koren flux limiter. The viscous fluxes are discretized using a mid-point and node-centered difference
scheme. For consistency with NASA best practices and other collaborating CFD teams, the turbu-
lence model selected for RANS closure is the one-equation Spalart-Allmaras (SA) turbulence model [14],
where the convective terms are discretized using first-order upwinding. The discretized set of non-linear
equations is marched in pseudo-time to steady-state using automatic CFL ramping to accelerate con-
vergence. At each pseudo-time step, the linear system is solved using the preconditioned generalized
minimal residual (GMRES) algorithm [15]. The preconditioner is obtained from an incomplete lower-
upper factorization with fill level 0 of a first-order approximation of the residual Jacobian.

The flow in the engine from the intake to the exit nozzle is not modeled as a flow-through engine.
Instead, a boundary face is placed inside the engine where the compressor would be, and a special Mach
boundary condition designed during SBPW3 [3] is used. For this boundary condition, only the incoming
Mach number is specified. The solver then attempts to dynamically find a single pressure value across
the face such that the target Mach number is achieved in the average sense. The outlet of the engine is
another boundary face in the plenum of the exit converging-diverging nozzle, where stagnation pressure
and temperature are specified. This same cut-off strategy and boundary condition implementation is
also used at the inlets and outlets of the environmental control system (ECS).

The boundary conditions at the engine and ECS inlets can sometimes develop into supersonic inlet
conditions if started from purely ambient conditions. To prevent this, the flow-field is always initialized
such that any solution node belonging to a grid inside the inlet regions is set to the post-shock results from
basic normal shock relations at the flight condition Mach number. Additionally, solution instabilities
can occasionally develop near the ECSs due to their geometric complexity and the potential difficulty of
converging the Mach boundary condition; to alleviate these, the solver initially runs for 2000 nonlinear
iterations using a more dissipative first order flux reconstruction, then switching to third order for the
remainder of the iterations. The four ECS vents, v-tail vent, bottom drain, and sub-nozzle engine bypass
have stagnation pressure and temperature supplied.

2.3 Near-field Pressures and Loudness Prediction
Figure 5 shows a visualization of the flowfield on a centerline slice in the aft portion of the flow, wherein
the loudness prediction exhibits great sensitivity. Figure 6a shows the convergence behavior comparing
the normalized L2 norm of the flow equation residuals as a function of nonlinear iterations, highlighting
the CFL ramping capability of LAVA Curvilinear. CFL ramping is prescribed to start from unity to a
maximum of 150, which helps to accelerate convergence. A spike in the residuals can be seen at 2000
nonlinear iterations corresponding to when the simulation switches from 1st to 3rd order convective flux
evaluations. The solution took 11.5 hours on 60 Electra Skylake nodes (2400 Intel Xeon Gold 6148
processors).

Pressure signatures in the form of dP/P∞ are extracted from the volume solution at R/L = 3. The
azimuthal angle ϕ is designated “on-track” when ϕ = 0◦ underneath the vehicle. In this work, we extract
the entire cylinder at an azimuthal resolution of 2.5 degrees, as shown in Figure 4. On-track near-field
pressure signatures are given in Figure 6b.

Propagation was performed with sBOOM. The near-field signatures are pre-processed to have leading
zeroes ahead of the nose shock and to linearly ramp the pressure from the downstream end of the
probe back to ambient conditions to improve propagation consistency. Each on- and off-track angle is
propagated using a sampling frequency of 350kHz in standard atmosphere without wind. Figure 7 shows
the resulting loudness predictions for the boom carpet together with the on-track ground signature.
Loudness predictions are most often provided using the perceived loudness (PL) level of Stevens [16] in
decibels. The on-track PL on the ground is predicted at 76.8 dB, slightly louder than the target loudness
of 75 dB, with off-track angles generally decaying in loudness.

The ground signature shown in Figure 7b highlights several ways in which the design of the X-59
mitigates loudness on the ground by shaping the boom signature; for instance, the long nose and canards
help to break up the pressure rise, while the stabilator deflection interacting with the rounded bumps
on the bottom of the vehicle gentle the slope of the pressure recovery. In fact, the under-pressure
region of the ground signal is a crucial component in estimating the loudness of the X-59; significant
loudness buildup using the B-weighted sound exposure level (BSEL) loudness metric can be observed

4



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

Figure 4: Line probe cylinders shown at R/L = 1, 2, 3. Starboard probes omitted for visual clarity.

Figure 5: Centerline slice of the volume solution, showing density normalized by free stream. Note where
waves emitting from the geometry impinge on the nozzle exhaust plume and their resulting pressure
disturbance underneath it.

near t = 110ms. A breakup of the wave just before significantly lowers the perceived loudness over other
conditions. Phenomena like this can be traced back to the near-field probe, in this case in Figure 6b,
near x/L = 4.1, and then traced back up the Mach angle to the near-field solution, here originating in
the exhaust plume. This region is very complex involving not only the engine plume, but also shocks
coming off the control surfaces atop the vertical tail, and also involving the pressure recovery portion
after the stabilators, from x/L = 4 to x/L = 4.1. Refer to Figure 5 to see the region.
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(b) On-track pressure disturbance dP/P at R/L = 3.

Figure 6: Near-field CFD solution for given flight conditions.

(a) Perceived loudness (PL) in decibels over the
boom carpet.

(b) Ground signature (in black) and loudness
buildup (in blue).

Figure 7: Noise characteristics on the ground as propagated by sBOOM.

3 Advancements in Loudness Prediction Methods Part I:
Space Marching and Database Capabilities

Recently, several improvements have been made to the two step noise prediction procedure within the
LAVA computational framework. A high-order space marching method has been developed, yielding
significant efficiency and accuracy improvements [17], which are covered in Section 3.1. Also, a robust
scripting system covered in Section 3.2 has been developed that leverages the use of overset curvilinear
grids to modularly re-appropriate or generate new grids based on any given flight condition, reducing
user error and streamlining the production of flight simulation databases. Mesh redistribution is detailed
separately in Section 4.

3.1 Space Marching
Space marching is a highly efficient middle step in the loudness prediction process, shown in Figure 8,
that takes advantage of the supersonic nature of the flow by solving the steady state Euler equations
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of gas dynamics on a Mach-cone aligned mesh. The space marching domain covers the region of space
termed the “mid-field” between the interface location near the vehicle geometry and the interface location
suitable for sBOOM (R/L = 3 in this work).

Figure 8: Introducing mid-field space marching to loudness predictions.

The near-field solution is computed as before in Section 2, but the CFD domain of the near-field
problem can be truncated to just the domain of dependence. A simple way to estimate the domain of
dependence is to construct a forward opening Mach cone placed just upstream of the nose of the vehicle
and a Mach cone opening in the opposite direction placed near the aft of the vehicle. The placement of
these cones along the streamwise axis can be adjusted until the entire vehicle geometry is encompassed
by the two cones, taking care to include the full wing span and vertical tail. The radius where the cones
intersect provides a good estimate of the required radial domain extent. For the X-59, the cones can be
seen in Figure 9, and the intersection be found as R/L = 0.6.

In order to verify that truncating the domain in this way does not affect the near-field pressure
disturbances, Figure 10 shows the pressure disturbance at R/L = 0.25 interpolated from the default
near-field CFD domain of Section 2, which extends out to R/L = 3.1 to include the pressure probes,
and on the truncated domain for use with space marching extending to R/L = 0.6. Visually, there is no
difference in the solution. Figure 11 interpolates a line probe underneath the vehicle at the same radial
extent R/L = 0.25, and again one can see no visible difference in the pressure disturbance for most of
the signal, indicating that domain truncation indeed does not affect the near-field solution. A small
difference can be seen at the downstream end of the signal due to ignoring the influence of the powered
engine plume in the Mach cone domain of dependence analysis, however this region has a negligible
influence on the loudness buildup (see Figure 7b). Additionally, truncating the CFD domain in this way
reduces the size of the more costly RANS CFD problem from solving on a grid with 545 million nodes,
412 million of which are in the off-body grid, to the solution on a grid with 273 million nodes, 131 million
of which are off-body, representing a 50% reduction in solution points.

After finding the minimum CFD domain extent, an interpolating elliptical surface is then setup
around the vehicle, according to Equation 1.√

a0(y − y0)2 + b0(z − z0)2 = 1 (1)

This surface trims the interior portion of the space marching grid that is covered by the near-field CFD
domain, effectively removing those grid points from the space marching solution procedure. Currently,
the elliptical interface is determined manually; automatic methods of construction are currently being
explored. The ellipse must be carefully constructed such that it is within the truncated CFD domain,
and captures the vehicle geometry without cutting too close to it. For all X-59 cases in this work,
a0 = 0.0325, b0 = 0.15, y0 = z0 = 0. See Figure 12 for a visualization of the elliptical cutting surface.

The space marching solver uses a specially designed structured curvilinear grid with (ξ, η, ζ) corre-
sponding to (j, k, l) indices to discretize the mid-field. The grid aligns its ζ-direction with the freestream
flow and uses a uniform spacing, reducing potential dispersion error. The ξ-direction is aligned with the
Mach angle µ = sin−1(1/M∞)+µϵ where µϵ = 0.2◦, and is governed by a simple stretching rule SR = 1.05
with a prescribed maximum aspect ratio AR = 20. Finally, the η-direction covers the circumference with
a uniform spacing.
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R/L = 0.6

Figure 9: Domain of dependence.

(a) Default domain out to R/L = 3.1 (b) Truncated domain out to R/L = 0.6

Figure 10: Near-field CFD solution at R/L = 0.25. No visible differences in solution observed from
domain reduction.

Pressure probes are typically most sensitive to streamwise spacing. To evaluate this, a grid sensitivity
study was performed on the same flight conditions as in Section 2. Here, the space marching domain
in the streamwise direction is fixed at 2L, starting just ahead of the vehicle nose. The finest mesh level
has nζ = 1001 where nζ is the number of streamwise points. Coarser grid levels halve the spacing.
Circumferential resolution is held constant at 1 point per degree for simplicity (nη = 361). See Figure 13
for a visualization of the on-track line probes interpolated at R/L = 3. At even the finest space marching
mesh level, the cost of the computation is negligible compared to the cost of the near-field CFD solution,
so the finest grid level with nζ = 1001 will be used.
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Figure 11: Line probes extracted at R/L = 0.25. In black is the default CFD domain extending out to
R/L = 3.1. In blue is from the truncated CFD domain for use with space marching, which only extends
to R/L = 0.6.

(a) Space marching interface ellipse. (b) Resulting fringe points.

Figure 12: Construction of CFD-SM interface location.
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nζ 125 251 501 1001
total dof 7.81M 28.4M 106M 411M
wall time 1m 2m 5m 18m

Table 1: Space Marching grid resolution study using a single Electra skylake node.

Because of the hyperbolic nature of supersonic flows, space marching solves the Euler equations in a
time-like marching method in the ζ-direction, using backward differencing (BDF2). For the two space-
like directions, the derivatives are discretized using a high-order Hybrid Weighted Compact Nonlinear
Scheme (HWCNS) [18, 19], with fluxes given by a WENO [20] scheme. Several versions of these schemes
are available in the space marching solver; in this work, we use HWCNS4-WENO3.
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Figure 13: Space marching streamwise grid refinement study at R/L = 3

3.2 Database Capabilities
In addition to providing flight planning teams with fast and accurate loudness predictions, the LAVA
team has also helped develop and execute several iterations on databases of X-59 flight conditions in order
to provide the Acoustics Verification, Testing, and Planning (AVTPE) team with a large amount of data
with which to train an as-yet unpublished flight planning machine learning model called CLEOPATRA.
Several new capabilities were introduced to the X-59 simulation process in order to execute these
databases efficiently, and in such a way that was less prone to human error. These capabilities ex-
tend their benefits to any current and future loudness prediction simulations, whether individual cases
or large sets of cases, by way of a Python scripting system developed specially for this work. These
database scripts control the full simulation process from grid generation to postprocessing, and enable
users to perform X-59 loudness predictions with consistency and reliability.

3.2.1 Build-from-nominal Grid Process

One advantage of using structured overset meshes for sonic boom predictions is their modularity. When
constructing a series or database of simulations, often the changes required from one flight configuration
to the other are quite small in proportion to the full grid system. For instance, a stabilator sweep only
requires meshes on the stabilator itself to rotate around the deflection axis. Regrowing the volume grids
from the surface can be foregone if there is good coverage of the space; the existing stabilator mesh
from the previous deflection point in the sweep can simply be rotated and overlaid into the rest of the
grid system. In this way, only the grids affected by a change in the simulation inputs need be altered,
often by simple transformations, and the rest of the volume grids can be copied over from the previous
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grid to the new grid system. Constructing X-59 meshes in this way reduces the total time to generate a
grid on a modern high-end workstation from 35 minutes down to 10 minutes, with no difference in the
resulting grid system. Most of the 10 minutes spent in grid generation is in the overlapping and hole-
cutting procedure to generate iblank information and interpolation stencils. To facilitate this process,
overset meshes were carefully constructed in Pointwise and CGT such that control surfaces, like the
ailerons, flaps, stabilators, rudder, and t-tail, highlighted in Figure 14, can be dynamically deflected. All
of the highlighted components can be rotated around predetermined axes to some reasonable maximum
deflection; or in the case of the nozzle, opened and contracted to some reasonable exit plane area.

Figure 14: Control surfaces able to be deflected in database scripts.

3.2.2 Dynamic nozzle and control surface deflections

Recent versions of the X-59 simulation database featured variable inputs for the throat and exit areas
of the vehicle’s engine, which in reality uses hydraulics to control the nozzle areas to achieve different
thrust conditions. To account for this, the interior nozzle grids, which are point matched abutting grids
built on the original geometry, are dynamically generated via CGT grid scripts. Exit plane widening
and narrowing is usually small compared to the exit plane area, so the streamwise coordinate of the exit
plane is kept constant, and the lip is kept at a constant width. This defines the top coordinate of the
nozzle exterior. A root point is fixed to the geometry which then defines the boundary points of the
exterior surface. The exterior is then formed by scaling the original nozzle curve by its distance from
the fixed root point. This method maintains the existing surface curvature of the original, undeflected
nozzle, and is a small improvement over using straight lines for the exterior surface. Most surface grids
around the nozzle can then be projected onto the deformed surface.

3.3 Three-Step Solution Procedure
In this section, results from simulating the X-59 at the same representative flight conditions using the
database scripting system for grid generation and preprocessing, and using space marching for mid-field
computations will be presented. Comparisons with the results of Section 2 will also be highlighted.

3.3.1 Problem Setup

The grid for this case is generated from a previous run condition (in this case, using a geometry from
a different angle of attack and different control surface deflections) following the build-from-nominal
grid process. The multi-block off-body grids are extended out to R/L = 0.6, following the domain of
dependence analysis from Section 3.1 and observed results from [17]. The space marching grid has 411
million nodes in total and it can be seen in Figure 15, where the center of the domain has been trimmed
by the elliptical cutting surface. The solution is computed as before for 2000 nonlinear iterations using
more dissipative first order convective fluxes before restarting with a third order scheme and running
for a fixed 10000 total nonlinear iterations. The near-field solution is then interpolated onto the space
marching grid and propagated to mid-field. Line probes are extracted at the R/L = 3 location from the
space marching volume solution and given to sBOOM for propagation to the ground. sBOOM uses a
frequency resolution of 350k in standard atmosphere and no wind.
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Figure 15: Centerline slice of space marching domain, shown on a coarse resolution for visual clarity.

3.3.2 Results

Line probes extracted 3 body lengths away are shown on the space marching domain in Figure 16.
They are indistinguishable for the most part, with the biggest discrepancies occurring in the downstream
portion. The inset image focuses on this area. As observed in Section 2, this can be traced back to the
plume region, where shocks from the t-tail impact the flow in the plume and continue along the Mach
angle. A small difference in the freestream recovery region can also be observed, most likely due to more
aggressively truncating the CFD domain such that turbulent and viscous features far downstream of the
vehicle are being communicated to space marching and kept in the mid-field propagation. Ultimately,
this has a negligible effect (< 0.1dB) on the predicted loudness. The near-field probes for positive off-
track angles are collected into contour plots in Figure 17 for comparison. Visually, there is very little
difference in the near-field solutions between the two methods.

Figure 18a shows predicted loudness over the boom carpet in dBs. Across the carpet, the pressure
disturbance obtained using space marching consistently predicts higher loudness than the probes obtained
using CFD alone. This is expected as space marching is much less dissipative than the RANS CFD in the
mid-field. Space marching also introduces less dispersion error into the flow by having a refined uniform
mesh in the streamwise direction without steps in resolution coming from refinement regions, like what
is present in the CFD solution.

In Figure 18b, we observe that space marching maintains a slightly sharper initial rise to the pressure
disturbance peak, and a difference in the under pressure peak characteristic which causes a slight step
up in the loudness buildup, visualized with the BSEL loudness metric. The underpressure peak in the
space marching solution is slightly higher in amplitude, and also the pressure recovery slope is a little
sharper, contributing to a higher loudness buildup. This area is the most common location for the X-59
in loudness prediction differences across analysis teams due to how many physical effects are involved,
including the plume structure (which itself includes engine conditions and nozzle geometry sensitivity),
v-tail and t-tail wave propagation from the top of the geometry to the plume, and three dimensional
effects from the aft deck expansion interaction with the plume. Using space marching allows for CFD
domain truncation and cost reduction, enabling more refinement to be given to the plume and t-tail
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Figure 16: Near-field CFD solution using space marching for mid-field propagation.

(a) Interpolated from CFD domain. (b) Interpolated from space marching domain.

Figure 17: Pressure disturbance contours for positive off-track angles.

regions. As before, the ground signature and loudness buildup past t = 120ms show that loudness
predictions have little sensitivity to the signal closeout.

Loudness metrics ASEL BSEL CSEL PL
CFD 63.172 76.057 90.467 76.781
Space Marching 63.443 76.509 90.901 77.167

Table 2: On track loudness metrics compared between the two methods.

In Table 2 we compare the various loudness metrics (A-, B-, and C-weighted sound exposure levels
and PL) for the two procedures directly under the X-59 at ϕ = 0◦. Across the board, space marching
predicts a slightly higher loudness, with PL being 0.38 dB higher.

Table 3 compares computational cost in CPU-hours for the traditional two step procedure of Section 2
and the current best practice three step procedure using space marching. We find a 53% cost reduction
for a loudness prediction that is more accurate than before. CFD domain truncation comprises the
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Figure 18: Far-field propagation of pressure signatures from space marching domain using sBOOM.

CPU-hours 2 step 3 step
Grid Generation 0.50 0.16
Near-Field Solution 690 400
Space Marching – 0.28
sBOOM 0.1 0.1
Total 690.6 400.54

Table 3: Computational cost comparison between two step (CFD, sBOOM) and three step (CFD, SM,
sBOOM) procedures.

majority of cost savings between the two methods, while the more efficient grid structure and solution
marching procedure from the near-field to the mid-field provide accuracy enhancement and enable space
marching to be run using a single Skylake node.

4 Advancements in Loudness Prediction Methods Part II:
Anisotropic Mach Cone Aligned Mesh Redistribution

Structured curvilinear Mach cone aligned grids are used within both the CFD and space marching do-
mains. These grids align the radial computational space direction with the Mach cone angle to minimize
grid induced errors when capturing the shock-dominated off-body flow field. Their extents are defined
by the domain of dependence which may be manually or automatically determined through intersecting
Mach cones (see Figure 8). Previous work highlighted an automated procedure for constructing these
grids from a small set of user parameters [21, 22]. For database generation, only the Mach cone angle
need be redefined based on the baseline flow conditions. Generation of this mesh is negligible, much
less than a minute, for most production-level grid systems. The true difficulty comes in automatically
defining refinement regions which provide sufficient resolution of the off-body flow features required for
accurate ground-level noise predictions. For such automation, we rely on a novel anisotropic Mach cone
aligned mesh adaptation technique.

Adaptation is achieved through an r-refinement algorithm, which fixes the number of grid points and
redistributes them to coarsen or refine certain regions of the grid. This adaptation approach can be
viewed as a method for generating an optimal off-body grid for a given number of degrees of freedom,
and for the current application a fixed mesh orientation. By fixing the degrees of freedom we are able to
generate a more accurate solution with a fixed simulation cost. Consider the integration of the pressure
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disturbance waveform at any radial location in the continuum,

J(p) :=

∫
∆p

p∞
dℓ (2)

In the asymptotic range, the discrete integration of an extracted waveform satisfies

Jh = Jexact + Cph
p +O(hp+1) (3)

where is Jh is the approximation of Jexact from a quadrature rule, p is the order of the CFD discretization,
Cp is a grid-independent constant, and h is the characteristic grid spacing in the streamwise direction.
Therefore, by locally refining the off-body grid in regions where the discretization error is large, we reduce
the total error in our waveform prediction.

Governing the adaptation is a one-dimensional error equidistribution principle of the form

wi∆si = C (4)

for i = 1, . . . , N . Here, N is the number of grid points along the one-dimensional curvilinear coordinate
line, wi is a positive weighting function, ∆si is the length of the ith interval in the grid, and C is an
arbitrary constant. The weighting function is defined as

wi = 1 +Afi (5)

where fi is the error indicator which drives the redistribution and A is a user-specified clustering constant.
Methods for automatically defining A are discussed by Ashby et al. [21, 22]. Since information travels
along characteristic lines through the off-body which is aligned with the radial direction of the Mach
cone aligned grids, we restrict redistribution in either the streamwise or circumferential directions using
Equation (4). Both feature-based and adjoint-based indicators may be used to drive the adaptation.

Feature-based indicators are simple to construct from a computed flow solution, however, they may
target regions in the off-body domain which may not directly contribute to the error in the waveform.
For this reason, adjoint-based indicators may be more suitable to only refine regions contributing directly
to the error. We have observed little benefit from solving large adjoint systems particularly for complex
geometries where exact adjoint methods are twice as expensive as a flow solve. Comparison between a
first-order adjoint method relying on finite differencing to construct the numerical Jacobian to feature-
based indicators in LAVA were published by Ashby et al. [21, 22].

4.1 Feature-based Indicators
Feature-based indicators are an error measure for a given flow quantity. Here we present a simple and
effective feature-based error indicator based on the work of Buning and Pulliam [23]. The one-dimensional
undivided second-difference of a flow quantity q is computed at point i

∂2q

∂ξ2
= qi+1 − 2qi + qi−1 (6)

This is a computational coordinate biased proxy for q at grid point i and is proportional to the remaining
error term of the linear interpolation of q from neighboring points on a two times coarser grid level.
Common examples of q for supersonic flow include Mach number and pressure disturbance. For a given
computational coordinate direction, non-blanked points are computed

e(ξj , ηk, ζl) = max
i=j,k,l

|qi+1 − 2qi + qi−1|
qref

(7)

where qref is a reference quantity used to normalize the indicator.
Feature-based indicators are advantageous for adaptation since they only require a flow solution.

For CFD simulations, the discretization error is convected and diffused throughout the domain. Since
feature-based indicators target error and not the sources of error, adaptation methods will resolve regions
of the domain that do not impact the discretization error. For this reason, adjoint-based error indicators
are a popular alternative.
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4.2 Adjoint-based Indicators
In CFD simulations, output functionals such as lift and drag are often the quantities of interest. Adjoint-
based indicators are formulated from estimates of output functional discretization error estimates. The
derivation of these estimates follow from discrete adjoint-weighted residuals for finite-volume and finite
difference discretizations for near-field CFD simulations. For brevity, we present a condensed formulation
and refer readers to the work of Venditti et al. [24, 25].

Consider an open bounded domain Ω ⊂ Rd, 1 ≤ d ≤ 3. We denote the output quantity of interest as
J(Q), where Q is the analytic solution to a set of model equations,

R(Q) = 0 in Ω (8)

For this work we apply the RANS equations in strong conservative form where Ω is the near-field CFD
domain. Suppose Ω has been discretized to form a working mesh ΩH with characteristic cell-size H
and N vertices. The flow equations are then discretized and form a nonlinear discrete system of partial
differential equations,

RH(QH) = 0 (9)

where QH = [Q1, . . . ,QN ]T , Qi ∈ RM , and RH ∈ RM ·N . If J was an integral operator, then JH
represents the quadrature rule used to compute J on ΩH. An error estimate for the computation of the
output functional discretization error is sought,

ε = |J(Q)− JH(QH)| (10)

Let Ωh be the embedded uniformly refined mesh with characteristic cell-size satisfying h = H/rf
where rf ∈ R+ is the refinement factor. In the asymptotic range, Richardson extrapolation gives relation

J(Q)− JH(QH) =
rpf

rpf − 1
(Jh(Qh)− JH(QH)) +O(hp+1) (11)

Therefore, to estimate the error in the coarse grid functional estimate, we need only to form an error
estimate between embedded and working space functionals.

The discrete adjoint (or dual) problem is defined as the linear system of equations,

[
∂Rh

∂Qh

∣∣∣
QH

h

]T
ψh =

[
∂Jh
∂Qh

∣∣∣
QH

h

]T
(12)

where QH
h is a prolongation of the working mesh flow solution into the uniformly embedded space Ωh.

Taylor expansions of the embedded space flow residual and output functional about the prolonged flow
solution give an error estimate,

Jh(Qh)− Jh(Q
H
h ) ≈ −ψT

hRh(Q
H
h ) (13)

Adding and subtracting prolonged coarse grid adjoint solutions gives

Jh(Qh)− Jh(Q
H
h ) ≈ −

(
ψH

h

)T

Rh(Q
H
h )−

(
ψh −ψH

h

)T

Rh(Q
H
h ) (14)

To avoid solving the large sparse adjoint linear system on the embedded mesh, we apply low- and
high-order prolongation operators to the working mesh primal and adjoint solutions, QLO

h = PLOQH,
ψLO

h = PLOψH, and ψHI
h = PHIψH. Replacing ψh, ψ

H
h , and QH

h in (14) gives

Jh(Qh)− Jh(Q
LO
h ) ≈ −

(
ψLO

h

)T

Rh(Q
LO
h )− (ψHI

h −ψLO
h )TRh(Q

LO
h ) (15)
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Substituting this approximation into (11),

J(Q)− JH(QH) ≈
rpf

rpf − 1

(
Jh(Q

LO
h )− JH(QH)

)
(16)

−
rpf

rpf − 1

[(
ψLO

h

)T

Rh(Q
LO
h ) + (ψHI

h −ψLO
h )TRh(Q

LO
h )

]
(17)

The output-based error estimate on the embedded off-body grid is defined to be the error in the com-
putable correction,

eh = (ψHI
h −ψLO

h )TRh(Q
LO
h ) (18)

A full-weighting restriction operator is applied to eh to produce the adaptation indicator on the working
off-body mesh.

Adjoint-based indicators are advantageous for improving mesh resolution to accurately capture the
output quantity of interest. A downside of this approach is the associated computational cost of obtaining
an adjoint solution. Although prolongation operators are utilized to mitigate these costs, adjoint solutions
may cost twice as much as the flow solution. The resulting mesh may result in a significant reduction in
grid nodes, potentially offsetting this cost for database generation [21, 22].

4.3 Direction-based Indicators
To ensure direction-based redistribution produces high-quality volume grids, we apply a novel procedure
to the aforementioned error indicators. Let e0 = e0(ξ, η, ζ) be an initial error indicator computed on
the Mach cone aligned off-body grid where ξ, η, and ζ are the streamwise, circumferential, and radial
computational grid axes respectively. Since supersonic flow information travels in a common time-like
direction, we form a new indicator from e0 such that the adaptation will generate locally refined spacing
along the time-like direction while maintaining required mesh alignment and smoothness. Without loss
of generality, we proceed by outlining the procedure for forming a streamwise adaptation indicator. An
initial streamwise adaptation indicator g is defined

g(ξ) = max
η

|e0(ξ, η, ζ∗)| (19)

where ζ∗ is the cylindrical surface with minimum radial distance from the aircraft that is not blanked by
the near-body grid system. This ensures the capturing of the errors in the circumferential direction at
each streamwise location on the fixed radial surface. An elliptic smoothing algorithm is applied to the
indicator,

gsi =
gi−1 + 4gi + gi+1

6
(20)

where gi = g(ξi) [26]. Applying this algorithm for a low number of iterations reduces numerical noise and
sets values in the blanked points with reasonable approximations for adaptation. Let ḡ be the average of
the smooth streamwise indicator. Since gs ≥ 0 and we require gs ∈ [0, 1] in order to specify the clustering
constant A in (5), we define the mapping

f(ξ, η; ζ∗) = tanh(β gs(ξ)) ∈ [0, 1) (21)

where β = tanh−1(0.8)/(C ḡ) and C ≥ 1 is a threshold constant ensuring the targeting of statistically
significant regions of the error indicator. Once the surface indicator f(ξ, η; ζ∗) is defined, we interpolate
its values onto the rest of the grid using a normalized distance metric

τ =
x− r

√
M2

∞ − 1

L
(22)

where r is the radial distance from the aircraft centerline and L is the aircraft body length.
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4.4 Redistribution Verification
The goal of mesh redistribution is to reduce the grid-induced error in the CFD off-body domain without
increasing the degrees of freedom. If we are targeting important regions of the flow, applying mesh re-
distribution to the coarse grid and refining the resultant grid system should result in improved solutions
through all mesh levels. To verify our methodology, we consider a simple extruded diamond airfoil CFD
simulation with a truncated off-body domain. A two-dimensional diamond airfoil with a thickness of
0.07 is simulated in a supersonic inviscid flow with a Mach number of 2 [27]. The goal of this study is to
investigate the impact of adaptation exclusively on extracted off-body CFD signatures. Our adaptation
methodology relies on the assumption that off-body grid errors in the CFD simulation contribute signif-
icantly to the error in the near-field space marching solution. These errors accumulate and propagate
to the ground-level noise metrics. Therefore, we use this test case to demonstrate that we can reduce
off-body CFD simulation errors.

Figure 19: Initial (left) and adapted (right) diamond airfoil grids comparisons.

Figure 20: Diamond airfoil line probe (red) at R/L = 0.35

The off-body grid is generated using 301 streamwise points, 101 radial points, and constant radial
spacing 0.1 meters from the geometry. A family of grids is created using a refinement factor of 1.4,
resulting in five grid levels. A line probe of ∆p/p∞ is extracted at R/L = 0.35. We use the fifth grid
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(b) Adapted off-body grid.

Figure 21: Diamond airfoil line probe convergence at R/L = 0.35.

Figure 22: Waveform error convergence for diamond airfoil.

level as a reference solution to measure convergence. Adaptation is performed in the streamwise direction
using a pressure indicator on the coarsest mesh level. Comparisons between the initial coarse and adapted
grids are shown in Figure 19. A family of adapted grids is similarly generated by refining the adapted
coarse grid with a refinement factor of 1.4. To compare results, we measure the L2 norm of the line probe
error compared to the extracted reference line probe. Figure 22 shows the error convergence for both
the uniform streamwise and adapted grids. Observe that adaptation enables accuracy matching that of
the next finest grid level. The convergence behavior between the uniform and adapted grids is similar;
however, we see slower convergence from the adapted grid for the first three levels and faster convergence
between the third and fourth grid levels. Finally, a qualitative comparison between the extracted line
probe convergence is provided in Figures 21a and 21b.

4.5 Database Adaptation Feasibility
To demonstrate the feasibility of including adaptation within the database generation workflow, we apply
the described adaptation methodology to the X-59 at the flight conditions of Sections 2 and 3.3. An
automatic off-body mesh with uniform streamwise spacing was generated for the CFD domain. As before,
the CFD solver is initially run for 2000 first-order iterations. Instead of serving as our warm-start, we
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use this solution to build the adaptation indicator. Figure 23 shows a Mach number direction-based
indicator on the multi-block off-body mesh topology. Adaptation is performed using this indicator and
the first-order solution is interpolated onto the adapted grid. We then warm-start the CFD solver for
the adapted grid using the interpolated first-order solution.

Figure 23: Feature-based multi-block adaptation indicator.

A comparison between a uniform, manually refined, and adapted off-body grid streamwise spacing
is shown in Figure 24. The streamwise local refinement regions of the manual and adapted grids are
comparable. Meaningful differences are observed at the leading shock, where equidistribution coarsens
the uniform grid to provide more resolution downstream. Such point distributions are non-intuitive
and suggest the need for adaptation, especially when running database simulations with possibly large
variations in flight conditions.

Figure 24: Streamwise grid spacing comparisons.

Figure 25 compares the two step, three step, and adapted three step near-field signatures. Minor
differences between the three step and adapted three step methods exist, resulting from the manually
refined and adapted off-body grids. Grid sensitivity is strongest in the downstream region traced back
to the t-tail shock interaction with the plume. The corresponding on-track ground-level signatures are
presented in Figure 26. Despite the differences in near-field signatures in this region, the adapted grids
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Figure 25: Near-field signatures for the two step and three step prediction procedures.

were able to provide loudness predictions with similiar accuracy to those of the manually refined grids,
as seen in Figure 26(a).

With strong agreement between manually refined grids and adapted grids, one may safely conclude
for this case that adaptation does not sacrifice accuracy for automation. These results suggest a gain
in robustness to varying flight conditions. A practical conern with adaptation is the cost of including it
within the database workflow. Table 4 contains a breakdown of the time required to compute an adapted
CFD solution. All steps of the process were ran using 2400 Intel Skylake Xeon Gold 6148 processors. The
combination of MPI/openMP hybrid parallelism and the direction-based adaptation algorithm design
render the cost of including adaptation in the database workflow negligible.
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(b) On-track ground-level overpressure signatures.

Figure 26: PL boom carpet and ground-level overpressure signatures.

Task Wall-Clock Time
Initial Flow Solve 1 hr 51 min 58 s

Adaptation 2 min 37 s
Restarted Flow Solve 8 hr

Table 4: Adapted CFD timing breakdown for the X-59 on 2400 Intel Skylake Xeon Gold 6148 processors.
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5 Conclusion and Future Work
Advancements on the traditional two-step loudness prediction solution procedure have been described
and applied to the X-59. We have shown that truncating the CFD domain and using Space Marching for
mid-field computation yields an accuracy enhancement at roughly half the cost. Database capabilities
using LAVA Curvilinear were developed that allow series of cases at a wide range of flight conditions to
be generated and preprocessed with more robustness and in a way that is less prone to human error. In
the context of the database scripting system, leveraging the modularity of structured curvlinear overset
grids by using a novel build-from-nominal grid generation process was introduced. This process has a
grid built from nominal database flight conditions, modifying only the necessary parts of the geometry
without complete grid regeneration to account for new specified flight conditions. This results in a 71%
reduction in grid generation time.

A novel direction-based anisotropic Mach cone aligned mesh redistribution procedure was verified and
applied to the X-59. The inclusion of adaptation into the three-step low boom simulation procedures re-
quires only 2.5 minutes of wall-clock time. With low computational cost, the robustness of automatically
adapting off-body CFD grids without sacrificing accuracy is an exciting advancement.

In the future much of the database capabilities designed for the X-59 have great potential to be used
together with the NASA developed Computational Aerosciences Productivity and Execution (CAPE)
framework [28]. The mesh redistribution procedure will also be explored using different indicators and
convergence quantities, with the ultimate goal of including within our best practice workflow.
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