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Abstract: In this study, data-driven reduced-order models (ROM) for pressure fields are con-
structed. We focus on the system robustness to accurately predict pressure fields differing in
Reynolds number (Re) from those in the dataset. The ROM of the pressure field solves a reduced-
order equation obtained by Galerkin projection for the pressure Poisson equation using the proper
orthogonal decomposition (POD) mode of the pressure field. The ROM is constructed using the
POD modes obtained from the time series pressure field around a circular cylinder at Re = 80.
The mean squared error with the pressure field obtained from full-order numerical simulations is
quite large when predicting the pressure field at different Re from the dataset. Conversely, when
the dataset includes the pressure fields of Re = 80 and 160, the mean squared error is smaller than
the ones from the ROM using the Re = 80 POD modes, even for pressure fields different from
those in the dataset. The ROM is constructed by changing the number of POD modes. For ROMs
constructed on datasets containing pressure fields at Re = 80 and 160, we found that increasing
the number of modes improves robustness. Adding Re = 120 to the dataset resulted in smaller
mean squared errors between the pressure fields obtained from full-order numerical simulations
and those obtained from the ROM for most Re cases. Based on these investigations, a simple
approach to the POD that includes the pressure fields of multiple Re in the dataset improves the
robustness of the ROM.

Keywords: Reduced-order model, Proper orthogonal decomposition, Pressure estimation, Galerkin
projection.

1 Introduction

A reduced-order model (ROM)[1, 2, 3, 4, 5, 6] is known as a faster method of computing flow fields
than conventional computational fluid dynamics (CFD). Most ROMs are constructed in a data-driven
and empirically based on the CFD results or experiment data. A typical ROM construction method is
a model using proper orthogonal decomposition (POD)[7, 8, 9, 10, 11, 12]. The POD is a method of
computing the optimal modes to represent a given time-series dataset of flow fields. The flow field is
reconstructed from the optimal modes in the POD-based ROM.

In many practical cases, the CFD and ROM solutions depend on parameters such as Reynolds
number (Re). In the ROM construction, the flow field given as a dataset contains flow fields under some
representative conditions. Therefore, the flow field prediction requires robustness to predict flow fields
that differ from the dataset. POD-based ROMs tend to lack this robustness. Various approaches have
been proposed to improve the robustness of POD-based ROMs[13, 14, 15, 16, 17, 18, 19, 20].

A flow field with two or more conditions is required for the dataset to improve the robustness of
ROM based on the POD. The most simple approach is to apply POD to a dataset that contains flow
fields for two or more conditions referred to as global POD[21, 22, 23, 19, 24]. The global POD has the
advantage of requiring no complicated algorithms than the POD for a single condition. In this method,
the flow fields for multiple conditions are given as a single dataset, and a set of POD modes represents
the global characteristics of the flow field for all conditions. However, the global POD-based ROM loses
computational stability when more than three conditions are included in the dataset. Even for a simple
flow field, as the number of conditions increases, the basis required for the representing datasets becomes
enormous. These aspects are clearly shown in the results of applying the global POD to the velocity
field[19].

Most of the ROM studies using the POD are to predict velocity fields because the velocity field
and derived kinematic properties have played an important role in investigating unsteady flows and
turbulence. However, the fluid flow also has a dynamic aspect represented by hydrodynamic pressure.
Fluctuating pressure is a primary factor in turbulence, cavitation, and aeroacoustic phenomena[25].
Therefore, estimating the pressure field is just as important as computing the velocity field.
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Only a few studies have been conducted regarding the ROM for the pressure field. Akhtar et al.[26, 27]
proposed a model to compute the pressure field from a given velocity field using the POD modes, which
is obtained by the time-series pressure field. They focused on constructing the ROM for pressure fields
and not predicting pressure fields for conditions different from the POD modes. To our knowledge, the
pressure field has never been reconstructed in this pressure ROM under conditions different from those
of the POD dataset. This study focuses on the robustness of the ROM for pressure fields.

Section 2 formulates the POD methodology and the ROM based on the pressure Poisson equation.
Section 3 describes the numerical simulation methods used to prepare the datasets required for the POD.
The dataset contains a flow around a cylinder obtained from two-dimensional numerical simulations. In
Section 4, we present the ROM results for the pressure field, focusing on the ROM results of varying
the Re of pressure fields in the dataset to obtain the POD mode. We emphasize the results for the case
involving datasets containing pressure fields of multiple Re’s. Section 5 is a summary of this study.

2 Pressure ROM Methodology

2.1 POD

The POD is a method for computing the orthogonal modes φk(x) that best represent a given dataset
qm(x) (m = 1, 2, 3, · · · ,mmax). The POD is formulated by finding the orthogonal modes φk(x) that
satisfy the following minimization problem

argmin
{φk}r

k=1

mmax∑
m=1

∥q̃m(x)−
r∑

k=1

ak,mφk(x)∥2, (1)

where q̃m(x) represents the fluctuating component of data qm(x) computed below:

q̃m(x) = qm(x)− q̄(x), (2)

q̄(x) =
1

mmax

mmax∑
m=1

qm(x), (3)

and ak,m is the coefficient of the POD mode satisfying below:

ak,m = ⟨ qm(x),φk(x) ⟩. (4)

Here, ⟨ ·, · ⟩ represents inner product defined by:

⟨ b(x), c(x) ⟩ =
∫
V

bT (x)c(x) dx, (5)

where b(x) and c(x) represent vector-valued function depending on x, and V is the entire domain in
which x is defined. Therefore, the reconstruction error is minimized when the data are expressed by the
r POD modes as follows:

qm(x) ≈ q̄(x) +

r∑
k=1

ak,mφk(x). (6)

This paper uses snapshot POD[28] and incremental POD[29, 30] to compute the POD mode numerically.
Validation of incremental POD is shown in Appendix A.

2.2 Pressure Model

The ROM of the pressure field is constructed by projecting the pressure Poisson equation onto the
low-dimensional space spanned by the POD modes[26]. Using the POD mode ψk(x) obtained from the
pressure field data, the pressure field can be decomposed as follows:

p(x) ≈ p̄(x) +

r∑
k=1

bkψk(x), (7)
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where p̄(x) represents average of the pressure, and bk is coupling coefficients for the POD modes. Under
this decomposition, the pressure Poisson equation is projected below:

1

ρ
∇2p̄+

1

ρ

r∑
k=1

bk,m∇2ψk = −∇ · (∇ · umum), (8)

where variables with a subscript m represent variables with the same conditions and at the same time.
The inner product with the POD mode yields the simultaneous equations for bk,m presented below:

r∑
k=1

bk,mIk,l = Jl (l = 1, 2, · · · , r), (9)

Ik,l =
1

ρ

∫
V

(∇2ψk)ψl dx,

Jl =

∫
V

{
1

ρ
∇2p̄−∇ · (∇ · umum)

}
ψl dx.

(10)

Once the velocity field is given by the velocity ROM, bk,m can be obtained using these equations, and the
pressure field can be calculated by Eq. (7). In this study, the velocity field is given by full-order numerical
simulation to evaluate the performance of pressure ROM without the error derived from velocity ROM.

3 Data Preparation

3.1 Numerical Simulation Method

This paper uses the flow fields around a circular cylinder for the POD dataset. The dataset is prepared
using the numerical simulation of the incompressible Navier-Stokes equations presented below:

∇ · u = 0, (11)

∂u

∂t
= −∇ · uu− 1

ρ
∇p+ 1

Re
∇2u, (12)

where Re represents Reynolds number defined using the mainstream velocity U∞, the kinematic viscosity
ν, and characteristic length D as follows:

Re =
U∞D

ν
. (13)

The cylinder diameter is used for characteristic length. The governing equations are transformed into a
curvilinear coordinate system (ξ1, ξ2)

2∑
j=1

1

J

∂

∂ξj
(
JU j

)
= 0, (14)

∂ui
∂t

= −
2∑

j=1

1

J

∂

∂ξj
(
JU jui

)
+

2∑
j=1

1

ρ

∂ξj

∂xi

∂p

∂ξj
+

2∑
j=1

1

Re

1

J

∂

∂ξj

2∑
k=1

(
γjk

∂ui
∂ξk

)
(i = 1, 2),

(15)

where

γjk =

2∑
l=1

J
∂ξj

∂xl

∂ξk

∂xl
, (16)

represents a symmetric tensor, ui is the ith component of Cartesian velocity vector, U j is the jth
component of contravariant component vector, and J is a Jacobian.

The fractional step method[31] is used for temporal discretization of governing equations. The third-
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order three-stage Runge–Kutta scheme and the second-order implicit Crank–Nicholson scheme are used
for the time integration. The predicted velocity in the fractional step method is corrected to satisfy
the continuity equation only in the final stage of the Runge-Kutta method. The spatial discretization
is evaluated by the second-order central difference[32] and QUICK method[33]. The pressure Poisson
equation is solved using the BiCGstab[34] method with incomplete LU decomposition[35, 36].

Figure 1: Computational grid around a circular cylinder. The characteristic length in Re is the cylinder
diameter D. The inflow and outflow boundary are set at 80 times the cylinder diameter.

3.2 Grid and Time Dependancy

We evaluate the computational grid and time step size dependency in numerical simulations with regular
and fine grids. The regular computational grid around a cylinder is shown in Fig. 1. The far-field
boundary of the computational grid extends up to 80 times the diameter of a circular cylinder D. The
number of cells is 240 in the wall-normal direction and 460 in the wall-parallel direction. The height
of the first layer next to the cylinder is 5.0 × 10−4D. These grid parameters are based on the direct
numerical simulation of Jiang et al.[37]. The outflow boundary was imposed by Gresho’s method[38].

A fine grid with twice the number of cells in the wall-normal and wall-parallel directions, respectively,
was prepared. Numerical simulations were performed for Re = 300 on the fine and regular grids. The
time step size is set such that the maximum CFL number across all cells is less than or equal to 1.0.
The definition of CFL is the same as in the previous study[39]. On the regular grid, simulation was
also performed with a CFL of less than 0.5 with half the time interval. Figure 2 shows the spatial
distributions of the time-averaged velocity field at x/D = 1, 3, and 5 for each simulation case. The
mean fields obtained from all three simulations are in close agreement. In this paper, simulations with
a CFL number of 1.0 on a regular grid are accurate enough because we only deal with flows around
two-dimensional cylinders whose Re is smaller than 300.

4 Results of ROM

4.1 Based-on POD Mode of Re = 80

The pressure ROM is constructed for flow around a circular cylinder. A numerical simulation of cylinder
flow at Re = 80 was performed to obtain the POD dataset. The POD modes were obtained by time-
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(a) x-direction velocity

(b) y-direction velocity

Figure 2: Comparison of x- and y-directional velocity distributions in the wake of a cylinder between a
regular grid, a fine grid with a CFL of less than 0.9, and a regular grid with half the CFL. At all positions
x/D = 1, 3, 5, the spatial distributions are completely consistent. Hence, all numerical simulations in
this study are performed on a regular grid with a CFL of less than 1.0.

series pressure fields. Figure 3 shows the top four POD modes with the largest eigenvalues and the
pressure mean field. POD mode has a paired spatial structure with 1st and 2nd mode, 3rd and 4th
mode, respectively. The spatial scale of the wake vortex is smaller as the rank of the mode decreases.
The POD successfully captures the periodic vortex structure in the wake in a two-dimensional unsteady
flow around a cylinder.

5



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

ICCFD12-2024-1-C-01

Figure 3: Pressure mean-field and 1st to 4th POD modes obtained from the pressure field around a
cylinder with Re = 80.

An ROM for the pressure field was constructed using the POD modes of flow around a cylinder with a
Re = 80. The velocity field at the same Re of POD mode was given for the ROM to predict the pressure
field. The pressure fields obtained by ROM and by full-order numerical simulations are shown in Fig. 4.
The results reconstructed by the ROM are in complete agreement with the numerical simulation results.

Figure 4: Comparison of instantaneous pressure coefficients on cylinder surface at Re = 80 obtained
from full-order numerical simulation and ROM. ROM is constructed using pressure POD mode obtained
from Re = 80. Two pressure coefficients are in complete agreement.

The pressure coefficient Cp was computed from the pressure field as

Cp =
p̂− p̂∞
1
2ρU

2
∞
, (17)

where p̂ is the dimensional pressure and p̂∞ is the dimensional far-field pressure. The pressure coefficient
distribution on the cylinder surface is shown in Fig. 5. The Cp distributions are completely matched.
Therefore, the ROM can accurately compute the pressure field under the same conditions as the POD
modes. In the velocity field ROM using Galerkin projection, it is well known that even under the same
conditions as in the POD modes, the ROM results are not exactly the same as the full-order numerical
simulation [40, 15]. ROM for pressure fields tends to yield closer results to full-order numerical simulation
than ones for velocity fields.
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Figure 5: Comparison of instantaneous pressure field at Re = 80 obtained from full-order numerical
simulation and ROM. ROM is constructed using pressure POD mode obtained from Re = 80.

The pressure field was computed by giving the velocity field at Re = 120, which was different from
the pressure field condition Re = 80, where the POD mode was obtained. Figure 6 shows the pressure
field obtained from the ROM and the pressure field in the full-order numerical simulation simultaneously
with the given velocity field. Compared with the reconstruction results of the pressure field under the
conditions Re = 80, the difference from the full-order numerical simulation is remarkable. Particularly,
the distribution of the wake, indicated by the red circle in the figure, is completely different. ROM also
underestimates pressure fluctuations in the cylinder wake x

D > 2. ROM cannot always accurately predict
the pressure field, which differs from the conditions under which the POD mode was obtained.

Figure 6: Comparison of instantaneous pressure fields between two ROMs and numerical results. In the
red circle region, the ROM cannot predict the numerical results.

The pressure field was reconstructed at Re = 50–180. In this range, we reconstructed 501 time series
data with ∆t = 0.1 for each Re. Mean squared errors were computed on the 501 reconstructed snapshots,
and the pressure field was simultaneously obtained from the full-order numerical simulations. The mean
squared error was defined as:

M.S.E. =
1

T

∫
T

∫
V
(p(x, t)− p′(x, t))2dx∫

V
p(x, t)2dx

dt, (18)

where T represents the integration time in averaging and p′(x, t) is the reconstructed pressure field. This
is the reconstruction error defined by the inner product used in the POD methodology, normalized by
the squared quantity and time average. The mean squared error at each Re is shown in Fig. 7. The
mean squared error is extremely small at Re = 80, which is the same condition under which the POD
modes were obtained. In contrast, the mean squared errors for all but Re = 80 are greater than O(10−3).
This difference is reflected in the difference in pressure distribution in Fig. 6. Therefore, the POD modes
obtained from Re = 80 are not valid for predicting the pressure field of different Re.
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Figure 7: Mean squared error of pressure fields between full-order numerical simulation and ROM. ROM
is constructed by the POD modes at Re = 80. The mean squared error is minimized at Re = 80 under
the same conditions as POD modes. The mean squared error is extremely large under conditions different
from the POD modes. ROM of pressure field constructed using the POD modes under a single condition
lacks robustness.

4.2 Based-on Global POD Mode of Re = 80 and 160

In this section, a snapshot of the pressure field at Re = 160 is included in the dataset in addition to
Re = 80. The POD was performed on the dataset containing two Re’s, and a set of the global POD
modes representing the pressure field of the two Re’s was obtained. The global POD mode and average
pressure field obtained from Re = 80 and 160 are shown in Fig. 8. The spatial distributions of the average
pressure field, 1st POD mode, and 3rd POD mode are similar to those of the POD mode obtained from
Re = 80. Unlike the 1st and 3rd modes, the 2nd mode has a vertically symmetrical structure like an
average pressure field. In the global POD, the time-averaged flow component exists in the dataset with
the same number of conditions. That is, there are two features in the dataset that have a vertically
symmetric spatial distribution at Re = 80 and 160. Therefore, in addition to the mean field, a POD
mode with a vertically symmetric distribution is needed to represent the dataset. Similar results have
been obtained in previous studies on the global POD modes derived from velocity fields[20, 19]. The
4th and 5th modes have a distribution similar to the 1st and 3rd modes. These are POD modes that
represent the pressure field at Re = 160, as it is different from the mode at Re = 80. Thus, the global
POD modes capture the spatial distribution of the pressure field for both Re = 80 and Re = 160.

Figure 8: Spatial distribution of the mean field and 1st to 5th global POD modes obtained from pressure
fields at Re = 80 and 160.

The ROM for the pressure field was constructed using the global POD modes. The results of the
pressure field computed by ROM for Re = 120, and the instantaneous pressure field obtained from

8



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

ICCFD12-2024-1-C-01

the full-order numerical simulation are shown in Fig. 9. Although the pressure field is under different
conditions from those in the PODmodes, the pressure field obtained from the ROM closely reproduces the
results of the full-order numerical simulation. Compared to the results predicted by the ROM constructed
with the POD modes of Re = 80 in Fig. 6, the global POD modes capture the characteristics of the
pressure field behind the cylinder. The ROM based on the global POD also accurately evaluates the
pressure fluctuations at x

D > 2.

Figure 9: Comparison of instantaneous pressure fields at Re = 120 between single POD-based ROM,
global POD-based ROMs, and numerical results. In the red circle region, the global ROM predicts the
numerical results more accurately than the single ROM.

The mean squared error was computed for Re = 50–180, as in the computation of ones in Fig. 7.
Figure 10 shows the mean squared error in the ROMs using the global POD modes and the POD modes
of Re = 80. In terms of the prediction of the pressure field at Re = 80, the ROM using the global POD
modes is inferior to the ROM using the POD modes of Re = 80. However, for pressure fields other than
Re = 80, the ROM using the global POD modes has a smaller mean squared error than the ROM using
the POD modes of Re = 80. The mean squared error is significantly small at Re = 160 in the ROM
using the global POD modes. This is because the dataset contains the pressure field at Re = 160 when
the global POD modes are obtained. The ROM using the global POD modes has a small mean squared
error even for the pressure field of different Re from that contained in the dataset. As a result, ROMs
using global POD modes are highly robust against Re.

Figure 10: Comparison of mean squared error between two ROMs and full-order numerical results. ROMs
constructed using the POD modes from pressure fields at multiple Re’s have small mean squared errors
even at Re, which are different from those in the dataset. Compared to the ROM constructed using the
POD modes from a single Re pressure field, the ROM constructed using the POD modes obtained from
multiple Re’s is more robust.
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4.3 Mode Number Effect

We investigate the robustness improvement when the number of modes used for ROM is changed. ROMs
were constructed by changing the number of POD modes obtained from Re = 80 and global POD modes
obtained from Re = 80 and 160, respectively. Figure 11 shows the mean squared error for the ROM using
the POD modes of Re = 80 with the different number of modes r. As the number of modes increases
from 6 to 10, only the mean squared error for Re = 80 decreases. Since there is no effect on the other
Re, the increase in the number of modes does not significantly improve the robustness of the ROM using
the POD modes with Re = 80.

Figure 11: Comparison of mean squared error between three different numbers of mode r. ROM is
constructed using POD modes obtained from the pressure field with Re = 80. Increasing the number of
modes does not contribute to the reduction of the mean squared error under conditions different from
those of the POD modes. Excessive increase in the number of modes results in an increase in the mean
squared error.

Remarkably, the mean squared error increases overall as the number of modes increases from 10 to
20. In order to identify the mode responsible for this increase, we computed the mean squared error
when the number of modes was 12, 14, 16, and 18. Figure 12 shows the mean squared error when the
number of modes is 14 and 16. The large gap is found in the mean squared error when the number of
modes changes from 14 to 16.

Figure 12: Comparison of the mean squared error when the number of modes r is 14 and 16. An increase
in the mean squared error is occurring between 14 and 16. This suggests that the 15th or 16th mode is
increasing the mean squared error

The 15th mode that may have produced this difference is shown in Fig. 13. Numerical errors are
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found near the far-field boundary of this mode. No such numerical error is found in the POD modes
until the 14th. The location of these errors is where the inflow and outflow boundary conditions are
interchanged. The 15th POD mode captures this small numerical error in the pressure field. The
coefficient corresponding to this POD mode was not computed accurately in the ROM, which is the
reason for the increase in the mean squared error. Therefore, an excessive increase in the number of
POD modes may lead to an increase in errors due to numerical errors. Regardless of the case, the POD
mode obtained from a single Re does not improve robustness even if the number of modes is increased.

Figure 13: Spatial distribution of the 15th POD mode obtained from the pressure field at Re = 180. Non-
physical errors are observed near the far boundary. Such errors do not exist in the spatial distribution
of POD mode up to the 14th. This error leads to an increase in mean squared error.

Figure 14 shows the mean squared error for the ROM using the POD modes of Re = 80 and 160
with the different number of modes r. The overall mean squared error drops as the number of modes
increases from 6 to 10. When r = 10 is increased to 20, the mean squared error does not decrease except
for Re = 80, 150, 160, and 170. There is a slight decrease for Re = 150 and 170, but no significant
difference compared to when the number of modes is increased from 6 to 10. Because the higher modes
have a smaller contribution to the pressure field, the 10th and higher modes produce a reduction in error
of about O(10−3). Therefore, increasing the number of modes improves the robustness of the global
POD-based ROM, but an excessive increase is unnecessary.

The mean squared error in the ROM based on the global POD does not show a significant increase,
as occurred in the single POD when the number of modes was increased to r = 20. This is because
the global POD modes up to the 20th do not contain numerical errors derived from the boundary
conditions. However, when focusing on the lower-ranked modes, such errors were found in the 34th
global POD mode. Therefore, increasing the excessive number of POD modes, even in the global POD,
introduces the numerical errors derived from boundary conditions.

11
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Figure 14: Comparison of mean squared error between three different numbers of mode r. ROM is
constructed using POD modes obtained from the pressure field with Re = 80, 160. Increasing the mode
from r = 6 to 10 decreases the mean squared error for different Re from the dataset. Increasing r = 10
to 20 decreases the mean squared error only at the same Re as the dataset. Excessively increasing the
number of POD modes does not improve robustness.

The dataset was composed of time-series data of the pressure fields at Re = 80,120, and 160. The
global POD modes were obtained from this dataset. ROMs were constructed for different numbers of the
POD modes to predict the pressure field. The mean squared error between the pressure fields obtained
from the ROM and the full-order numerical results is shown in Fig. 15. The mean squared error in the
pressure field of Re outside the dataset is almost the same as that of Re contained in the dataset. The
mean squared error decreased for all Re when the number of modes was increased from 10 to 20. The
ROM results (Fig. 14) obtained from datasets with Re = 80 and 160 show that when the number of
modes is larger than 10, the mean squared error of Re, which is different from that of the dataset, does
not decrease. Therefore, as the number of Re’s in the dataset increases, more modes can be used to
effectively improve robustness. The decrease in the mean squared error is small for pressure fields where
Re is smaller than 80. For the dataset, Re, less than 80 is an extrapolation region, so the mean squared
error may not decrease as much. Consequently, it is effective to include more conditions in the dataset
to improve the robustness of the pressure field ROM.

Figure 15: Comparison of mean squared error between three different numbers of mode r. ROM is
constructed using POD modes obtained from the pressure field with Re = 80, 120, and 160. Mean
squared error decreases for most Re by increasing r. Increasing the number of conditions included in the
dataset is expected to improve robustness.
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5 Conclusion

In this study, we proposed a POD-based ROM for the pressure field. ROM with the POD mode derived
from time series data at a single Re accurately predicts the pressure field at the same Re. However,
when the pressure field with a Re different from that of the POD modes is predicted, the accuracy of the
prediction is significantly reduced. Increasing the number of POD modes does not improve the prediction
accuracy in this case. We also found that an excessive number of modes increases the mean squared
error of all Re due to numerical errors contained in the higher modes.

The ROM was constructed using the global POD that included multiple Re’s pressure fields in the
dataset. The ROM using the global POD mode improved prediction accuracy over a wide range for Re
different from the data. In addition, a sufficient number of modes achieved high robustness. Thus, the
global POD-based pressure ROM is more robust to Re variation than the ROM based on the POD for a
single condition. In the global POD-based ROM, numerical error is observed in the higher modes. The
mode comtains numercal error would reduce the prediction accuracy of global POD-based ROM. Based
on these results, a global POD-based ROM for pressure fields achieves high robustness by selecting the
appropriate number of modes.
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A Incremental POD

A.1 Incremental POD methodology

The POD modes can be computed from a sufficiently large number of grids, or a sufficiently large number
of data, with limited memory. In such situations, a method referred to as incremental POD is used. In
incremental POD, POD is performed on a portion of the data um(m = 1, 2, · · · ,m0) selected from all
the data um(m = 1, 2, · · · ,mmax;mmax > m0). The covariance matrix Sm0

constructed from some of
this data is approximated as Sm0

≈ Um0
Dm0

UT
m0

, where Dm0
is mr ×mr (mr < m0) matrix, and Um0

is mr × n matrix.
A data um0+1 is selected from the dataset, and POD mode is updated to represent this data. The

mean component of m0 data ūm0 is subtracted from the um0+1 to compute the fluctuating component
ũm0+1 = um0+1 − ūm0 . A projection of the fluctuating component onto Um0 is performed as ûm0+1 =
Um0

ũm0+1, and the error for pre and post-projection is computed ũ⊥m0+1 = ũm0+1 − UT
m0
Um0

ũm0+1.
Then, we can update an approximate covariance matrix

Sm0+1 =

[
Um0

ûm0+1

∥ûm0+1∥2

]
QInc

m0+1

[
Um0

ûm0+1

∥ûm0+1∥2

]T
, (19)

where

QInc
m0+1 =

Dm0
+ ûm0+1û

T
m0+1 ∥ũ⊥m0+1∥ûm0+1

∥ũ⊥m0+1∥ûTm0+1 ∥ũ⊥m0+1∥2

 . (20)

QInc
m0+1 is diagonalized by a matrix DInc

m0+1 consisting of eigenvectors U Inc
m0+1 and eigenvalues. The

eigenvalues Dm0+1 and eigenvectors Um0+1 can be calculated by

Um0+1 =

[
Um0

ûm0+1

∥ûm0+1∥2

]
U Inc
m0+1, (21)

Dm0+1 = DInc
m0+1. (22)
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A.2 Validation of Incremental POD

The eigenvalues and eigenvectors are compared for a flow around a cylinder with a Re = 100 by perform-
ing a non-incremental POD and the incremental POD. The time series flow data comprises 501 snapshots
sampled at 0.1 intervals for 50 dimensionless times. The incremental POD was performed with m0 = 301,
and the POD mode was updated incrementally in the other 200 data. The eigenvalues and contribution
ratios obtained from the two PODs are shown in Table 1. The eigenvalues magnitudes for 1st to 6th
POD modes are almost identical for the two PODs. The largest difference in the contribution ratio of
each mode obtained for the two PODs is 0.01%. Therefore, when the number of modes is determined
such that cumulative contribution ratios exceed 99.9%, the number of modes selected for incremental
and non-incremental PODs is the same.

Table 1: Comparison of eigenvalues and contribution ratios obtained from non-incremental and incre-
mental POD. Minimum number of modes with a cumulative contribution exceeding 99.9% is six for both
of the two PODs. The differences in eigenvalues and contribution rates obtained for the two PODs do
not affect the choice of the number of modes when the number of modes is determined based on 99.9%.

Eigenvalue Contribution ratio [%]
Non-incremental Incremental Non-incremental Incremental

1st mode 1836.1520 1838.0653 49.486040 49.487315
2nd mode 1764.197 1765.9426 47.546783 47.545512
3rd mode 38.002 38.041202 1.024191 1.024205
4th mode 37.5804 37.61803 1.012826 1.012813
5th mode 16.0825 16.098745 0.433439 0.433436
6th mode 15.9768 15.993012 0.43059 0.430588

cumulative ratio - - 99.933869 99.933869

We focus on the spatial distribution of POD modes up to 6th mode in the two PODs. The spatial
distribution of the POD mode along the axis of the cylinder wake is shown in Fig. 16. From the one-
dimensional plot for PDO modes, non-incremental and incremental POD modes are consistent for 1st to
6th modes. Therefore, the incremental POD is beneficial as a method to obtain POD mode.
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