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Abstract: Particle parameters have a significant impact on the evolution of the mixing zone 

width of the multiphase Richtmyer Meshkov instability (RMI), but the influence law remains 

to be explored. Based on the interface motion equation and integrating the influence of particle 

volume fraction, radius and gas viscosity parameters, this article proposes a dimensionless 

number Sd to characterize the influence of drag force on the fluid velocity relaxation process. 

Based on the small-perturbation theory, a growth model for the mixing zone width under 

extreme particle parameters is established. The analysis showed that the combination of particle 

density and radius determines the growth pattern of the mixing zone width. It shows exponential 

growth when the particle density is large, and linear growth when the radius is large or both are 

large. Further analysis revealed the influence of changes in particle parameters on the mixing 

zone width, and found that increasing the particle radius will promote the growth of the mixing 

zone width. Numerical simulation results verify the validity of the theoretical model and Sd 

number. The results indicate that the classical Stokes number (St) fails in predicting the growth 

of the mixing zone width, and the combination of St number and Sd number is the dominant 

dimensionless number for the evolution of multiphase RMI.  

 

Keywords:    Richtmyer–Meshkov Instability, Particle Parameters, Mixing Zone Width, 

Theoretical Model. 

 

1     Introduction 
 

The Richtmyer-Meshkov instability (RMI) phenomenon refers to the process of interface 

instability induced by instantaneous acceleration at the interface of two fluids of different densities[1]. 

This phenomenon is widely present in natural and engineering applications[2–6], such as supernova 

explosions[7], volcano eruption[8], inertial confinement fusion[9], and supersonic combustion[10–12]. These 

processes are often accompanied by dispersed phases such as particles, so it is necessary to study the 

multiphase RMI problem. In the process of flow instability, the "bubble" structure refers to the area 

where the light fluid penetrates into the heavy fluid, while the "spike" structure refers to the area where 

the heavy fluid penetrates into the light fluid[13]. The distance between the bubble and the spike is called 

the mixing zone width, which is used to characterize the degree of mixing of the two fluids. The 

evolution of the mixing zone width is one of the focuses of multiphase RMI research. 

The dispersion of particles has an important influence on the evolution of the mixing zone width, 

and the density and radius of the particles are important physical parameters. In actual situations, the 

density and radius of particles often have a large range of variation. In this study, we used the two as 

coordinate axes to draw a phase diagram as shown in Figure 1, in which there are four extreme states: 

the density and radius of the particles are extremely small (State A), the density of the particles is 

extremely large and the radius is extremely small (State B), the density of the particles is extremely 

small and the radius is extremely large (State C), and the density and radius of the particles are extremely 

large (State D). By changing one of the density and radius, there are four paths for the transition between 
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the four states: a) increase the density when the radius is small, b) increase the radius when the density 

is small, c) increase the radius when the density is large, and d) increase the density when the radius is 

large. Thus, we construct the basis of the particle parameter phase diagram involved in this article. 

 
Figure 1 State phase diagram based on particle density and radius 

In existing multiphase RMI related studies, particle density and radius are often combined as a 

dimensionless number, namely the Stokes number (St). The St number is defined as the ratio of the 

particle relaxation time to the flow characteristic time, as shown below: 

 𝑆𝑡 =
𝑡𝑝

𝑡𝑓
. (1) 

The relaxation time of a particle refers to the ratio of the particle mass to the Stokes drag 

coefficient, as shown below: 

 𝑡𝑝 =
𝜌𝑝𝑉𝑝

6𝜋𝑟𝑝𝜇
, (2) 

where 𝜌𝑝, 𝑉𝑝, 𝑟𝑝 and 𝜇 are the particle density, volume, radius and fluid dynamic viscosity respectively. 

The flow characteristic time varies from problem to problem. In this study, it is defined as the ratio of 

the wavelength of the interface disturbance to the velocity of the interface after being accelerated by 

the shock wave, as shown below: 

 𝑡𝑓 =
𝜆

𝑈𝑖𝑛𝑓0
+ . (3) 

The St number measures the ability of particles to follow the fluid: a small St value (St≪1) 

indicates that the particle velocity can quickly reach equilibrium with the fluid velocity, while a large 

St value (St≫1) indicates that it is difficult for the particle velocity to reach equilibrium with the fluid 

velocity. The St number is an important parameter for multiphase RMI flows containing particles, 

reflecting the combined effects of particle density and radius. 
In the existing research, for State A, previous research work has been carried out on gas-particle 

flow with small St number. Through theoretical derivation and numerical verification, the linear growth 

model of the mixing zone width was given[13–16]. In 1961, Saffman et al.[14] established a governing 

equation to describe the motion of gas carrying small dust particles. In 2010, Ukai et al.[13] performed 

small perturbation analysis and derived a linear theoretical solution to the growth rate of the mixing 

zone width of sparse gas-particle flow with a small St number, and gave the multiphase Atwood number 

to describe the density difference of multiphase fluids on both sides of the interface. Since then, some 

scholars have extended the model to nonlinear stages or dense flow conditions[16–18], which all reflect 

the influence of air-particle coupling. Different from the pure gas phase RMI problem[19–21], the 

multiphase RMI problem is affected by particle parameters, the complexity of the flow system is higher 

than that of the classical RMI, and the corresponding theoretical model and evolution mechanism are 

not yet mature. 
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Therefore, numerical simulation is often used to study the impact of particles. The St number is 

closely related to the relaxation time of particles and has also received close attention. Ukai et al.[13] 

carried out numerical simulations on dilute gas-particle flows with large St numbers and found that 

large-sized particles do not follow the movement of the fluid, and the growth rate of the mixing zone 

width has nothing to do with the particles, which is consistent with the growth model of the pure gas 

phase RMI. McFarland et al.[22] also conducted detailed numerical simulation studies on the influence 

of particle relaxation time. They controlled the relaxation time by changing the particle radius and 

showed that larger particles slow down the entire interface as they propagate downstream, resulting in 

a significant attenuation of the mixing zone width. They also pointed out that for small relaxation time, 

the multiphase Atwood number proposed by Ukai et al.[13] is effective in predicting the evolution of the 

mixing zone width; but for large relaxation time, the growth of the mixing zone width is close to the 

classical pure gas phase RMI model. 

According to the simulation results of this study, St is not the only dominant dimensionless number 

of the evolution of multiphase RMI, and the growth of the mixing zone width cannot be accurately 

predicted by the St number. For flows with the same St number, different combinations of particle 

density and radius may lead to completely different evolutions of the mixing zone width. The potential 

dominant dimensionless number of this process remains to be studied, the theoretical model of the 

growth of the mixing zone width under different conditions needs to be improved, and the influence of 

particle parameter transitions between different states on the mixing zone width also needs to be 

explored. 

Based on the phase diagram composed of particle density and radius, this article studies the 

theoretical model of the mixing zone width of the multiphase RMI under extreme conditions and the 

transformation law between them. We combined the parameters such as particle volume fraction, radius 

and gas viscosity, and proposed a new dimensionless number Sd number, which can more effectively 

predict the growth law of the mixing zone width than the St number. On this basis, a theoretical model 

of the growth rate under the extreme state was established, which complemented the analytical solution 

in the phase diagram. Combining theoretical analysis and Compressible-Multi-Phase Particle-in-Cell 

method (CMP-PIC)[23,24], the transformation law between different extreme states in the phase diagram 

was revealed, and the correctness and effectiveness of the theoretical model and Sd number were 

verified. 

 

2     Dimensionless Number and Multiphase RMI Theoretical Model 
 

Based on the interface motion control equation, we derived a new dimensionless number Sd 

number. Based on the Sd number, we established a theoretical model for the B, C, and D states in the 

phase diagram. 

 

2.1     Dimensionless Number to Measure the Drag Coupling Effect 
 

The growth of the mixing zone width is closely related to the interface motion speed. Therefore, 

we start from the momentum equation and derive the fluid motion control equation near the interface 

based on the Lagrangian perspective[17], which is as follows: 

 𝛼𝑓𝜌𝑓
𝐷𝑈𝑖𝑛𝑓

𝐷𝑡′
= −

𝛼𝑝

𝑉𝑝
𝜅(𝑈𝑖𝑛𝑓 − 𝑣𝑝𝑥) − 𝛼𝑓

𝜕𝑃𝑓

𝜕𝑥
, (4) 

where 𝛼𝑓 is the volume fraction of the fluid, 𝜌𝑓 is the density of the fluid, 𝑈𝑖𝑛𝑓 is the velocity of the 

interface, 𝑡′ = 𝑡 − 𝑡0
+, 𝑡0

+ is the moment when the shock wave passes through the interface, 𝛼𝑝 is the 

volume fraction of the particle, 𝑣𝑝𝑥 is the velocity of the particle  in the direction of fluid motion, and 

𝑃𝑓 is the fluid pressure. The left side of the equation is the inertia term of the fluid near the interface, 

and the right side represents the momentum source term, named the drag term and the pressure gradient 
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term. 

Without changing the fluid type and Mach number, the St number is only related to the particle 

radius and density, that is 𝑆𝑡 ∝ 𝜌𝑝𝑟𝑝
2. Therefore, the St number is usually changed by the particle density 

or radius. In the drag term of equation (4), increasing the particle density will lead to a decrease in 

particle velocity, an increase in the velocity difference between the phases, and thus an increase in the 

absolute value of the drag, which will reduce the fluid velocity at the interface; while increasing the 

particle radius will lead to an increase in the particle volume, which means a decrease in the number of 

particles when the particle volume fraction remains unchanged, thus reducing the absolute value of the 

drag and increasing the fluid velocity at the interface. Figure 2 shows the impact of the two paths of 

increasing the St value. It can be seen that even if St increases to the same extent, changing different 

particle parameters will cause the fluid velocity to develop in different directions. This is also the main 

reason why the growth of the mixing zone width cannot be accurately predicted based on the St number. 

Therefore, a new dimensionless number is needed to measure the drag force. 

 
Figure 2 Two paths of different fluid velocity changes caused by increasing particle density or radius 

The drag force has an important influence on the fluid velocity, so we first consider the interface 

motion equation with only the drag force acting on it: 

 𝛼𝑓𝜌𝑓
𝐷𝑈𝑖𝑛𝑓

𝐷𝑡′
= −

𝛼𝑝

𝑉𝑝
𝜅(𝑈𝑖𝑛𝑓 − 𝑣𝑝𝑥). (5) 

When the St number is large, the particle velocity does not change significantly. Considering when 

𝑡′ = 0, 𝑈𝑖𝑛𝑓 = 𝑈𝑖𝑛𝑓0
+ . Integrating the above equation yields the following equation: 

 𝑈𝑖𝑛𝑓 = (𝑈𝑖𝑛𝑓0
+ − 𝑣𝑝𝑥)𝑒

−𝑡′/𝑡𝑑𝑟𝑎𝑔 + 𝑣𝑝𝑥, (6) 

where the dimension of 𝑡𝑑𝑟𝑎𝑔 is time, and its expression is as follows: 

 𝑡𝑑𝑟𝑎𝑔 =
𝛼𝑓𝜌𝑓𝑉𝑝

𝛼𝑝𝜅
, (7) 

which represents the characteristic time when drag force has a significant effect on fluid velocity. 

Therefore, we define the ratio of the relaxation time of fluid affected by drag force to the flow 

characteristic time as a new dimensionless number Sd to measure the influence of drag force on fluid 

velocity[25]. The specific expression of the Sd number is: 

 𝑆𝑑 =
𝑡𝑑𝑟𝑎𝑔

𝑡𝑓
=

𝛼𝑓

𝛼𝑝

𝜌𝑓𝑉𝑝𝑈𝑖𝑛𝑓0

𝜅𝜆
. (8) 

The Sd number is determined by both the fluid and the particles. The parameters 𝛼𝑝, 𝑉𝑝, 𝜅 and are 

usually variable, so this dimensionless number is closely related to the particle volume fraction 𝛼𝑝, the 

particle radius 𝑟𝑝, and the gas dynamic viscosity 𝜇. When Sd≪1, the relaxation time of the drag force 

affecting the fluid motion is much smaller than the flow characteristic time, the drag force can change 

the fluid velocity more quickly during the process; on the contrary, when Sd≫1, the drag force can 

hardly affect the fluid velocity. 

Sd numbers have different properties from St numbers. From equation (8), The expression of Sd 

number includes the fluid density and the volume fraction of particles and fluid, which is different from 



 ICCFD12

Twelfth International Conference on        
Computational Fluid Dynamics (ICCFD12), 
Kobe, Japan, July 14-19, 2024 

 

 

 5 

St number. From a physical perspective, the St number represents the effect of drag force on particle 

velocity, while the Sd number represents the effect of drag force on fluid velocity, taking into account 

the effect of dense particle. When the St number is small, the particles can quickly catch up with the 

fluid, and the velocity difference between the phases is extremely small, resulting in an insignificant 

drag effect on the fluid, and the Sd number to measure the drag force is useless in this case, 

corresponding to the State A in the phase diagram. When the St number is large, the lag in the particle 

velocity will lead to an obvious speed difference, and the Sd number comprehensively considers 

physical parameters to measure the drag force, thereby judging the evolution trend of the fluid velocity 

and the mixing zone width, corresponding to the States B, C and D in the phase diagram. 

 

2.2     Growth Model of the Mixing Zone Width in the Phase Diagram. 
 

Due to the complexity of multiphase RMI flow, it is difficult to construct a growth model of the 

mixing zone width for each point in the phase diagram. We only consider the case of extremely particle 

density or radius to simplify the analysis process. The theoretical growth model of the mixing zone 

width under the extreme State A has been given by predecessors[13,16]. Here we use the dimensionless 

number Sd as the flow state division standard and give the growth model of the mixing zone width 

under the Extreme States B, C, and D. 

For State B where the particle density is large and the radius is small, the Sd number is relatively 

small, and the drag force dominates the gas velocity, so the pressure gradient term is smaller than the 

drag term. In addition, due to the large St number, the particle gradually accelerates slowly from rest, 

thus 𝑣𝑝𝑥 ≪ 𝑈𝑖𝑛𝑓. The interface motion equation can be simplified to: 

 𝛼𝑓𝜌𝑓
𝐷𝑈𝑖𝑛𝑓

𝐷𝑡′
= −

𝛼𝑝𝜅

𝑉𝑝
𝑈𝑖𝑛𝑓. (9) 

At the moment when the shock wave passes through the interface, the velocity of the interface is 

𝑈𝑖𝑛𝑓0
+ , and the solution of equation (9) is: 

 𝑈𝑖𝑛𝑓 = 𝑈𝑖𝑛𝑓0
+ 𝑒

−
𝛼𝑝𝜅

𝛼𝑓𝜌𝑓𝑉𝑝
𝑡′

, (10) 

According to previous small-perturbation theory research, the amplitude of the perturbation in the 

RMI problem has the following relationship with the interface motion velocity and the multiphase 

Atwood number[1,13]: 

 
𝑑𝑎

𝑑𝑡
= 𝑘𝑎0

+𝐴𝑚𝑈𝑖𝑛𝑓, (11) 

where 𝑘 is the wave number of the interface disturbance and 𝑎0
+ is the disturbance amplitude after the 

shock wave passes. 𝐴𝑚 =
𝜌2−𝜌1

𝜌2+𝜌1
 can describe the difference in gas density before and after the interface. 

The value of the mixing zone width ℎ is twice the disturbance amplitude. Therefore, we get the growth 

rate of the mixing zone width as follows: 

 
𝑑ℎ

𝑑𝑡
= 2𝑘𝑎0

+𝐴𝑚𝑈𝑖𝑛𝑓0
+ 𝑒−𝑡

′/𝑡𝑑𝑟𝑎𝑔. (12) 

By integrating the growth rate, we obtain the growth model of the mixing zone width under the 

conditions of large particle density and small radius, as shown below: 

 ℎ = −2𝑘𝑎0
+𝐴𝑚𝑈𝑖𝑛𝑓0

+ 𝑡𝑑𝑟𝑎𝑔(𝑒
−𝑡′/𝑡𝑑𝑟𝑎𝑔 − 1) + ℎ0

+, (13) 

where ℎ0
+ is the value of the mixing zone width when the shock wave passes through the interface. This 

equation is in exponential form and does not include the particle density 𝜌𝑝, so the mixing zone width 

in this model is only related to the particle radius and has nothing to do with the particle density. 

For State C where the particle density is small and the radius is large, the Sd number is relatively 

large and the drag term is approximately zero. The interface motion equation can be simplified to: 
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 𝛼𝑓𝜌𝑓
𝐷𝑈𝑖𝑛𝑓

𝐷𝑡′
= −𝛼𝑓

𝜕𝑃𝑓

𝜕𝑥
, (14) 

The above equation does not contain any particle-related parameters and is the same as the classic 

pure gas phase RMI problem equation. Therefore, its solution should be equivalent to the linear form 

solution of the gas phase RMI problem, as shown below: 

 
𝑑ℎ

𝑑𝑡
= 2𝑘𝑎0

+𝐴𝑚𝑈𝑖𝑛𝑓0
+ . (15) 

By integrating the growth rate, we obtain the growth model of the mixing zone width under the 

conditions of large particle radius and small density, as shown below: 

 ℎ = 2𝑘𝑎0
+𝐴𝑚𝑈𝑖𝑛𝑓0

+ 𝑡′ + ℎ0
+. (16) 

The equation is in linear form, the same as the pure gas phase RMI problem. Therefore, the mixing 

zone width in this model is independent of the particle density and radius. 

For State D with large particle density and large radius, the Sd number is also relatively large. The 

theoretical solution under large Sd number is independent of particle density, so the theoretical solution 

of State D is the same as that of State C, both of which have theoretical solutions with linear form, i.e., 

equation (16). In addition, State D can be regarded as adding the extreme large particle radius condition 

on the basis of State B, or as adding the extreme large particle density condition on the basis of State C. 

The expression of equation (13) in the case of limit particle radius is the same as that of equation (16) 

in the case of maximum particle density, which also proves the consistency and unity of the theoretical 

model. It should be noted that the above theoretical solution is still based on small-perturbation theory 

and is only applicable to the early evolution of the shock-driven interface under low Mach number. 

In this section, we combine the effects of particle volume fraction, radius, and gas viscosity, and 

derive a dimensionless number to characterize the effect of drag on gas velocity based on the ratio of 

drag relaxation time to flow characteristic time. Based on the small-perturbation theory, a theoretical 

model of the growth rate of the mixing zone width at the extreme particle density and radius is 

established. When the particle density is large, the mixing zone width increases exponentially with time, 

and when the particle radius is large or both are large, the mixing zone width increases linearly with 

time, completing the theoretical solutions at each extreme state in the particle parameter phase diagram. 

 

3     Multiphase RMI Numerical Simulation and Phase Diagram Analysis 
 

We set up a series of cases to simulate the evolution of the mixing zone width of multiphase RMI 

by changing the density and radius of the particles. The evolution trend and relative change of the 

mixing zone width are predicted based on the theoretical model. By comparing and analyzing the results 

of the numerical simulation, we summarized the influence of particle parameters on the evolution of 

multiphase RMI and verified the correctness and effectiveness of the multiphase RMI theoretical model. 

 

3.1     Numerical Methods and Mesh Independence Verification 
 

We use the CMP-PIC method based on the Euler-Lagrangian framework to simulate multiphase 

flow[23,24], which can simulate the all pattern flows from dilute to dense and granular flow. The Runge–

Kutta method is used for time advancement, the TVD format[26] is used to reconstruct the flow variables, 

and the Riemannian solver proposed by Harten et al.[27] is applied to solve the flux. Particles with similar 

physical properties are packaged into parcels, and the soft ball model is used to calculate collisions 

between particles, which facilitates the calculation of interphase coupling and significantly reduces the 

amount of calculations required for large-scale particle group simulations. The CMP-PIC method is 

widely used in the simulation of shock-particle group interaction and multiphase RMI, and has achieved 

good application results. For verification of this method, please refer to published papers[16,17,23,28,29]. 

We carried out mesh-independence verification and used four different mesh resolutions to check 
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the convergence of the results. Detailed data are listed in Table 1. Other conditions are set in the same 

way as Case1 in Section 3.2. Nx and Ny are the number of meshs in the x and y directions respectively. 

The curve of the mixing zone width changing with time is shown in Figure 3. The results of Resolution 

C and Resolution D are in good agreement, indicating that further refinement of the mesh has no 

significant impact on the simulation results. Considering the calculation time, subsequent calculation 

cases use Resolution C to carry out simulations. In addition, according to the research of Ukai and Meng 

et al.[13,16,23], arranging four particle packets in each mesh unit can ensure the convergence of the particle 

packet resolution within the mesh. 

Table 1 Detailed information on four mesh resolutions 

Case Nx Ny Mesh Number Parcel Number 

Resolution A 300 50 15 000 45 000 

Resolution B 600 100 60 000 180 000 

Resolution C 1200 200 240 000 720 000 

Resolution D 1800 300 540 000 1620 0000 

 
Figure 3 Mixing zone widths of four resolutions 

 

3.2     Multiphase RMI Simulation Case Setup 
 

The shock wave with Ma=1.2 passes through the two-dimensional cosine-shaped single-mode 

air/SF6 interface, and particles with uniform diameter and density are uniformly distributed in space[28], 

as shown in Figure 4. Among them, the light fluid is air, the heavy fluid is SF6, and the yellow dots 

represent parcels. A cosine-shaped perturbation is added to the interface, as shown in equation (17), 

where 𝑎0  is the initial interface amplitude and   is the initial interface wavelength. The similar 

calculation domain settings can refer to existing studies[16–18,22]. The position of the interface is defined 

as the position where the air volume fraction 𝛽1 = 0.5. The volume fraction of air in the gas phase is 

smoothed around the interface using an error function[30]. 

 𝑎(𝑦) = 𝑎0cos⁡(
2𝜋

𝜆
𝑦). (17) 

Table 2 lists other initial condition parameters required for the calculation, where 𝐿𝑥 is the flow 

length of the calculation domain, 𝐿𝑦 is the longitudinal length of the calculation domain, 𝐿𝑠ℎ𝑜𝑐𝑘 is the 

initial shock wave position, 𝐿𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 is the initial position of the air/SF6 interface, 𝐿𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 is the 

initial position of the particle distribution, 𝑃0 is the shock-free fluid pressure, and 𝛼𝑝0 is the initial 

volume fraction of the particles. The left boundary of the calculation domain is set as the airflow inlet 

condition, the right boundary is set as the airflow outlet condition, and the upper and lower sides of the 

domain are set as periodic boundaries of gas and particles. 
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Figure 4 Schematic diagram of multiphase RMI calculation with uniformly distributed particles 

Table 2 Calculation domain settings and flow field initial conditions 

𝐿𝑥 𝐿𝑦 𝐿𝑠ℎ𝑜𝑐𝑘 𝐿𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝐿𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑎0 𝜆 𝑃0 Ma 𝛼𝑝0 

60mm 10mm 9mm 15mm >10mm 0.5mm 10mm 101kPa 1.2 1% 

 

Considering that the St number is related to the particle density and radius, while the Sd number is 

only related to the particle radius, we change the particle density and radius to make the St number and 

Sd number change regularly, set up a series of cases to simulate the multiphase RMI problem, and 

explore the influence of particle parameters on the mixing zone width. Table 3 lists the detailed 

information of each case. In Case 1, the particle density 𝜌𝑝,1 = 500kg/m3, the particle radius 𝑟𝑝,1 =

5μm, the St number is about 1, and the Sd number is about 0.2. Case 1 is used as the benchmark case, 

and the particle density and radius of the remaining cases are dimensionless, that is, 𝜌̂𝑝 = 𝜌𝑝/𝜌𝑝,1, 𝑟̂𝑝 =

𝑟𝑝/𝑟𝑝,1. 

Table 3 Particle parameters and corresponding dimensionless numbers under different cases 

Case 𝜌̂𝑝 𝑟̂𝑝 𝑆𝑡 𝑆𝑑 

1 1 1 ≈100 ≈0.2 

2 9 1 ≈101 ≈0.2 

3 100 1 ≈102 ≈0.2 

4 900 1 ≈103 ≈0.2 

5 1 3 ≈101 ≈2 

6 1 10 ≈102 ≈20 

7 1 30 ≈103 ≈200 

8 900 3 ≈104 ≈2 

9 900 10 ≈105 ≈20 

10 900 30 ≈106 ≈200 

11 9 30 ≈104 ≈200 

12 100 30 ≈105 ≈200 

 

In order to show the relationship between different cases more clearly, we plot them on a phase 

diagram consisting of particle density and radius, as shown in Figure 5. The horizontal and vertical axes 

in the figure are logarithmic scales. A, B, C, and D are the four states of extreme particle density and 

radius defined in the Figure 1. With them as endpoints, there are four paths for changing a single 

parameter. The series of cases are set along these four paths to compare, analyze, and explore the 

changing rules between different states. 
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Figure 5 Distribution of the calculation cases on phase diagram based on particle density and radius 

 

3.3     Variation of the Mixing Zone Width Between Different Extreme States 
 

Based on the theoretical model in Section 2, we predict the variation of the mixing zone width for 

different cases on Paths a), b), c), and d) in the phase diagram, and verify it with the results obtained 

from numerical simulation: 
a): Under the condition of small particle radius, the particle density is gradually increased. For 

Cases 1, 2, 3, and 4, the dimensionless particle density is 1, 9, 100, and 900, respectively. According to 

the theoretical model analysis, as the particle density gradually increases, the St number gradually 

increases, while the Sd number remains unchanged. The particle movement speed slows down, which 

increases the velocity difference between phases, resulting in an increase in drag and thus reducing the 

mixing zone width. In addition, when the particle density is large enough, the mixing zone width should 

gradually approach the theoretical solution of the exponential form under State B. The numerical 

simulation results of the mixing zone width of Cases 1, 2, 3, and 4 are shown in Figure 6. Within the 

given calculation time (0.2ms), the mixing zone width increases with time after the shock wave passes. 

From Cases 1 to 4, the particle density increases, and the mixing zone width decreases, and finally 

approaches the theoretical solution of the exponential form. 

 
Figure 6 Mixing zone width evolutions with small particle radius and increasing particle density 

b): Under the condition of small particle density, the particle radius is gradually increased. For 

Cases 1, 5, 6, and 7, the dimensionless particle radius is 1, 3, 10, and 30, respectively. According to the 

theoretical model analysis, as the particle radius gradually increases, the St number and the Sd number 

gradually increase. When the volume fraction remains unchanged, the increase in particle volume is 
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equivalent to the decrease in the number of particles, resulting in a decrease of the drag force, thereby 

increasing the mixing zone width. In addition, when the particle radius is large enough, the mixing zone 

width should gradually approach the theoretical solution of the linear form under State C. The numerical 

simulation results of the mixing zone width of Cases 1, 5, 6, and 7 are shown in Figure 7. Within 0.2 

ms, the mixing zone width increases with time after the shock wave passes. From Cases 1 to 7, the 

particle radius increases, and the mixing zone width increases, and finally approaches the theoretical 

solution of the linear form. 

 
Figure 7 Mixing zone width evolutions with small particle density and increasing particle radius 

c): Under the condition of large particle density, the particle radius gradually increases. For Cases 

4, 8, 9, and 10, the dimensionless particle radius is 1, 3, 10, and 30, respectively. According to the 

theoretical model analysis, as the particle radius gradually increases, St and Sd gradually increase, and 

the drag force gradually weakens, resulting in an increase in the mixing zone width. Since the particle 

density is large enough, the four curves should all be exponential and only related to the particle radius. 

As the radius increases, the mixing zone width gradually changes from the exponential form under State 

B to the linear form under State D. The numerical simulation results of the mixing zone width of Cases 

4, 8, 9, and 10 are shown in Figure 8. Within 0.2ms, the mixing zone width increases with time after 

the shock wave passes. From Cases 4 to 10, the particle radius increases, and the mixing zone width 

increases, gradually evolving from an exponential solution to a linear solution. 

 
Figure 8 Mixing zone width evolutions with large particle density and increasing particle radius 

d): Under the condition of large particle radius, the particle density is gradually increased. For 

Cases 7, 11, 12, and 10, the dimensionless particle density is 1, 9, 100, and 900, respectively. According 

to the theoretical model analysis, as the particle density gradually increases, the St number gradually 

increases, while the Sd number remains unchanged. However, the particles in the four cases have almost 

remained stationary, and the drag force no longer changes, so the mixing zone width curves almost 
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overlap. Since the particle radius is large enough, the four curves all degenerate into linear forms, which 

are independent of the particle density and radius. Therefore, the mixing zone width always maintains 

the linear form under state C or D. The numerical simulation results of the mixing zone width of Cases 

7, 11, 12, and 10 are shown in Figure 9. Within 0.2ms, the mixing zone width increases with time after 

the shock wave passes. From Cases 7 to 10, the particle density increases, and the mixing zone width 

remains unchanged, which is always consistent with the linear theoretical solution. 

 
Figure 9 Mixing zone width evolutions with large particle radius and increasing particle density 

Combining the cases on the four paths, we can see that the results of the numerical simulation are 

consistent with the predictions of the theoretical analysis. In addition, we summarize the influence of 

particle parameters on the mixing zone width: increasing the particle radius will increase the mixing 

zone width. In general, the mixing zone width increases with the increase of the Sd number. 

Furthermore, we discuss the situation where the St number gradually increases to illustrate the 

failure of the St number in predicting the growth of the mixing zone width. Taking State A as the starting 

position and State D as the ending position, two long parameter change paths are planned: Path 1 is 

State A→B→D, corresponding to Case 1→2→3→4→8→9→10, and Path 2 is State A→C→D, 

corresponding to Case 1→5→6→7→11→12→10. On each path, the St numbers of adjacent cases 

differ by about 10 times, and the St numbers of the corresponding cases on the two paths are equal in 

turn. The mixing zone width at 0.2ms on the two paths is plotted as shown in Figure 10. 

 
Figure 10 Bifurcation of mixing zone widths with St number on two paths at 0.2 ms 

It can be seen from Figure 10 that for the same starting and ending positions, gradually increasing 

the St number and adopting different particle parameter change paths will cause the mixing zone width 

to bifurcate: in Path 1, first increasing the particle density and then increasing the particle radius will 

cause the mixing zone width to experience a process of first decreasing and then increasing, while in 
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Path 2, first increasing the particle radius and then increasing the particle density will cause the mixing 

zone width to experience a process of first increasing and then remaining unchanged. The difference 

between the two paths shows that the St number fails to predict the growth of the mixing zone width. 

There is no obvious monotonic relationship between the mixing zone width and the St number, and its 

evolution depends on the specific changes in particle density and radius. This also reflects the 

complexity of the influence of particle parameters on the evolution of the mixing zone width. 

 

3.4     Validation of Dimensionless Numbers Sd 
 

Considering the Sd number and the theoretical models of the mixing zone width do not contain the 

particle density, the mixing zone width is independent of the particle density. Without changing the gas 

parameters, the Sd number and the particle radius are equivalent. Therefore, for cases with the same Sd 

number and different St number, their mixing zone widths should also be similar. 

We set four groups of cases with different St numbers and the same Sd number. Group A includes 

Cases 1, 2, 3, and 4, whose Sd numbers are about 0.2; Group B includes Cases 5 and 8, whose Sd 

numbers are about 2; Group C includes Cases 6 and 9, whose Sd numbers are about 20; Group D 

includes Cases 7, 11, 12, and 10, whose Sd numbers are about 200. The mixing zone width curves of 

each group are plotted and compared, as shown in Figure 11. 

 

 
Figure 11 Comparison of mixing zone widths for calculation cases with the same Sd number. (a) Sd≈

0.2; (b) Sd≈2; (c) Sd≈20; (d) Sd≈200 

For the cases in group A with a small St number, as the particle density increases, the particle 

velocity changes from closely following the fluid movement to gradually lagging behind until it is 

almost stationary. Therefore, although the cases in group A have the same Sd number, the mixing zone 

width curves are not completely consistent. This also indirectly shows that the Sd number can only 
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function in the case with a large St number. For the three Groups B, C, and D with large St numbers, 

the cases in each group have the same Sd number, and the evolution trends of their mixing zone widths 

are similar. This shows that in the case of a large St number, the Sd number can effectively control the 

multiphase RMI flow state, and further verifies the correctness of the theoretical model. For the entire 

phase diagram, the combination of the St number and the Sd number is the dominant parameter for the 

evolution of the mixing zone width. 

In this section, we set up a series of cases by changing the particle parameters to simulate the 

evolution of the mixing zone width in multiphase RMI, and explained the influence of particle 

parameters in the phase diagram. The mixing zone width increases with the increase of the particle 

radius or Sd number. However, the St number fails in predicting the growth of the mixing zone width, 

and for the same starting and ending positions in the phase diagram, increasing the St number through 

different particle parameter change paths will cause a bifurcation phenomenon in the growth of the 

mixing zone width. For the case with a large St number, the Sd number can effectively control the 

evolution of the mixing zone width; and for any particle parameter conditions, the combination of the 

St number and the Sd number is the dominant parameter for the evolution of the mixing zone width. 

 

4     Conclusion 
 

Based on the phase diagram composed of particle density and radius, this article establishes a 

theoretical model for the evolution of multiphase RMI under the extreme particle density or radius, and 

reveals the influence of particle parameters on the mixing zone width. 

Based on the momentum equation of fluid motion at the interface, we consider the influence of 

parameters such as particle volume fraction, radius and gas viscosity, and propose a new dimensionless 

Sd, which represents the ratio of drag relaxation time to flow characteristic time, and can effectively 

characterize the influence of drag on fluid velocity. Based on the small-perturbation theory, a theoretical 

model for the growth rate of the mixing zone width under the extreme particle density and radius is 

established. When the particle density is extremely large, the mixing zone width grows exponentially, 

and when the particle radius is extremely large or both are large, it grows linearly, completing the 

theoretical solutions in the phase diagram. 

We carried out numerical simulations of a series of multiphase RMI problems and compared their 

results with theoretical predictions, revealing the influence of particle parameter changes. The mixing 

zone width increases with the increase of the particle radius or Sd number. In addition, St number fails 

in predicting the growth of the mixing zone width, and increasing the St number through different 

particle parameter change paths will cause a bifurcation phenomenon in the growth of the mixing zone 

width. For the case with large St number, Sd number can effectively control the evolution of the mixing 

zone width; and for any particle parameter conditions, the combination of St number and Sd number is 

the dominant parameter of the evolution of the mixing zone width. 

The Sd number proposed in this article can provide support for the simulation and prediction of 

the evolution of multiphase RMI in the future. By changing the particle parameters to change the Sd 

number, the growth morphology of the mixing zone width can be controlled, providing new ideas for 

the control of multiphase RMI in practical problems. 

 

References 
 
[1]  Richtmyer R D. Taylor instability in shock acceleration of compressible fluids[J]. 

Communications on Pure and Applied Mathematics, 1960, 13(2): 297–319.  

[2]  Luo X, Wang M, Si T, Zhai Z. On the interaction of a planar shock with an SF6 polygon[J]. 

Journal of Fluid Mechanics, 2015, 773: 366–394.  



 ICCFD12

Twelfth International Conference on        
Computational Fluid Dynamics (ICCFD12), 
Kobe, Japan, July 14-19, 2024 

 

 

 14 

[3]  Luo X, Guan B, Zhai Z, Si T. Principal curvature effects on the early evolution of three-

dimensional single-mode Richtmyer-Meshkov instabilities[J]. Physical Review E, 2016, 93(2): 

023110.  

[4]  Sun R, Ding J, Zhai Z, Si T, Luo X. Convergent Richtmyer–Meshkov instability of heavy gas 

layer with perturbed inner surface[J]. Journal of Fluid Mechanics, 2020, 902: A3.  

[5]  Zhou Y, Cabot W H, Thornber B. Asymptotic behavior of the mixed mass in Rayleigh–Taylor 

and Richtmyer–Meshkov instability induced flows[J]. Physics of Plasmas, 2016, 23(5): 052712.  

[6]  Li H, He Z, Zhang Y, Tian B. On the role of rarefaction/compression waves in Richtmyer-

Meshkov instability with reshock[J]. Physics of Fluids, 2019, 31(5): 054102.  

[7]  Sano T, Tamatani S, Matsuo K, Law K F F, Morita T, Egashira S, Ota M, Kumar R, Shimogawara 

H, Hara Y, Lee S, Sakata S, Rigon G, Michel T, Mabey P, Albertazzi B, Koenig M, Casner A, 

Shigemori K, Fujioka S, Murakami M, Sakawa Y. Laser astrophysics experiment on the 

amplification of magnetic fields by shock-induced interfacial instabilities[J]. Physical Review E, 

2021, 104(3): 035206.  

[8]  Reese D T, Ames A M, Noble C D, Oakley J G, Rothamer D A, Bonazza R. Simultaneous direct 

measurements of concentration and velocity in the Richtmyer–Meshkov instability[J]. Journal of 

Fluid Mechanics, 2018, 849: 541–575.  

[9]  Wang L, Ye W, He X, Wu J, Fan Z, Xue C, Guo H, Miao W, Yuan Y, Dong J, Jia G, Zhang J, Li 

Y, Liu J, Wang M, Ding Y, Zhang W. Theoretical and simulation research of hydrodynamic 

instabilities in inertial-confinement fusion implosions[J]. Science China Physics, Mechanics & 

Astronomy, 2017, 60(5): 055201.  

[10]  Yang J, Kubota T, Zukoski E E. Applications of shock-induced mixing to supersonic 

combustion[J]. AIAA Journal, 1993, 31(5): 854–862.  

[11]  Bambauer M, Hasslberger J, Klein M. Direct numerical simulation of the Richtmyer–Meshkov 

instability in reactive and nonreactive flows[J]. Combustion Science and Technology, 2020, 

192(11): 2010–2027.  

[12]  Fan E, Hao J, Guan B, Wen C, Shi L. Numerical investigation on reacting shock-bubble 

interaction at a low Mach limit[J]. Combustion and Flame, 2022, 241: 112085.  

[13]  Ukai S, Balakrishnan K, Menon S. On Richtmyer–Meshkov instability in dilute gas-particle 

mixtures[J]. Physics of Fluids, 2010, 22(10): 104103.  

[14]  Saffman P G. On the stability of laminar flow of a dusty gas[J]. Journal of Fluid Mechanics, 

1962, 13(1): 120–128.  

[15]  Balakrishnan K, Menon S. A multiphase buoyancy-drag model for the study of Rayleigh-

Taylor and Richtmyer-Meshkov instabilities in dusty gases[J]. Laser and Particle Beams, 2011, 

29(2): 201–217.  

[16]  Meng B, Zeng J, Tian B, Li L, He Z, Guo X. Modeling and verification of the Richtmyer–

Meshkov instability linear growth rate of the dense gas-particle flow[J]. Physics of Fluids, 2019, 

31(7): 074102.  

[17]  Meng B, Zeng J, Tian B, Zhou R, Shen W. Modeling and simulation of a single-mode 

multiphase Richtmyer-Meshkov instability with a large Stokes number[J]. AIP ADVANCES, 

2019, 9(12).  

[18]  Zheng H, Chen Q, Meng B, Zeng J, Tian B. On the nonlinear growth of multiphase Richtmyer–

Meshkov instability in dilute gas-particles flow[J]. Chinese Physics Letters, 2020, 37(1): 015201.  

[19]  Zhou Z, Ding J, Zhai Z, Cheng W, Luo X. Mode coupling in converging Richtmyer–Meshkov 

instability of dual-mode interface[J]. Acta Mechanica Sinica, 2020, 36(2): 356–366.  

[20]  Zhang Y, Zhou Z, Ding J, Luo X. Interaction of a planar shock wave with two heavy/light 

interfaces[J]. Acta Mechanica Sinica, 2022, 38(9): 322047.  

[21]  Zhai Z, Zou L, Wu Q, Luo X. Review of experimental Richtmyer–Meshkov instability in shock 

tube: From simple to complex[J]. Proceedings of the Institution of Mechanical Engineers, Part C: 

Journal of Mechanical Engineering Science, 2018, 232(16): 2830–2849.  

[22]  McFarland J A, Black W J, Dahal J, Morgan B E. Computational study of the shock driven 

instability of a multiphase particle-gas system[J]. Physics of Fluids, 2016, 28(2): 024105.  



 ICCFD12

Twelfth International Conference on        
Computational Fluid Dynamics (ICCFD12), 
Kobe, Japan, July 14-19, 2024 

 

 

 15 

[23]  Tian B, Zeng J, Meng B, Chen Q, Guo X, Xue K. Compressible multiphase particle-in-cell 

method (CMP-PIC) for full pattern flows of gas-particle system[J]. Journal of Computational 

Physics, 2020, 418: 109602.  

[24]  Zhou R, Meng B, Zeng J, Chen Q, Tian B. Numerical simulation of compressible fluid-particle 

flows in multimaterial Lagrangian hydrodynamics framework[J]. Computers & Fluids, 2021, 223: 

104945.  

[25]  Si Y, Li S, Meng B, Wang C, Tian B. A dominant dimensionless number and theoretical model 

for the evolution of multiphase Richtmyer–Meshkov instability[J]. Physics of Fluids, 2024, 36(1): 

013314.  

[26]  Shu C-W, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing 

schemes, II[J]. Journal of Computational Physics, 1989, 83(1): 32–78.  

[27]  Harten A, Lax P D, Leer B van. On Upstream Differencing and Godunov-Type Schemes for 

Hyperbolic Conservation Laws[J]. Siam Review, 1983, 25: 53–79.  

[28]  Si Y, Li S, Chen Q, Meng B, Wang C, Tian B. Heat transfer effects on multiphase Richtmyer–

Meshkov instability of dense gas–particle flow[J]. Physics of Fluids, 2023, 35(5): 053339.  

[29]  Meng B, Zeng J, Chen Q, Zhou R, Tian B. Numerical method for compressible gas-particle 

flow coupling using adaptive parcel refinement (APR) method on non-uniform mesh[J]. Journal 

of Computational Physics, 2022, 466: 111418.  

[30]  Reckinger S J, Livescu D, Vasilyev O V. Adaptive wavelet collocation method simulations of 

Rayleigh–Taylor instability[J]. Physica Scripta, 2010, T142: 014064.  

 

 


