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Abstract: Immersed boundary method (IBM) is one of the most popular computational methods
in dealing with fluid-structure interaction problem. In IBM, both fluid and solid domains are dis-
cretized in a fixed Eulerian mesh, and the fluid-solid interface is tracked by discretized Lagrangian
markers, which are independent of the Eulerian mesh and are free to move conforming to the solid
dynamics. Within the IBM framework, a popular method to model the interaction force between
the fluid and solid is to introduce a feedback model as fIBM = α(U−u), where α is a proportional
coefficient, U and u denote the solid and fluid velocity at the interface. Despite of its popularity
and various improving efforts, the present direct forcing IBM is not able to completely alleviate
the discrepancy between the fluid and solid velocities at the interface, because it is the discrepancy
per se to provide the interaction force. Through analyzing the typical pressure correction scheme
generally used in IBM, we identify two additional obstacles for achieving the exact interface veloc-
ity, one from the diffusion step, and the other from the divergence free correction step. By taking
the diffusion into account, we develop a new method that achieves exact interface velocity for pure
shear flow. The new method performs better in precision than the prevailing method in all test
cases.

Keywords: Immersed Boundary Method, Direct Forcing, Interfacial Velocity Error.

1 Introduction
Immersed boundary method (IBM) is in vogue for the simulation of fluid-structure interaction [1, 2, 3, 4].
IBM is a fictitious domain method which uses a universal control equation to model both the fluid and
structure dynamics along with additional model to take into account the interface condition. The whole
domain is discretized by the fixed Eulerian mesh, while the interface is tracked in a Lagrangian way.
IBM was first introduced by Peskin [5] to simulate flow interaction with soft tissue. The interaction force
is determined by the configuration of interface through elastic constitutive relation. The original IBM
encounters problem when dealing with rigid bodies because the interaction force cannot be deduced from
the interface deformation (there is no deformation for a rigid body). Instead of relying on the interface
deformation, Goldstein et al. [6] suggested to use a proportional-integral (PI) feedback model to calculate
the interaction force, i.e., fIBM = α

∫
U∆dt+βU∆, where α and β are constants, U∆ = (U−u) denotes

the interface velocity error between the solid and fluid velocities at the interface. The requirement of
tuning the parameters α and β to obtain stable and precise control hindered the broad application of
the PI model. Mohd-Yusof [7] came across a very simple model fIBM = U∆/∆t, where ∆t is the time
step. The force was expected to drive the velocity discrepancy U∆ to zero in the next time step so as to
achieve exact interface velocity, as claimed by the developer [7]. The idea of direct-forcing (as coined by
the developer) is very appealing, and has attracted a lot of relevant work. Uhlmann [8] adopted the idea
of direct forcing, but calculated the force on the solid interface (Lagrangian framework) first and then
interpolated the force back into fluid domain (Eulerian framework). Such a back-and-forth process turns
out to be very efficient, which was later proved to be a least-squares interpolation between the Eulerian
and Lagrangian frameworks [9].

The direct forcing IBM (DF-IBM) has a few drawbacks. First of all, it is not possible to achieve
the idea condition U∆ = 0, otherwise no feedback force is introduced at all. This problem is not so
critical, because it is shown that U∆ approaches zero as reducing the time step ∆t [9]. A more critical
issue is that the direct forcing brought a wrong “intuition”, in other words, it seduced one to believe that
fIBM = U∆/∆t represents the “true” interaction force. Misguided by such a wrong intuition, a lot of
time and efforts have been wasted on trying to satisfy unnecessary balance conditions [9]. The direct
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forcing model is actually a simple proportional feedback with α = 0 and β = 1/∆t in term of the PI
model of Goldstein et al. [6]. A simple proportional feedback is known to have steady state error, in
other words U∆ is never zero.

Here we analyze underlying causes that prevent exact interface velocity in IBM, and develop a new
method that does achieve exact interface velocity for pure shear flow. We first introduce the usual IBM
method before derive the new method. Then we compare the two methods through a series simulations.
This paper also comes with an appendix aiming to analyze the velocity discrepancy in direct forcing
IBM.

2 Immersed boundary method

2.1 Model equation
The momentum equation for incompressible fluid in the whole domain (including the space occupied by
particles) is

∂u

∂t
= −u · ∇u−∇p+ ν(∇2u) + fIBM (1)

where u, p, ν are the fluid velocity, pressure, density, kinematic viscosity, respectively, fIBM is the force
term to take into account the fluid-particle interaction, and the compact notations f and fL are clear
from the equations. The fluid density ρf is not explicitly included, which is assimilated into relevant
terms, such as the pressure and the interaction force fIBM.

2.2 Numerical scheme
The projection method [11] with explicit convection and implicit diffusion is broadly used in DF-IBM.
For such a method, a typical kth Runge-Kutta time marching step is outlined as follows [8]

ũ = uk−1 + ∆t(2αkν∇2uk−1 − 2αk∇pk−1 − γk[(u · ∇)u]k−1 − ξk[(u · ∇)u]k−2), (2a)

fIBM = Imask
a(U− ũ)

∆t
, (2b)

∇2u∗ − u∗

αkν∆t
= − 1

αkν

(
ũ

∆t
+ fIBM

)
+∇2uk−1, (2c)

∇2φk =
∇ · u∗

2αk∆t
, (2d)

uk = u∗ − 2α∆∇φk, (2e)

pk = pk−1 + φk − αk∆tν∇2φk, (2f)

where αk, γk and ξk are coefficients for a specific Runge-Kutta method (such as the third order method [12]).
Equation (2b) calculates the IBM force through the velocity difference between the specified velocity U
and the intermediate velocity ũ. Here, an additional constant a is added, which is absent in the original
DF-IBM [7]. Generally, U is only known in the Lagrangian framework, and interpolation between the
Lagrangian and the Eulerian framework is necessary. Various interpolations have been proposed, which
actually determine one of the major differences among the various methods. Here, it is assumed that U
is also defined in the Eulerian grid, so all the variations relevant to the interpolation are dormant. In
other words, the above model (2b) completely eliminates the errors of spatial interpolation. The term
Imask denotes a mask function that sets all IBM force to zero except those at the interface locations.
The introduction of the mask function is for notational convenience only.

Instead of analyzing the above typical numerical scheme, we investigate the following simplified model
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ũ = uk−1 + ∆t(u · ∇)u (3a)

fIBM = Imask
a(U− ũ)

∆t
, (3b)

∇2u∗ − u∗

ν∆t
= − 1

ν∆t
(ũ + ∆tfIBM), (3c)

∇2pk =
∇ · u∗

∆t
, (3d)

uk = u∗ −∆t∇pk. (3e)

This is a first order time marching scheme, which preserves the main characteristics of the pressure
correction method, such as explicit convection term, implicit diffusion term. Throughout this paper, we
assume the Lagrangian and the Eulerian mesh are aligned with each other, which eliminates complexity
of the interpolation between them. Although such an assumption is very restrictive in practice, the
analysis here focuses on the dynamical interplay of fluid and solid, spatial inaccuracy is believed not to
change the temporal coupling qualitatively.

An interesting but generally unnoticed fact is that the introduction of the IBM force is only an
indirect way to specify the intermediate velocity ũ in the interface region. This can be readily seen by
inserting Eq. (2b) into Eq. (2c). The parentheses on the right hand side in Eq. (2c) is then

(ũ + ∆tfIBM) =

{
ũ, region away from interface
aU + (a− 1)ũ, interface region.

(4)

It is clear that the intermediate velocity ũ is revised in the interface region, where a weighted average
of U and ũ is actually used. Specifically, if a = 1, then ũ = U, which means only the known interface
velocity U is retained in ũ, all previous value of ũ is discarded. When a → ∞, U and previous ũ take
equation weight in determining the final ũ, which is used in the next implicit step for diffusion.

The objective of obtaining u = U at the interface is the key for accurate simulation of the fluid-
solid coupling. In the prevailing direct forcing IBM as outlined above, there are obstacles preventing
the satisfaction of u = U . First, the implicit diffusion process is likely to change the interface velocity.
Second, the divergence free correction (Eq. (3e)) will change the interface velocity further. Next, we will
introduce a new method to address the first obstacle, which is able to render exact interface velocity
when the second obstacle is absent.

2.3 New method
Generally, the interface problem has codimension one, such as a line interface in 2D, a surface interface
in 3D. In the normal direction to the interface, the diffusion can be approximated as 1D

∂u

∂t
= ν

∂2u

∂y2
. (5)

Using implicit Euler scheme for time, implicit center difference for the diffusion, we obtain the following
discretized evolution equation for the velocity at the interface location

u
(n+1)
0 − u(n)

0

∆t
=

ν

h2
(u

(n+1)
1 + u

(n+1)
−1 − 2u

(n+1)
0 ), (6)

where h is grid size. We use u(n)
0 , u(n)

1 , and u
(n)
−1 to denote the velocity at the interface and at the

adjacent grid on both sides in the previous time step (denoted by the superscript (n)). Correspondingly,
the superscript (n+1) denotes the values at the next time step. Suppose the objective is to choose u(n)

0

at previous time step so that at the next time step u(n+1)
0 = U . Therefor u(n)

0 is required to be

u
(n)
0 = −ν∆t

h2
(u

(n+1)
1 + u

(n+1)
−1 ) +

(
1 +

2ν∆t

h2

)
U

≈ −ν∆t

h2
(u

(n)
1 + u

(n)
−1 ) +

(
1 +

2ν∆t

h2

)
U. (7)
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Figure 1: Flow configurations

Since u(n+1)
1 and u(n+1)

1 are unknown values at the next time step, we approximate them by their previous
time values. After merging the above equation into the pressure projection scheme, we have the new
IBM

(ũ + ∆tfIBM) =

{
ũ, region away from interface(
1 + 2ν∆t

h2

)
U− ν∆t

h2 (ũ+ + ũ−), interface region .
(8)

This new model shares one similarity with the prevailing model (4), both of which use a weighted average
of objective velocity U and some available velocity. The most striking difference is that the prevailing
method calculates the “available velocity” from values at the interface position, while the new method
calculates it from values on adjacent locations. Loosely speaking, the prevailing method approximates
the interface velocity through the “temporal direction”, while the new method approximates the interface
velocity through the “spatial direction”. It might be possible to approximate along the characteristic
direction by combining both temporal and spatial directions, which is not yet tried in this paper. Another
difference is that the new model does not introduce additional weight parameter a (which is proved to
be a relaxation factor [9]). The coefficient in front of U one plus a correction term which is the squared
ratio between the diffusion scale and the grid size. In the next section we will compare the precision of
the two methods.

3 Numerical simulation results
In order to investigate the performance of the new method, three flow configurations have been consid-
ered (Figure 1). To reduce the simulation time, all three configurations are two dimensional, and the
conclusions obtained are believed to apply to three dimensions also.

The first configuration is a thickless plate lying along the center of a channel, where both still and
oscillating plate have been considered separately. Both channel walls are moving at the same constant
velocity. Periodic boundary conditions are used in the two open boundaries. No pressure gradient is
applied along the flow direction. The flow is homogeneous along the flow direction. The exact velocity
profile is like a rotated V. The effect of the plate on the flow is modeled by both the prevailing IBM
method and the new method. This setting is an ideal case to test the new method to see if the exact
velocity interface is achieved at the plate position, since the second obstacle related to the pressure
correction is absent.

The second configuration is a thickless plate lying across in the channel. No-slip boundary condition
is used for both channel walls. A velocity inlet with the parabolic profile is adopted on the left, and
natural outflow condition is applied on the right. The vertical plate is modeled by two methods.

The third configuration is a box lying in the channel. This is a combination of the previous two
configurations. The channel boundary conditions are the same as those in the second configuration.

3.1 Horizontal plate
For the horizontal plate configuration, the flow is homogeneous along the channel. Figure 2 gives an
example how the streamwise velocity contour looks like. Figure 3 shows the velocity profiles across the
channel, obtained by the new method and prevailing method with two different time steps. The new
method is independent of the time step. At the plate position y = 0, the new method gives zero velocity
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Figure 2: Streamwise velocity contour for a still horizontal plate located along the channel centerline.
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Figure 3: Velocity profile for a still horizontal plate located along the channel centerline.

as wanted, but the prevailing method shows apparent error which decreases when reducing the time step.
More careful analysis shows that the error in the prevailing method is actually inversely proportional to
the time step [9]. While the prevailing method cannot achieve the exact interface velocity at any time
step, the new method does achieve the exact interface velocity at any time step.

We also considered the second Stokes problem when the plate is oscillating at a give frequency ω
on the plate plane. For this case, there is no need to move the Lagrangian discretization points on the
plate, which alleviates the extra layer complexity of interpolation between the Eulerian and Lagrangian
mesh. Figure 4 shows the velocity discrepancy at the plate location for ω = 10. Despite that neither
method can render the exact interface velocity, the new method produces substantial smaller error than
the prevailing method. The error from both method decreases when reducing the time step or refining
the grid. If increasing the oscillation frequency without revising the time step or mesh, the error also
increases. Figure 5 shows the velocity profile across the oscillating plate. Due to symmetry, only result
on one side above the plate is given. Besides the simulation results, the analytical result is also provided.
The profile from the the new method agrees with the analytical result very well. Despite the large error
around the plate location (y = 0), the prevailing method also captures the general trend well away from
the plate. This seems to suggest that the velocity discrepancy at the interface does not propagate deeply
into fluid domain, and the error due to IBM tends to dies away from the interface. The new method
developed here takes advantage of this property, which uses known velocities from interface neighbors
instead of those at the interface to improve the precision, because the neighbor values are believed to
have less “contaminated” error those at the interface.
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Figure 4: Fluid solid velocity discrepancy at the plate location for the second Stokes problem with
oscillation frequency ω = 10.

0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Figure 5: Velocity profile for the second Stokes problem at ω = 10.



 ICCFD12

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) New method
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(b) Prevailing method

Figure 6: Streamwise velocity contour for a vertical plate located across the channel at Reynolds number
Re = 0.5.

3.2 Vertical plate
Figure 6 shows the streamwise velocity contour for the vertical plate configuration for Reynolds number
Re = 0.5 (which is defined by the plate height and the channel inlet velocity). In the prevailing method,
the fluid flow barely “sees” the plate, it just flows through the plate. The method fails completely. While
in the new method, the flow slows down around the plate, but there is still noticeable flow penetration
through the plate. Neither method provides satisfactory result. Figure 7 shows the contour for Re = 50.
Both methods give very similar results, where around the plate the flow has been blocked as wanted.
The precision of IBM is known [9] to deteriorate for Re < 1. Here the same has been observed.

3.3 Box
Figure 8 shows the streamwise velocity contours for the box configuration for Reynolds number Re = 5.
Here IBM only apples to the box boundary. At the top and bottom boundaries of the box, the new
method satisfies the zero velocity much better than the prevailing method. However, unrealistic fluid
circulation is observed in both velocity contours. Although the new method is able to satisfy the interface
velocity condition very well, it cannot effectively prevent the fluid penetrating the vertical plate, which
results in fluid circulation inside the box. Hence, we also tried to implement IBM also inside the box
mesh points. The corresponding results are show in Figure 9. Now the fluid circulation inside the box
has been suppressed substantially in both methods. In order to compare the two methods in a more
quantitative way, velocity profiles across the box are overlaid in the same plot as in Figure 10. The
plateau corresponds to the region inside the box. Both methods produce very similar magnitude of
non-zero velocity inside the box, which means the two methods have similar precision in dealing with
the fluid flow inside the box. However, the new method gives much sharper transition across the box
boundary, which is a much wanted property so as to achieve more accurate shear stress at the interface.

4 Conclusion
Direct forcing IBM is very popular in dealing with fluid-structure interaction simulation. Generally, a
restoring force proportional to the fluid solid velocity discrepancy at the interface is introduced so as
to achieve the interface velocity condition, i.e., same fluid and solid velocity. However, there is always
velocity discrepancy in the direct forcing method, because generating the restoring force relies on the
very existence of the velocity discrepancy. It is worth pointing out that the direct forcing is actually the
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(b) Prevailing method

Figure 7: Streamwise velocity contour for a vertical plate located across the channel at Reynolds number
Re = 50.
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Figure 8: Streamwise velocity contour for a box located in the channel at Reynolds number Re = 5,
where IBM apples only at the box boundary.
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Figure 9: Streamwise velocity contour for a box located in the channel at Reynolds number Re = 5,
where IBM applies both at the box boundary and inside.
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Figure 10: Streamwise velocity profile across the box center.
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proportional feedback control, and it is well known that there is always a steady state error related to
such control.

Through analyzing a typical pressure projection scheme, which is usually used in direct forcing IBM,
we realize that the direct forcing actually resets the intermediate velocity (which is obtained after finishing
the convection step) at the interface region through a weighted average of two velocities, i.e., the available
fluid and solid velocities. The weight is a free parameter. A larger weight for the solid velocity tends
to increase the convergence rate towards exact interface velocity, but encounters more restrict stability
problem (??). In the projection scheme, after the IBM step aiming for exact interface velocity there are
still two steps that are going to revise the fluid velocity at the interface, i.e., diffusion and divergence
free correction. Through considering simple 1D diffusion, we derived a new IBM method that does not
introduce the IBM force but instead directly specify the intermediate velocity at the interface.

The new method has been compared with the prevailing direct forcing method for three flow configu-
rations, i.e., horizontal plate, vertical plate and box. The new method renders exact interface velocity for
the horizontal plate. For the vertical plate and box problem, the new method exhibits similar drawbacks
as the prevailing method for not being able to achieve exact interface velocity. For all cases, the new
method outperforms the prevailing method in precision. This work solves the first obstacle for achieving
the exact interface velocity, i.e., the diffusion step, and further work needs to be done address the second
obstacle relating to the divergence free correction.

5 Acknowledgment
Support from NSFC grant 11972335 is gratefully acknowledged.

A Analytical solution of 1D diffusion equation for direct forcing
IBM

In direct forcing IBM, an unknown force is introduce to model the fluid-solid interaction. The magnitude
of the force is determined implicitly by requiring the final fluid and solid velocity to match at the
interface. Here we solve the 1D diffusion equation with a given delta source so as to build up a direct
relation between the velocity field and the applied delta force. The analytical solution can be used to
analyze the error in direct forcing IBM. To be more specific, we can insert an IBM force model, such
as fIBM = a(U−ũ)

∆t , into the analytical solution to obtain an algebraic equation for the fluid velocity
ũ. It is then straightforward to see how the velocity discrepancy (or error) U − ũ depends on various
parameters, such as time step, grid size, and viscosity. Below the solutions for a still and oscillating
thickless plate have been derived separately. This appendix can be seen as an improvement of the error
analysis presented in Zhou and Balachandar [9].

A.1 Steady 1D diffusion equation
Consider the 1D diffusion equation for velocity u with a concentrated force f at the middle of the domain

ν
d2u

dy2
= − f

hunit
δ(y), −L < y < L (9a)

u(L) = uw+ , u(−L) = uw− . (9b)

On the right hand side, hunit is introduced to render the equation dimensionally correct. For 1D,
hunit = 1. For 2D, hunit = h, where h is the x-direction grid size. For 3D, hunit = h2, where h2 denotes
the grid element area in the x-z plane.

If the force f is known, this equation can be easily solved analytically as shown below. If the force
f is unknown, but insteady the condition u(0) = up is imposed, then this equation models the viscous
channel flow along a thickless parallel plate locating in the middle, and the plate velocity is up.

A.2 Analytical solution
The differential equation with known f can be solved analytically by separating the domain into two
parts y < 0 and y > 0. In each part the solution is a linear function with two unknown constants. At
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y = 0, the two solutions match; and their derivatives u′L and u′R (which are constant in each parts)
satisfy the jump condition

u′R − u′L = − f

νhunit
. (10)

Through grouping the two boundary conditions and the two matching conditions, the four unknown
constants can be solved to render the solutions

u =

{
u0 + (uw+ − u0) yL , y ≥ 0,

u0 − (uw− − u0) yL , y ≤ 0,
(11)

where u0 is the velocity at y = 0

u0 =
1

2

[
(uw+ + uw−) +

fLhunit

ν

]
. (12)

These solutions u(y) are ramp functions with a corner at the delta force location.
Finite difference to solve the model

u∗0 − u0

∆t
=

ν

h2
(u∗1 + u∗−1 − 2u∗0) (13)

where u0, u1, and u−1 denote the velocity at y = 0, y = h, and y = −h, respectively, and the superscript
∗ denotes the solution at the next time step.

u
(n+1)
0 − u(n)

0

∆t
=

ν

h2
(u

(n+1)
1 + u

(n+1)
−1 − 2u

(n+1)
0 ) (14)

The objective is to choose u(n)
0 at previous time step so that at the next time step u(n+1)

0 = u0. Therefor
u

(n)
0 is required to be

u
(n)
0 = −ν∆t

h2
(u

(n+1)
1 + u

(n+1)
−1 ) +

(
1 +

2ν∆t

h2

)
u0 (15)

B Oscillatory 1D diffusion equation
Consider the 1D diffusion equation for velocity u with an oscillatory source term concentrated at the
middle of the domain

∂u

∂t
= ν

d2u

dy2
+

C

hunit
eiωtδ(y), −∞ < y <∞ (16)

where C is a complex constant, i is the imaginary unit, and ω is the frequency. Make the ansatz

u = f(y)eiωt. (17)

Substitute the ansatz into the model equation (16) to get

iωf(y)eiωt = νf ′′(y)eiωt +
C

hunit
eiωtδ(y) (18)

For either y > 0 or y < 0, the above equation simplifies to

iωf(y)eiωt = νf ′′(y)eiωt. (19)

Hence f(y) satisfies the equation

f ′′(y)− iω

ν
f(y) = 0, (20)

and its general solution is

f+(y) = A+eyk(1+i) +B+e−yk(1+i), (y > 0), (21a)

f−(y) = A−eyk(1+i) +B−e−yk(1+i), (y < 0). (21b)
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where

k =

√
ω

2ν
, (22)

A+, B+, A−, and B− are constants to be determined. From the condition u(∞) = 0, it is known A+ = 0;
from the condition u(−∞) = 0, it is known B− = 0. From the continuous condition limy→0 f

+(y) =
limy→0 f

−(y), we have B+ = A−. In order to determine B+ and A−, we integrate both sides of
equation (18) with respect to y over the region [−ε, ε], and let ε→ 0, then

0 = ν[ lim
y→0

f+′(y)− lim
y→0

f−
′
(y)] +

C

hunit
. (23)

From equation (21), we have limy→0 f
+′(y) = −k(1 + i)B+, and limy→0 f

−′(y) = k(1 + i)A−. Therefore

0 = ν[−k(1 + i)B+ − k(1 + i)A−] +
C

hunit
. (24)

Along with the condition B+ = A−, we have

B+ = A− =
1

hunit

C

2k(1 + i)
. (25)

Therefore, the velocity profile is known from equations (17), (21), and (25) as

u(y) =

{
1

hunit

C
2k(1+i)e

−yk(1+i)+iωt, (y ≥ 0),
1

hunit

C
2k(1+i)e

yk(1+i)+iωt, (y ≤ 0).
(26)

Specifically, if C = 2k(1 + i)u0 (with hunit = 1), then

u(y) = <(u0e
−yt+i(ωt−yk)) = u0e

−yt cos(ωt− yk), (y ≥ 0), (27)

which is the solution for the second Stokes problem when a plate oscillates with the velocity u0 cos(ωt).
It is worthy pointing out shear stress source term on the right hand side of equation (5) is twice of that
on the oscillatory plate in the second Stokes problem, since equation (5) actually models two oscillatory
plates aligned in a mirror configuration.

If the force f is known, this equation can be easily solved analytically as shown below. If the force
f is unknown, but insteady the condition u(0) = up is imposed, then this equation models the viscous
channel flow along a thickless parallel plate locating in the middle, and the plate velocity is up.

References
[1] C. S. Peskin. The immersed boundary method. Acta Numerica 11 (2002) 479–517.

[2] R. Mittal and G. Iaccarino. Immersed boundary methods. Annu. Rev. Fluid Mech. 37 (2005)
239–261.

[3] B. E. Griffith and N. A. Patankar. Immersed methods for fluid-structure interaction. Annu. Rev.
Fluid Mech. 52 (2020) 421–448.

[4] R. Verzicco. Immersed Boundary Methods: Historical Perspective and Future Outlook. Annu. Rev.
Fluid Mech. 55 (2023-01) 129–155.

[5] C. S. Peskin. Flow patterns around heart valves: A numerical method. J. Comput. Phys. 10 (1972)
252–271.

[6] D. Goldstein, R. Handler, and L. Sirovich. Modeling a no-slip flow boundary with an external force
field. J. Comput. Phys. 105 (1993) 354–366.

[7] J. Mohd-Yusof. Combined immersed boundary/B-spline methods for simulations of flow in complex
geometry. techreport, CTR Annual Research Briefs, NASA Ames/Stanford University (1997).

[8] M. Uhlmann. An immersed boundary method with direct forcing for the simulation of particulate
flows. J. Comput. Phys. 209 (2005) 448–476.



 ICCFD12

[9] K. Zhou and S. Balachandar. An analysis of the spatio-temporal resolution of the immersed boundary
method with direct forcing. Journal of Computational Physics 424 (2021) 109862.

[10] K. Zhou and T. L. Chan. Simulation of homogeneous particle nucleation in a free turbulent jet.
Aerosol Sci. Technol. 45 (2011) 973–987.

[11] A. J. Chorin. Numerical solution of the Navier-Stokes equations. Math. Comput. 22 (1968) 745–762.

[12] M. M. Rai and P. Moin. Direct simulations of turbulent flow using finite-difference schemes. J.
Comput. Phys. 96 (1991) 15–53.


