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Introduction

 Compressible multiphase flows occur in various 
engineering situations,
e.g., cavitation, droplet atomization, bubbly flows.

 Complex flow structures are created due to the 
interference between shock waves and gas-liquid 
interfaces.

 Phase change makes the flow structures more complex 
due to newly generated interfaces.

 For accurate simulation, numerical schemes should have 
both computational stability and discontinuity-
capturing ability.

 We conducted phase-change simulation using stable and 
low-dissipation numerical methods based on Boundary 
Variation Diminishing (BVD) principle.

Vortex cavitation in venturi tube 
(Soyama, 2021)

Coaxial subcritical combustion 
of cryogenic O2/H2 

(Murrone et al., 2019)
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Six-equation model

 Advection of VOF
𝜕௧𝛼ଵ + 𝒖 ⋅ ∇𝛼ଵ = 𝜇 𝑝ଵ − 𝑝ଶ .

 Mass conservation law
𝜕௧ 𝛼ଵ𝜌ଵ + ∇ ⋅ 𝛼ଵ𝜌ଵ𝒖 = 0,
𝜕௧ 𝛼ଶ𝜌ଶ + ∇ ⋅ 𝛼ଶ𝜌ଶ𝒖 = 0.

 Momentum conservation law
𝜕௧ 𝜌𝒖 + ∇ ⋅ 𝜌𝒖⨂𝒖 + 𝑝𝕀 = 𝟎.

 Energy conservation law
𝜕௧ 𝛼ଵ𝐸ଵ + ∇ ⋅ 𝛼ଵ 𝐸ଵ + 𝑝ଵ 𝒖 + 𝛴 = −𝜇𝑝୍ 𝑝ଵ − 𝑝ଶ ,
𝜕௧ 𝛼ଶ𝐸ଶ + ∇ ⋅ 𝛼ଶ 𝐸ଶ + 𝑝ଶ 𝒖 − 𝛴 = 𝜇𝑝୍ 𝑝ଵ − 𝑝ଶ ,

where
𝛴 = −𝒖 ⋅ (𝑌ଶ∇ 𝛼ଵ𝑝ଵ − 𝑌ଵ∇(𝛼ଶ𝑝ଶ)).

 Stiffened gas equation of state
𝑝 = 𝛾 − 1 ℰ − 𝜂𝜌 − 𝛾𝜋    (𝑘 = 1, 2).

Control volume

liquid 
phase

𝜌

𝒖

𝑝

𝛼

𝜌ℓ

𝒖ℓ

𝑝ℓ

𝛼ℓ

=     𝒖୍    =

→     𝑝୍    ←

gas 
phase

interface

𝛼: volume fraction
𝜌: density
𝑢: velocity
𝐸: total energy
𝑝: pressure

𝑌: mass fraction
𝛾: heat capacity ratio
ℰ: internal energy
𝜋 , 𝜂: material 

dependent parameters
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Six-equation model

Compact form and extended model:

𝜕௧𝒒 + ∇ ⋅ 𝑓 𝒒 + 𝜎 𝒒, ∇𝒒 = 𝜓୮ 𝒒 + 𝜓 𝒒 + 𝜓 𝒒 ,

where,

𝒒 =

𝛼ଵ

𝛼ଵ𝜌ଵ

𝛼ଶ𝜌ଶ

𝜌𝒖
𝛼ଵ𝐸ଵ

𝛼ଶ𝐸ଶ

,  𝑓 𝒒 =

0
𝛼ଵ𝜌ଵ𝒖
𝛼ଶ𝜌ଶ𝒖

𝜌𝒖⨂𝒖 + 𝑝𝕀
𝛼ଵ(𝐸ଵ + 𝑝ଵ)𝒖

𝛼ଶ(𝐸ଶ + 𝑝ଶ)𝒖

,  𝜎 𝒒, ∇𝒒 =

𝒖 ⋅ ∇𝛼ଵ

0
0
𝟎

𝛴 𝒒, ∇𝒒

−𝛴 𝒒, ∇𝒒

,

𝜓୮ 𝒒 =

𝜇(𝑝ଵ − 𝑝ଶ)
0
0
𝟎

−𝜇𝑝୍(𝑝ଵ − 𝑝ଶ)
𝜇𝑝୍(𝑝ଵ − 𝑝ଶ)

, 𝜓 𝒒 =

ഇ(మషభ)

ഉ

0
0
𝟎

𝜃(𝑇ଶ − 𝑇ଵ)
−𝜃(𝑇ଶ − 𝑇ଵ)

, 𝜓 𝒒 =

ഌ(మషభ)

ഐ

𝜈(𝑔ଶ − 𝑔ଵ)
−𝜈(𝑔ଶ − 𝑔ଵ)

𝟎
𝜈𝑒୍(𝑔ଶ − 𝑔ଵ)

−𝜈𝑒୍(𝑔ଶ − 𝑔ଵ)

.

Thermal and chemical 
relaxation terms are 
added to consider 
phase change.

advection 
term

non-
conservative 

term

pressure 
relaxation 

term

temperature 
relaxation 

term

Gibbs-energy 
relaxation 

term
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Calculation procedure

𝜕௧𝒒 + ∇ ⋅ 𝑓 𝒒 + 𝜎 𝒒, ∇𝒒 = 𝜓୮ 𝒒 + 𝜓 𝒒 + 𝜓 𝒒

Start

Reconstruction

Time integration

Relaxation

Riemann solverStep1

Step2

End

yes
no

advection 
term

non-
conservative 

term

pressure 
relaxation 

term

temperature 
relaxation 

term

Gibbs-energy 
relaxation 

term

Step1: Solve homogeneous part of the model 
with FVM,
𝜕௧𝒒 + ∇ ⋅ 𝑓 𝒒 + 𝜎 𝒒, ∇𝒒 = 𝟎.

Step2: Solve the ODE systems including the 
relaxation terms,
 𝜕௧𝒒 = 𝜓୮ 𝒒 ,
 𝜕௧𝒒 = 𝜓୮ 𝒒 + 𝜓 𝒒 ,
 𝜕௧𝒒 = 𝜓୮ 𝒒 + 𝜓 𝒒 + 𝜓 𝒒 .

𝑝-relaxation: only mechanical equilibrium
𝑝-𝑝𝑇-relaxation: mechanical and thermal equilibrium
𝑝-𝑝𝑇-𝑝𝑇𝑔-relaxation: 

mechanical, thermal, and chemical equilibrium
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BVD principle

The numerical flux at 𝑥 = 𝑥
ା

భ

మ

:

𝑓መ
ା

భ

మ

=
ଵ

ଶ
𝑓 𝑞

ା
భ

మ

 + 𝑓 𝑞
ା

భ

మ

ୖ −
ଵ

ଶ
𝛼

ା
భ

మ

𝑞
ା

భ

మ

ୖ − 𝑞
ା

భ

మ



where,
𝑞/ୖ: left/right cell-boundary value,
𝛼: characteristic speed.

Boundary Variation 𝐵𝑉
ା

భ

మ

≡ 𝑞
ା

భ

మ

ୖ − 𝑞
ା

భ

మ

 should be 

Diminishing for suppressing the numerical dissipation 
error. Boundary Variation 

Diminishing principle

𝑥
ା

ଵ
ଶ

𝑥
𝑥

ା
ଷ
ଶ

𝑥
ି

ଵ
ଶ

𝑥 𝑥ାଵ

𝑞
ା

ଵ
ଶ



𝑞
ା

ଵ
ଶ

ୖ

𝑞ത

𝑞തାଵ

𝐵𝑉
ା

ଵ
ଶ

𝑓መ
ା

ଵ
ଶ

𝑞
ା

ଷ
ଶ



𝑞
ି

ଵ
ଶ

ୖ

cell 
boundary 

value

numerical 
flux

central-difference 
term

artificial-viscosity 
term
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Hybrid-type BVD scheme

Candidate interpolant 1: 
stable, non-oscillation scheme (MUSCL, WENO, upwind, etc.)

Candidate interpolant 2: 
discontinuity-capturing scheme (THINC, downwind, etc.)

Candidate 
interpolant 1

Candidate 
interpolant 2

A suitable interpolant can be selected 
following BVD algorithm.

Final 
interpolant
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MUSCL scheme

Reconstruction function:
𝒬

ୗେ 𝑥 = 𝑞ത + Φ 𝑟 𝑞തାଵ − 𝑞ത 𝑋 𝑥 ,
where,

𝑟 =
തିതషభ

തశభିത
, 𝑋 𝑥 =

௫ି௫

௫
.

Φ 𝑟 : slope limiter function
Harmonic limiter: Φ 𝑟 =

ା||

ଵା||

The boundary values are found as,
𝑞

ା
భ

మ

,ୗେ = 𝒬
ୗେ 𝑥

ା
భ

మ

= 𝑞ത +
ଵ

ଶ
Φ 𝑟 𝑞തାଵ − 𝑞ത ,

𝑞
ି

భ

మ

ୖ,ୗେ = 𝒬
ୗେ 𝑥

ି
భ

మ

= 𝑞ത −
ଵ

ଶ
Φ 𝑟 𝑞തାଵ − 𝑞ത .

𝑥
𝑥ିଵ 𝑥 𝑥ାଵ

𝑞തିଵ

𝑞ത

𝑞തାଵ𝒬
ୗେ(𝑥)

𝑞
ା

ଵ
ଶ



𝑞
ି

ଵ
ଶ

ୖ

MUSCL scheme
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THINC scheme

Reconstruction function:
𝒬

ୌ୍େ 𝑥 = 𝑞ୟ + 𝑞ୢ tanh 𝛽 𝑋 𝑥 − 𝑑 ,
where,

𝑞ୟ =
തషభାതశభ

ଶ
, 𝑞ୢ =

തశభିതషభ

ଶ
, 𝑋 𝑥 =

௫ି௫

௫
.

The boundary values are found as
𝑞

ା
భ

మ

,ୌ୍େ = 𝒬
ୌ୍େ 𝑥

ା
భ

మ

= 𝑞ୟ + 𝑞ୢ
భ்ା మ்/ భ்

ଵା మ்
,

𝑞
ି

భ

మ

ୖ,ୌ୍େ = 𝒬
ୌ୍େ 𝑥

ି
భ

మ

= 𝑞ୟ − 𝑞ୢ
భ்ି మ்/ భ்

ଵି మ்
,

𝑇ଵ = tanh
ఉ

ଶ
, 𝑇ଶ = tanh

ఈఉ

ଶ
, 𝛼 =

തି

ౚ
.

The steepness parameter 𝛽 determines the 
characteristics of the THINC scheme:

 Small 𝛽 (≈ 1.1): stable, suppressing numerical oscillation.
 Large 𝛽 (≈ 1.6 ~ 3.0): suitable for capturing discontinuity.

𝑥
𝑥ିଵ 𝑥 𝑥ାଵ

𝑞തିଵ

𝑞ത

𝑞തାଵ𝒬
ୌ୍େ(𝑥)

𝑞
ା

ଵ
ଶ



𝑞
ି

ଵ
ଶ

ୖ

THINC scheme
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Hybrid-type BVD scheme

 MUSCL-THINC-BVD scheme

 Adaptive THINC-BVD scheme

MUSCL

THINC(𝛽)

Final 
interpolant

THINC(𝛽௦)

THINC(𝛽)

Final 
interpolant

A suitable interpolant can be selected 
following BVD algorithm.

14

BVD algorithm

Procedure for selecting a suitable interpolant for cell Ω

in the MUSCL-THINC-BVD scheme:

A) Calculate total 𝐵𝑉 (𝑇𝐵𝑉),
𝑇𝐵𝑉

 = 𝐵𝑉
ି

భ

మ

 + 𝐵𝑉
ା

భ

మ

 ,

for all possible patterns (𝑚 = 1 ~ 8).

B) Select the final interpolant function as

𝒬 𝑥 = ൞

𝒬
ୗେ 𝑥 if  argmin


𝑇𝐵𝑉

 ∈ 1, 2, 3, 4 ,

𝒬
ୌ୍େ 𝑥 if  argmin


𝑇𝐵𝑉

 ∈ 5, 6, 7, 8 .

Same procedure can be applied for 
the adaptive THINC-BVD scheme.

cell 𝑖 + 1cell 𝑖cell 𝑖 − 1𝑚

MUSCLMUSCLMUSCL1

THINCMUSCLMUSCL2

MUSCLMUSCLTHINC3

THINCMUSCLTHINC4

MUSCLTHINCMUSCL5

THINCTHINCMUSCL6

MUSCLTHINCTHINC7

THINCTHINCTHINC8

𝑥ିଵ 𝑥 𝑥ାଵ

𝑥

𝑞തିଵ

𝑞ത

𝑞തାଵ

𝐵𝑉
ା

ଵ
ଶ

𝐵𝑉
ି

ଵ
ଶ
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• Riemann solver:
HLLC (wave-propagation method)

• Time integration: 3rd-order RK
• CFL: 0.5
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1D water shock tube problem

Numerical results

The BVD method shows 
captured the interface 
within 3 - 4 cells.

without 
phase 
change

with 
phase 
change
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2D cavitating RMI problem

Conceptual diagram of the problem

wall

wall

wall gas

water

𝑢 = −200 [m/s]

𝑦

𝑥

3 [m]

1 [m]

outflow
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2D cavitating RMI problem

Numerical results (without phase change)

Adaptive 
THINC-

BVD

MUSCL-
THINC-

BVD

MUSCL

Volume fraction of 
water

PressureThe BVD method 
shows more 
developed instability.
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2D vapor bubble compression problem

Conceptual diagram of the problem

dodecane
vapor

dodecane
liquid

𝑢 = 100 [m s⁄ ]

piston

wall

𝑦

𝑥

1 [m]

1 [m]
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2D vapor bubble compression problem

Numerical results (with phase change)

Adaptive 
THINC-

BVD

MUSCL-
THINC-

BVD

MUSCL

𝑡 = 0 [ms] 𝑡 = 0.6 𝑡 = 0.8 𝑡 = 1.0 𝑡 = 1.2 𝑡 = 1.4

New interfaces 
are captured in 
the BVD schemes.

Mass fraction of vapor
(red = 1, blue = 0)
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Summary

 We introduced MUSCL-THINC-BVD and adaptive THINC-BVD scheme for the 
accurate simulation of the compressible multiphase flows with phase change.

 Following the Boundary Variation Diminishing principle, a suitable interpolant 
was selected from two kinds of candidate interpolants.

 The numerical results showed that the BVD schemes can capture both 
continuous and discontinuous solutions more accurately than the existing 
scheme.

 Future work:
 Unstructured grids
 Other candidate interpolants
 High-order scheme for turbulent flows

Thank you for your attention!


