
[2-A-01]

Keywords:

©Retained by Authors 

 ICCFD12 

Oral presentation | Fluid-structure interaction

Fluid-structure interaction-II 
Mon. Jul 15, 2024 2:00 PM - 4:00 PM  Room A

 
Multi-Fidelity Gradient-based Aerostructural Optimization 

*Markus Peer Rumpfkeil1, Phil Beran2 （1. University of Dayton, 2. U.S. Air Force Research Laboratory）
Multi-fidelity Constrained Optimization, Flutter, Aeroelastic Simulations 



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

ICCFD12-xxxx

Multi-Fidelity Gradient-based Aerostructural
Optimization

Markus Peer Rumpfkeil1 and Philip Beran2

1 Department of Mechanical and Aerospace Engineering, University of Dayton, USA
2 U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, USA

Corresponding author: Markus.Rumpfkeil@udayton.edu

Abstract: The traditional design process relies heavily on lower fidelity models for expedience
and resource savings. However, the reduced accuracy and reliability of low-fidelity tools often lead
to the late discovery of design defects or inadequacies. These deficiencies result either in costly
changes or the acceptance of configurations that do not meet expectations. Multi-fidelity methods
attempt to blend the increased accuracy and reliability of high-fidelity models with the reduced
cost of low-fidelity models. In this paper, a gradient-based multi-fidelity constrained optimization
framework is applied to an aeroelastic drag minimization of an efficient supersonic air vehicle
(ESAV). Constraints are imposed on the lift and pitching moments. The high- and low-fidelity
analysis levels considered are Euler and panel solutions, respectively, all combined with a modal
structural solver. The coupling of the two solvers is accomplished with FUNtoFEM, a Python-
based framework developed for both high-fidelity aeroelastic analysis and adjoint-based aeroelastic
optimization. This work is a further step towards developing the capabilities of a multi-fidelity,
multidisciplinary analysis and optimization of this type of vehicle.
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Nomenclature
AR = aspect ratio
CL = lift coefficient
CD = drag coefficient
CM = pitching moment coefficient
D = shape design variables
f = objective or cost function
k = stiffness
Φ = mode-shapes
M = Mach number
XA = aerodynamic mesh coordinates
XS = structural mesh coordinate
α = angle of attack (◦)
Λ = sweep angle (◦)
λ = taper ratio

1 Introduction and Background
To push the bounds of aircraft performance, aircraft makers must also be willing to push the conventional
notion of what a well performing aircraft looks like. This requires the analysis of unconventional aircraft
configurations for which little to no historical data exists. Thus, new aircraft configurations have to be
analyzed with computational approaches in the early stages of development to predict their performance
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and feasibility and it is very important to employ modeling methods that capture the complicated and
often coupled physics of flight as accurately as possible with minimal computational cost.

The efficient supersonic air vehicle (ESAV) is an example for such an unconventional aircraft since it
features swept lambda wings with no tail, that is envisioned to perform in the subsonic and supersonic
regimes [1]. Flying a tailless vehicle in a complex flight envelope presents challenges in trim and stability,
with the accurate prediction of aerodynamic forces and moments being critical to its success; this necessity
for accurate physics modeling is further exacerbated by the fact that such a vehicle must both dwell in
and fly through the transonic regime, for which aerodynamic modeling is known to be difficult.

As a great motivation for the development of multi-fidelity methods, one can take a look at the
Department of Defense life cycle acquisition process. According to a study on pre-milestone A and
early-phase systems engineering [2], 70-75% of a system’s life cycle cost is locked in during the analysis
of alternatives and down-selection to a single configuration for maturation. It is during this phase
that designers have the greatest freedom to make critical design changes. However, it is also at this
stage that they have the lowest confidence in performance predictions due to the predominantly use
of low-fidelity tools such as historical data and simulations with lack of interdisciplinary couplings.
However, as configurations deviate further from the envelope of historical data, designers run the risk of
missing critical, design-driving phenomena stemming from individual disciplines or their couplings [3].
The discovery of these so-called “late defects” requires costly changes late in the design cycle and/or
acceptance of a product with worse-than-advertised performance. Multi-fidelity techniques may help
address these problems by enabling the injection of higher fidelity analysis earlier in the design process
for performance checks and the identification of design-driving phenomena that would not otherwise be
discovered until late in design.

A model’s level of fidelity may be defined as its accuracy in determining a quantity or behavior of
interest of a real system. Fidelity levels fall on a multi-dimensional spectrum. Variations may include, for
example, changes in physics modeled, inclusion or coupling of different disciplines, variation in geometric
detail, faithfulness of boundary and loading conditions, or reduction of numerical error in a solution
process [4]. What constitutes a change in fidelity depends on the intended use and the user. Multi-
fidelity methods strive to combine these various levels. Lower-cost (time, money, personnel, computing,
etc.), less-accurate or reliable predictions may be combined with higher-cost, more accurate or reliable
predictions to identify design-driving physics before final down-selection. Lower fidelity methods may be
leveraged to speed the refinement of the final design, and even accelerate the final analysis at the highest
fidelity. Multi-fidelity methods are not a panacea but they present an approach that, in concert with
advances in other design tools and processes, may help to design better aircraft at lower cost. Ultimately,
designers should be able to access and combine any necessary tools during any phase of the design process
to aid and guide their decision making.

The overall goal of this research is to set up a geometrically parameterized, multi-fidelity model of an
efficient supersonic air vehicle (ESAV) so that aeroelastic and control analyses can be performed to enable
multi-fidelity and multidisciplinary design optimization. In a recent paper [5] we showed multi-fidelity
parameter studies of this vehicle by varying flow conditions and geometric parameters including flap
deflections to enable moment controls. We also conducted an inverse design optimization to demonstrate
optimization capabilities, however, the gradients were finite-differenced as no adjoint was available at
the time. Adjoint gradients were implemented via FUNtoFEM and demonstrated for a single-fidelity
optimization of this vehicle in Rumpfkeil and Beran [6].

Multi-fidelity approaches are frequently used in engineering design when high-fidelity models are too
expensive to use directly and lower fidelity models of reasonable accuracy exist. In an optimization
context, corrected low-fidelity data is typically used in a series of sequential optimizations bounded by
trust regions around the approximate model. Trust Region Model Management (TRMM) frameworks [7,
8] allow for approximate models to be used in place of more expensive high-fidelity models over a limited
region of the design space. Each sub-optimization is independent of the previous one, except for the
starting design point and trust region size since for every outer loop iteration, the trust region is re-
centered about the current design, and the sizes of the move limits or subproblem bounds are determined
via a heuristic [7, 9]. Thus, a design optimization may be carried out as a sequence of optimizations of the
approximate subproblem which is provably convergent to a local optimum of the high-fidelity problem
provided that the approximate problem maintains first-order consistency (i.e., matching of function and
gradient values) with the high-fidelity problem [8].

Examples of applying multi-fidelity concepts to gradient-based optimization in the literature are based
on the Trust Region Model Management (TRMM) approach presented by Lewis [7] and Alexandrov et al.
[8] for unconstrained optimization. Design constraints are explicitly considered by Rodríguez, Renaud,
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and Watson [10] and Alexandrov et al. [11]. Alexandrov et al. [12] also extended the TRMM concepts
to a general Approximation and Model Management Optimization framework, demonstrating it for
augmented Lagrangian optimization, the multilevel algorithms for large-scale constrained optimization
(MAESTRO) framework, and a trust-region Sequential Quadratic Programming (SQP) method.

While its simplicity makes TRMM easy to implement its convergence rate toward the high-fidelity
optimum depends on the accuracy of the successive approximate models for the high-dimensional sub-
spaces [13, 14, 15, 16]. This is particularly problematic early on in the optimization when usually most
of the reduction in the objective function is achieved but data for improving the approximate models
is limited. This inadequacy of early approximate models is compounded by the fact that information
about the high-fidelity problem is not propagated from one sub-optimization to the next, aside from the
scaling of the trust region. Ideally, once the expensive high-fidelity truth function is evaluated, its value
and gradient would be used to guide further progress by the optimizer. Also, while TRMM is provably
convergent to an optimum of the high-fidelity problem, the rate of convergence in the neighborhood of
the optimum can be slow [17]. Finally, each iteration of TRMM may require many low-fidelity function
evaluations. While the lower fidelity prediction is cheaper than that of the high-fidelity, its cost may not
be negligible. To the contrary, in order to obtain better approximations of the truth function, a better
low-fidelity approximation may be required, making each evaluation more costly.

To address these issues a unified multi-fidelity quasi-Newton approach has been previously developed
by Bryson and Rumpfkeil [9, 18, 19] that preserves an estimate of the inverse Hessian between iterations
and which determines search directions from high-fidelity data using multi-fidelity surrogate models
for the line searches where unified, hybrid additive-multiplicative PCE corrections are employed. It
was demonstrated that the resulting algorithm produced better search directions, maintained larger step
sizes, and required significantly fewer low-fidelity function evaluations than TRMM approaches for a large
variety of analytical test functions [18]. In that algorithm the approximate high-fidelity inverse Hessian
and the high-fidelity gradient are used to calculate the expected (bound constrained) optimal point as in
typical quasi-Newton methods. While the search direction is forced to be along the quasi-Newton step
the line search itself is performed on the general low-fidelity model, corrected to match high-fidelity data
at two points using a unified, hybrid additive-multiplicative polynomial chaos expansion (PCE) approach
also developed by Bryson and Rumpfkeil [20]. The first-order consistency condition is satisfied by fitting
the models to the function values and gradients of only two points, one of which is the current center
point of the trust region. The second point is the most recently evaluated point if the step was rejected;
otherwise, the previous accepted design is used. However, the convexity of the approximate response is
not guaranteed as it is in the classical trust region method. As a safeguard, a trust region imposes move
limits on the design step to prevent the line search from exploiting extrapolatory errors in the correction
functions beyond the expected optimal point. The trust region is adjusted according to the same rules
as in a TRMM, depending on the performance of the approximate model relative to the high-fidelity
function [9, 18, 19].

This framework is only able to accommodate constraints indirectly through penalty functions. Thus,
it was extended by Rumpfkeil and Beran [21] to include constraints directly and its effectiveness was
demonstrated on a variety of benchmark problems. For this, a mono-fidelity sequential least-squares
programming (SLSQP) [22] algorithm has been adapted and incorporated into the unified multi-fidelity
quasi-Newton framework. For constraint evaluations during the line-search phase multi-fidelity PCE
surrogate models as described above with all available low- and high-fidelity data points are constructed
and evaluated for each constraint separately.

2 Aeroelastic Analysis Solver and Adjoint Derivatives
In an aeroelastic analysis it is necessary to capture the complex and coupled physical phenomena present
in the operating environment and flight regime of modern aircraft. The process begins with the selection
of a set of design parameters via a parametric study, surrogate model training point selection, optimizer,
etc. A model configuration and geometry generator interprets and maps the given set of design parame-
ters into the required aerodynamic and structural analysis models which also usually require an adequate
mesh. For a complex aeroelastic application, a tailless, efficient supersonic air vehicle (ESAV) illustrated
in Figure 1(a), will be employed here. This type of configuration has been the subject of many studies
at AFRL [5, 6, 23, 24, 25, 26, 27] and is of interest due to potential savings in weight and drag since the
empennage is eliminated.
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2.1 Geometry
A shared geometric representation of the vehicle is paramount for any multi-fidelity and multi-disciplinary
analysis and optimization. Using a single source ensures that the inputs given to each analysis are
consistent and aids in the transfer of data between disciplines or fidelity levels. This objective is achieved
by using the Computational Aircraft Prototype Synthesis (CAPS) [28] geometry program. Within CAPS
exists a parametric, attributed model of the vehicle. The attributes provide logical information required
for the generation of analysis inputs. For example, attributes identify the vehicle skins where aeroelastic
data transfers take place, symmetry planes for the application of boundary conditions, and bodies to
which material properties should be applied. When a shape design parameter is changed, the geometry
is regenerated, and analysis models (meshes, properties, etc.) may be requested for various disciplinary
analyses at varying levels of fidelity. An additional benefit of having a fully parametric model is that
it is differentiable all the way to geometric primitives which means that very accurate gradients can be
obtained for gradient-based optimization and other purposes.

The analysis model generation proceeds as follows. Using the current design parameters, the airfoil
cross-sections and the planform shape are determined. Lofting these airfoils provides a solid body
representing the outer mold line (OML). These same airfoils also provide the boundaries for defining
mid-surface aerodynamic panel models. The CFD domain is generated by subtracting the OML solid
from a bounding box. The internal structure results from intersecting the OML body with a grid
representing the structural layout. The wing skins are extracted from the outer surface of the OML
body. Sample geometric entities used for building various analysis models for the ESAV are shown in
Figure 1.

(a) OML for FEA and CFD (b) Internal structure and skins for FEA

(c) Panels for low-fidelity aerodynamics (d) Fluid domain for CFD

Figure 1: Representation of ESAV for multi-fidelity and multi-disciplinary analyses.

2.2 Structural Solver
The employed structural solver is the Automated STRuctural Optimization System (ASTROS) [29].
ASTROS can perform static, modal, and transient linear finite-element analysis (FEA), and has an
internal aerodynamics capability for static and dynamic aeroelastic analyses (see Subsection 2.3.1). The
same structural analysis model feeds all subsequent multi-fidelity aeroelastic analyses described in the
next subsection. The generic structural model shown in Figure 1(b) is employed here consisting of 11
spars and 7 ribs each in the inboard and outboard section. The ribs/spars as well as skins are represented
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by shell elements made out of aluminum and are 2 in and 0.1 in thick, respectively. To account for non-
structural mass, the material density is scaled by a factor of 1.5. Although important to the structure’s
behavior, panel stiffeners and spar caps are not currently accounted for, as their geometry would need
to be modeled explicitly in CAPS.

2.3 Flow Solver
Two different fidelity levels are employed for the flow solver which will be explained in the following
subsections.

2.3.1 Low-fidelity: ASTROS

The low-fidelity analysis is performed with the ASTROS package. The static aeroelastic analysis fea-
tures in ASTROS provide the capability to analyze and design linear structures in the presence of
steady aerodynamic loading. The USSAERO (Unified Subsonic and Supersonic Aerodynamic Analysis)
algorithm [30] is employed in ASTROS which can determine the pressure distributions on lifting wing-
body-tail combinations for steady subsonic or supersonic flow. The solid boundaries are represented by a
number of discrete panels and the flow around the solid boundaries can be estimated by the superposition
of source type singularities for non-lifting bodies and vortex singularities for wing-like structures. The
aerodynamic forces and influence coefficients are applied to the structure through built-in splines [31].
Boundary conditions can account for the angle of attack, control surface settings (through the bulk data
entry AESURF) as well as airfoil camber and thickness. The number of panels was varied until the
solution was “panel-converged” and the resulting 1200 aerodynamic panels are shown in Figure 1(c).

2.3.2 High-fidelity: Fun3D

The high-fidelity level considered in this work utilizes NASA’s Fully-Unstructured Navier-Stokes 3D
(FUN3D) [32] code in Euler mode. FUN3D is a node-centered, implicit, upwind-differencing finite-
volume solver. Inviscid wall boundary conditions are applied to the wing outer mold line, and the
symmetry plane is modeled with a symmetric boundary condition. The initial surface and volume
grids are generated by AFLR4 and AFLR3 [33, 34], respectively, and a grid convergence study yielded
satisfactory volume meshes with approximately 950, 000 nodes and about five and a half million elements.
The underlying surface mesh is shown in Figure 2.

Figure 2: CFD surface mesh.

Since no aeroelastic and transonic experimental data exists for this vehicle for validation purposes,
the rigid aerodynamic case for a low subsonic Mach number has been analyzed in Lickenbrock et al.
[27] through a sweep of the angle of attack and compared to wind tunnel data obtained by Lockheed
Martin [1]. The inviscid FUN3D results closely matched the lift trends and values of the wind tunnel
results. When adjusted for viscous effects, by shifting the inviscid FUN3D results so that the drag
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matches the Wind Tunnel drag at zero angle of attack, the drag was very close to the wind tunnel results
as well [27].

FUN3D’s internal aeroelastic capability [35] utilizes a modal structural decomposition approach and
FUNtoFEM [36, 37] has an identical solver module implemented as well. The utilized linear structural
dynamic equations in both cases are appropriate for small deflections [35]. The deflections are represented
as linear combination of eigenmodes and typically only a limited set of the “important” eigenmodes (ten
here) are transferred. The transfer of mode shapes from the structural mesh to the fluid surface mesh is
handled by CAPS internally and given to FUNtoFEM. Starting from free-stream conditions 250 coupling
iterations are employed to yield the final static aeroelastic deflection.

Figure 3 exhibits sample pressure contours for the baseline vehicle at a Mach number of 0.9 and angle
of attack of 5◦.

Figure 3: Pressure distribution at a transonic Mach number and moderate angle of attack.

Figure 4 shows the original and the deformed shape at the end of the aeroelastic simulation. The

Figure 4: Aeroelastic deformed shape (red) and original shape (white).

corresponding plot of CL versus the number of iterations as well as the convergence history of the
conservation of mass residual is shown in the left of Figure 5 and the displacement response for the first
four modes versus number of iterations is shown to the right in the same figure. One can observe a deep
convergence of the residual which is important for an accurate adjoint solution for the gradient. The
first mode is clearly the most important contribution to the aeroelastic deformation shown in Figure 4.
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Figure 5: Representative plot of CL and conservation of mass vs number of iterations (left) and displace-
ment response for the first four modes vs iterations (right).

2.4 FUNtoFEM Coupling and Adjoint Derivative
In order to enable high-fidelity adjoint capabilities the coupling of FUN3D and ASTROS is performed
with FUNtoFEM [36, 37], a Python-based framework developed for both high-fidelity aeroelastic analysis
and adjoint-based aeroelastic optimization. This work has been already presented by Rumpfkeil and
Beran [6] but is repeated here for completeness. The modularity of FUNtoFEM was designed with
the goals of being able to couple any adjoint-enabled flow and structural models and to permit its
extension to other disciplines such as thermal analysis [36, 37]. FUNtoFEM also includes several load
and displacement transfer techniques for aeroelastic coupling. Figure 6 displays a flowchart of the basic
data flow and capabilities of FUNtoFEM.

For a modal-based aeroelastic simulation, the objective or cost function, f , is a function of the shape
variables, D, through both the structural and aerodynamic mesh coordinates, XS and XA [38]:

df

dD
=

∂f

∂XA

dXA

dD
+

∂f

∂XS

dXS

dD
+
∂f

∂k

∂k

∂XS

dXS

dD
+
∂f

∂Φ

∂Φ

∂XS

dXS

dD
(1)

where k is the stiffness and Φ are the mode-shapes. The green terms are computed by FUNtoFEM and
the orange terms have to be supplied by the employed structural solver. The blue and red terms have to
be computed by the geometry generator and aerodynamic or structural mesher, respectively. The mode
shape term (last summand) can likely be ignored in the fixed mode assumption used here. In addition,
ASTROS does not supply ∂Φ

∂XS
and it would be computationally very expensive to finite-difference.

Furthermore, it is also not easy to simply finite-difference ∂Φ
∂XS

dXS

dD since the structural mesh and hence
mode-shape locations might change with shape variable perturbations. For the second summand one
would need dXS

dD which is currently not available in CAPS (though it is under development) so this
summand is ignored here. Thus, the adjoint derivative is approximated with

df

dD
≈ ∂f

∂XA

dXA

dD
+
∂f

∂k

dk

dD
(2)

where dXA

dD is computed by an ESP body class that was written within the FUNtoFEM framework and
dk
dD = ∂k

∂XS

dXS

dD is obtained by using a fourth-order accurate central finite-difference of ASTROS. The
latter is computationally not too expensive if not too many shape variables are used since ASTROS is
running pretty fast for the employed structural mesh.

In order to verify the correctness of this aeroelastic adjoint the derivative of the baseline static lift
coefficient (cf. Figure 5) with respect to five design variables (three shape and two flow variables) is
compared to finite-difference approximations of various orders (1st, 2nd, and 4th order accurate) and
with various stepsizes (relative to each design variable value) in Figure 7. Note that lines between the
data points are for visual purposes only. The step size after the adjoint refers to the relative FD step
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Figure 6: FUNtoFEM flowchart adapted with permission from Jacobson et al. [36, 37].

Figure 7: Verification of aeroelastic adjoint gradient with various finite-difference approximations.

size for the fourth-order accurate central finite-difference of ASTROS but as one can infer the adjoint
derivatives are pretty close to one another. For the remainder of this paper a step size of 0.005 was
chosen for the fourth-order finite-differencing of ASTROS for dk

dD .
Overall, one can observe that the FD trends match the adjoint ones though the magnitude can be
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off likely due to truncation or round-off error in the finite-differences and the neglection of adjoint terms
in Equation (2) as discussed earlier. For flow design variables such as Mach number or angle of attack,
FUNtoFEM can compute the full adjoint derivative internally and thus should be correct [38]. Figure 7
shows very good agreement with finite-differences for the angle of attack (AoA) but not for the Mach
number. The reason for the relatively large scatter of the various finite-differences for the Mach number
derivative is the fact that the lift coefficient is near a (local) maximum at this Mach number and thus
depending on which neighbors are involved in the FD stencil very different results are achieved.

When total derivatives of the low-fidelity model’s (ASTROS) output quantities of interest (lift, drag
and moment coefficients) with respect to design variables are required a fourth-order accurate central
finite-difference with a step size of 0.01 is employed which again is not too expensive for the few shape
design variables employed here since ASTROS is running pretty fast.

3 Constrained Gradient-based Aerostructural Design Optimiza-
tion

The ultimate goal of creating a geometrically-parameterized multi-disciplinary analysis model is to use
it in a gradient-based optimization framework. Four bounded design variables are considered here as an
application example; three geometric parameters namely aspect ratio, AR ∈ [2, 6], taper, λ ∈ [0.3, 0.7],
and sweep, Λ ∈ [30◦, 60◦] as well as the angle of attack, α ∈ [0◦, 6◦]. The extreme cases of each geometric
parameter can be seen in comparison to the baseline ESAV model in Figure 8.

To bring consistency to the parameter space, the model maintains constant planform areas in the
outboard and inboard portions of the wing, and the y-directional span is set to a constant value. This
results in longer root chord lengths at smaller aspect ratios, and narrow outboard sections of the wing at
higher aspect ratios, as seen in Figure 8. While some of these configurations do not seem feasible at first
glance, the extreme values for each parameter will allow for greater design freedom for the optimizer, and
appropriately applied constraints should drive the aircraft to a feasible optimal configuration. Since the
correct trends of the aeroelastic adjoint gradient have been established in Subsection 2.4 a gradient-based
optimization can be attempted.

A lift- and moment-constrained drag minimization with M = 0.9 at sea-level is performed. The
baseline vehicle has an aspect ratio of, AR = 4.0003, taper, λ = 0.492, sweep, Λ = 41.324◦, and α = 2.0◦

yielding C∗
L = 0.17278 and that lift coefficient will be tried to be maintained (or exceeded) while reducing

the drag coefficient, CD, subject to a pitching moment, CM , constraint to make sure that the vehicle
can be trimmed. The optimization problem can be cast as

minimize
AR,λ,Λ,α

CD

subject to c1 = CL − C∗
L ≥ 0

c2 = 0.03− |CM | ≥ 0

2 ≤ AR ≤ 6

0.3 ≤ λ ≤ 0.7

30◦ ≤ Λ ≤ 60◦

0◦ ≤ α ≤ 6◦

(3)

In order to decrease the overall runtimes a coarser mesh with only about 260,000 nodes and 1.4 Million
elements is employed for the high-fidelity function and gradient evaluations. The total computational
cost estimate assumes that one high-fidelity function evaluation has a cost of one (yielding all 3 required
coefficients) and each adjoint gradient costs about the same (one needs to compute three; one each for
the lift, drag and moment coefficient). The low-fidelity aeroelastic analysis with ASTROS runs about 100
times faster than FUN3D. Figure 9 shows the objective function convergence history of this optimization
and Figures 10 and 11 display the feasibility. Each data point symbolizes an optimization iteration.
HF indicates an optimization performed with only high-fidelity function and gradient evaluations while
MF indicates a multi-fidelity optimization both using the framework described above. Various starting
points in the design space are considered where “Center” implies that all initial design variables are set
to the mid-points of their respective intervals. Likewise, “1 Quarter”, “1 Third”, and “2 Fifth” imply all
initial design variables are set to one-quarter, one-third, or two-fifth of their respective intervals (scaled
to unity), respectively.
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(a) Sweep 30 degrees, Taper 0.3,
Aspect Ratio 2.

(b) Sweep 60 degrees, Taper 0.3,
Aspect Ratio 2.

(c) Sweep 30 degrees, Taper 0.7,
Aspect Ratio 2.

(d) Sweep 60 degrees, Taper 0.7,
Aspect Ratio 2.

(e) Baseline model. (f) Sweep 30 degrees, Taper 0.3, Aspect
Ratio 6.

(g) Sweep 60 degrees, Taper 0.3,
Aspect Ratio 6.

(h) Sweep 30 degrees, Taper 0.7, Aspect Ra-
tio 6.

(i) Sweep 60 degrees, Taper 0.7,
Aspect Ratio 6.

Figure 8: Sample FUN3D models of ESAV with varying geometric parameters.

The more successful optimizations are very close to or actually feasible while reducing the (inviscid)
drag coefficient to about 75 counts. The baseline shape and the MF optimized shape starting from the
baseline are shown in Figure 12 (both including their aeroelastic deformation) and resulting pressure
contours are displayed in Figure 13 showing small differences between the initial and optimized design.

The MF optimized design variable values are: aspect ratio, AR = 3.98, taper, λ = 0.488, sweep,
Λ = 40.671◦, and α = 1.97◦, thus the optimized vehicle has slightly less sweep back, a smaller span, and
a skinnier tip than the baseline one.

4 Conclusions
Robust computational analysis models have been created for the multi-fidelity aeroelastic analysis of a
relatively complex vehicle including high-fidelity adjoint derivatives. The integration of these analysis
models into a gradient-based constrained multi-fidelity optimization framework has been described and
a lift- and moment-constrained drag minimization has been performed. This work is the foundation for
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Figure 9: Objective function history for constrained drag minimization with four design variables.
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Figure 10: Lift constraint history for constrained drag minimization with four design variables.
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Figure 11: Moment constraint history for constrained drag minimization with four design variables.

Figure 12: Initial (white) and optimal (red) aeroelastically deformed shapes for the lift- and moment-
constrained drag minimization.

a planned multi-fidelity and multidisciplinary maximization of the ESAV range where trim, deflection,
flutter [39, 40], and other necessary structural constraints will be implemented to maintain the integrity
of the model.
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Figure 13: Non-dimensionalized pressure on initial (left) and optimal (right) aeroelastically deformed
shapes for the lift- and moment-constrained drag minimization.
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