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Renewable Energies Context and motivations

General problem and flow configuration
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Renewable Energies Context and motivations

General problem and flow configuration

Wave propagation

Wave generation

ρa μa α < 0

ρw μw α > 0

α = 0

FOM (Navier-Stokes) 

Everywhere

I Incompressible bi-fluid Navier-Stokes equations (to avoid surface fitted-grids)

∂u
∂t

+ (u ·∇)u = −1
ρ
∇p +

1
ρ
∇ · µ

(
∇u + (∇u)T)+ g,

∇ · u = 0,
∂α

∂t
+ u ·∇α = 0 ⇒ ρ = ρa + (ρw − ρa) H(α), µ = µa + (µw − µa) H(α)

+ IC and BCs (wave imposed on the gray zone).

↪→ Too costly! ⇒ we can only afford few numerical simulations! (how to select??)
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Reduced Order Models reduced basis, asymptotic models or simplified models

Need to reduce the CPU costs

The Full Order Models are almost never used alone for wind or marine energy
applications⇒ large CPU costs, multiscale problem, optimization

I Simplified mathematical models (invariance-asymptotic)

↪→ Shallow Water Equations, Boussinesq, etc (post doc Umberto Bosi)

↪→ Inviscid incompressible Navier-Stokes equations (PhD Caroline Le Guern)

I Simplified numerical models based on data (only polar curves for 2D airfoils)

↪→ Actual blades are modeled using extra Volume Forces based on data

↪→ Actuator lines: (post doc Nishant Kumar)

I Model Order Reduction based on data (primitive variables)

↪→ Proper Orthogonal Decomposition Reduced Order Model (PhD Beatrice Battisti)

U(x, t) =
N∑

i=1

ai(t)Φi(x) U = u, v,w, p, ρ, µ, ...
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Reduced Order Models Proper Orthogonal Decomposition

Low dimensional subspace

Proper Orthogonal Decomposition (POD), Lumley (1967)

. Look for the flow realization Φ(X) that is
"the closest" in an average sense to realizations
U(X).

(X = (x, t) ∈ D = Ω× R+)

.Φ(X) solution of problem:

max
Φ
〈|(U,Φ)|2〉, ‖Φ‖2 = 1.

. Optimal convergence in L2 norm de Φ(X)
⇒ Dynamical reduction possible.

Lumley J.L. (1967) : The structure of inhomogeneous turbulence. Atmospheric Turbulence and
Wave Propagation, ed. A.M. Yaglom & V.I. Tatarski, pp. 166-178.
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Reduced Order Models Proper Orthogonal Decomposition

Low dimensional subspace

. Equivalent with Fredholm equation, R(X,X′) is space-time correlation tensor∫
D

Rij(X,X′)Φ(j)
n (X′) dX′ = λnΦ

(i)
n (X) n = 1, ..,Ns

. Snapshots method, Sirovich (1987) :∫
T

C(t, t′)an(t′) dt′ = λnan(t)

. POD basis Φ(X) with Ns snapshots

U(x, t) =

Ns∑
n=1

an(t)Φn(x),

Ũ(x, t) =

Nr∑
n=1

an(t)Φn(x), with Nr � Ns.

. POD basis Φ(X) highly depends on the snapshots (sampling problem)

Sirovich L. (1987) : Turbulence and the dynamics of coherent structures. Part 1,2,3 Quarterly of
Applied Mathematics, XLV N◦ 3, pp. 561–571.
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Reduced Order Models POD reduced basis

Full Order Model and POD reduced order model

I A POD ROM in the whole computational domain?

↪→ How to deal with complex body deformations and motions?

↪→ Is a single POD ROM accurate in the whole domain?

↪→ Is the same accuracy necessary in the whole domain?

I Past observations, for academic to industrial configurations

↪→ Large POD projection errors in the vicinity of the obstacles

↪→ Low POD projection errors elsewhere

I Proposed solution

↪→ Couple FOM in the vicinity of the obstacles with POD ROM elsewhere
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Reduced Order Models POD reduced basis

General configuration

Wave propagation

Wave generation 

« Forcing » 

ρa μa α < 0

ρw μw α > 0

α = 0
FOM (Navier-Stokes)

POD : Ũ =
N

∑
i=1

U
arg min ∥U − Ũ ∥

ai(t)Φi(x)

{ai}N
i=1

Learned from data

Model/Learning
Ωo

Ωf

↪→ The POD basis functions {Φi}N
i=1 are learned from data (2nd part of this talk)

↪→ The POD coefficients {ai}N
i=1 can be obtained by optimization (Galerkin-free)
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Reduced Order Models POD reduced basis

Reduced Order Model

Generalized coordinates {a}Nr
i=1

(a) (Petrov-) Galerkin Reduced Order Model (Nr � Ns)

U = Ug +

Nr∑
n=1

anΦn, POD on "scaled" U =

(
u,

1
ρ
, µ, p

)T

(
Φu

i ,
∂u
∂t

+ (u · ∇)u
)

=

(
Φu

i , −
1
ρ
∇p +

1
ρ
∇ · µ(∇u +∇uT)

)
.

I Dynamical system
d ai(t)

d t
= Ai +

Nr∑
j=1

Bij aj(t) +

Nr∑
j=1

Nr∑
k=1

Cijk aj(t)ak(t) +

Nr∑
j=1

Nr∑
k=1

Nr∑
l=1

Dijkl aj(t)ak(t)al(t)

ai(0) = (u(x, 0), Φi(x)).

↪→ Costly⇒ The 4th order tensor involved is to costly to build and to solve!)

↪→ If number of modes is 100⇒ size of 100 millions...

↪→ Not compatible with Model Order Reduction

↪→ Hyperreduction: Not compatible with "industrial" numerical solver
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Reduced Order Models POD reduced basis

Reduced Order Model

Generalized coordinates {a}Nr
i=1

(b) Galerkin-free Reduced Order Model

What variables? ⇒ whose are measured at inflow AND required for FOM BCs

Velocity: ũ = ug +

Nr∑
i=1

ûiΦi,

Color function (VOF, LS): α̃ = αg +

Nr∑
i=1

α̂iΨi ⇒ ρ, µ.

The functions ug and αg can be snapshots average, or any desired functions

↪→ {û}Nr
i=1 ← Least squares minimization of ‖uh − ũ‖2 in "gray" domains Ωo ∪ Ωf ,

↪→ {α̂}Nr
i=1 ← Least squares minimization of ‖αh − α̃‖2 in "gray" domains Ωo ∪ Ωf .

↪→More stable than classical Galerkin projection since HD informations are involved

In any case, an adapted POD subspace is required!!
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Reduced Order Models POD reduced basis

Example for sea wave energy converter (point absorber)

In sample ("reproduction" with Nr = 30 modes)
POD basis Φ built using snapshots from exact wave
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Reduced Order Models POD reduced basis

Example for sea wave energy converter (point absorber)

Out-of-sample ("prediction" with Nr = 30 modes)
POD basis Φ built using snapshots from two "nearby" waves (in parameter space)
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Reduced Order Models POD reduced basis

Example for sea wave energy converter (point absorber)

Out-of-sample ("prediction" with Nr = 30 modes)
POD basis Φ built using snapshots from two "distant" waves (in parameter space)
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Robustness of the POD subspace Sampling of the input parameter space

Distances in the solution space

Computation of {Φn}Nr
n=1

⇒ A robust POD subspace is required!

I How to perform an efficient sampling of input parameter space?

↪→ Previous studies: Uniform Sampling in a Cartesian way. Problem: not optimal
↪→ distance in parameter space 6= "distance" in solution space

I Iterative sampling based on an error criterion (OLD)

↪→ Iterative method to improve the POD basis

↪→ The error is the mathematical projection error computed using the current
POD basis

↪→ "Adaptive mesh refinement" using Delaunay triangulation (dual of Voronoi
tesselation)

I Iterative sampling based on a distance criterion (NEW)

↪→ Distance between solution: steady vs. unsteady
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Robustness of the POD subspace Sampling of the input parameter space

Distances in the solution space

I Steady problems

↪→ Computing the distance between steady solutions for different operating
conditions is "easy" (Wasserstein distance, relative difference/error)

I Unsteady problems

↪→ Computing the distance between solutions (set of snapshots) for different
operating conditions for unsteady problems is not straightforward

↪→ Easier to compute distance between subspaces spanned by solutions (POD
basis) for different operating conditions

↪→ Geodesics on the Grassmann manifold / Principal Angles with other metrics
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Robustness of the POD subspace Sampling of the input parameter space

Distances in the solution space

↪→We thus consider two POD basis Φ1 ∈ RNf×NΦ and Φ2 ∈ RNf×NΦ .

(The columns of Φi provides a basis of a subspace Si of dimension NΦ in RNf )

Principal Angles Geodesic on the Grassmann manifold

↪→ Interpolations using angles or along the geodesic are possible

↪→ Be sure the solution to be interpolated is on (or close to) the geodesic!!

↪→ Interpolation should be performed using "quite close" points
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Robustness of the POD subspace Sampling of the input parameter space

Distances in the solution space

Principal Angles Between Subspaces (PABS)

(J. Hamm & D.D. Lee, Grassmann Discriminant Analysis)

↪→ Definition: the principal angles 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θNΦ ≤ π
2 between two

subspaces span(Φ1) and span(Φ2), are defined recursively by

cos θk = max
uk∈span(Φ1)

max
vk∈span(Φ2)

u′kvk,

subject to u′kuk = v′kvk = 1, and u′kui = v′kvi = 0 (i = 1, . . . , k − 1)

↪→ Practical computation via SVD:

Φ′1Φ2 = U(cos(θ))V′

with U = [u1 . . . uNΦ ], V = [v1 . . . vNΦ ] and cosθ = diag(cos θ1 . . . cos θNΦ)
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Robustness of the POD subspace Sampling of the input parameter space

Distances in the solution space

Principal Angles Between Subspaces (PABS)

(J. Hamm & D.D. Lee, Grassmann Discriminant Analysis)

↪→ Different Metrics are usually used

− Projection: dP(S1,S2) =

(
NΦ∑
i=1

sin2 θi

) 1
2

− Binet-Cauchy: dBC(S1,S2) =

(
1−

∏
i

cos2 θi

) 1
2

−Max-Min Correlation: dMax(S1,S2) = sin θ1, dMin(S1,S2) = sin θNΦ

− Grassmann distance: dG(S1,S2) =

(
NΦ∑
i=1

θ2
i

) 1
2
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Robustness of the POD subspace Sampling of the input parameter space

Distances in the solution space

Geodesic on the Grassmann manifold

(D. Amsallem and C. Farhat, AIAA Journal, 2008)

− The subspace Si = span(Φi) belongs to the Grassmann manifold G(NΦ,Nf )
↪→ G(NΦ,Nf ) is defined as the set of all NΦ-dimensional subspaces of RNf

− Each NΦ-dimensional subspaces of RNf can be viewed as a point on G(NΦ,Nf )

− It is thus possible to define distance dG(S1,S2), the geodesic between these points.

↪→ Practical computation via thin SVD:

(I −Φ1Φ
′
1)Φ2(Φ

′
1Φ2) = UΣV′ with θ = tan−1(Σ)

↪→ Can be used to perform interpolation between more than two subspaces
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Robustness of the POD subspace Example: cylinder wake flow vs. Reynolds number

Configuration

I Goal
↪→ We want to predict the flow characteristics for 100 ≤ Re ≤ 500

↪→ For low numerical costs

Re = 100 Re = 500
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Robustness of the POD subspace Example: cylinder wake flow vs. Reynolds number

Sampling

I Sampling by continuation method on the Grassmann geodesic

Re = 125 is almost on the geodesic Re = 100↔ Re = 150!
Almost uniform sampling in the solution space!!
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Robustness of the POD subspace Example: cylinder wake flow vs. Reynolds number

Subspaces interpolation

I Interpolation for one dimensional input parameter space between s0 and s1

↪→ On the geodesic between two points on the Grassmann manifold S0 and S1

↪→ TS0 is the tangent space to the Grassmann manifold at S0

↪→ χ1 is the geodesic initial condition given by Γ = U tan−1(Σ)V′ on TS0

where (I −Φ0Φ
′
0)Φ1(Φ

′
0Φ1) = UΣV′ with θ = tan−1(Σ)

↪→ Interpolation Φ(s) = span
[
Φ0V cos

(
s−s0
s1−s0

θ
)

+ U sin
(

s−s0
s1−s0

θ
)]

, s ∈ [s0, s1]

G(NΦ, Nf)

S0

TS0

S1

SI

χ1
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Robustness of the POD subspace Example: cylinder wake flow vs. Reynolds number

Subspaces interpolation

I Evolution of L2 errors for snapshots projection over different POD basis

Comparison of projection errors on several basis
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Robustness of the POD subspace Example: cylinder wake flow vs. Reynolds number

Improvement of the interpolation

I Potential sources of errors

↪→ Computation of direction ΓI from α and β is not adapted to the solution space

↪→ Computation of s along direction ΓI may not be adapted too

↪→What if one consider 1
µ

instead of µ? or generally f (µ)? Where is the middle?

⇒Manifold learning to approximate appropriate s = f (µ) for interpolations!
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Conclusions, perspectives and some remarks

Conclusions & Perspectives

I Sampling and interpolation

Sampling on Grassmann manifold or PABS

↪→ Depends on the metric used (build on Principal Angles)

Interpolation efficient in 1D input parameter space (almost linear)

↪→ Fine and efficient sampling⇒ piecewise manifold approximation is good

Interpolation more difficult in 2D input parameter space

↪→ Solution for µ1+µ2
2 may be not on the middle geodesic (s = 0.5)

↪→ Interpolation parameters (α and β) should respect constrains

↪→ Idea: try to approximate the geometry of the (Grassmann) solution manifold

↪→ Isomap (shortest paths on distance graphs) + Multi-Dimensionnal Scaling

Next: "dig" manifold approximation via Grassmann-MDS
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Conclusions, perspectives and some remarks

Conclusions & Perspectives

I Multi-fidelity numerical modeling: FOM and POD ROM coupling

Applied to renewable energy applications (WECs and wind-turbines)

↪→ "Problems" for WECs: POD of bi-fluid configurations not easy
Moving front: linear approx. not adapted...

Snapshots clustering, then POD for each cluster (piecewise linear approx.)

Snapshots mapping onto reference solution, then POD (non linear approx.)

↪→ Optimal transport (non-linear approx.), quadratic approx. (Stanford)
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