[2-C-02] A hybrid-fidelity model for floating wave energy converters

Keywords: Multi-fidelity numerical model, Wave energy converter, Domain decomposition $*$ Michel Bergmann 1,2 , Beatrice Battisti 3 (1. Inria, Memphis team, 200 avenue de la vielle tour, 33450 Talence, France., 2. Institut de Mathématiques de Bordeaux, 351, cours de la libération, 33405 Talence, France, 3. Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy.)

A hybrid-fidelity model for floating wave energy converters

Michel Bergmann & Beatrice Battisti

Institut de Mathématiques de Bordeaux Memphis Project-Team, Inria Bordeaux - Sud Ouest Talence, France

ICCFD, Kobe, Japan, July 2024

Renewable Energies Context and motivations

Inría

General problem and flow configuration

Source: Politecnico di Torino & Marine Offshore renewable energy

General problem and flow configuration

 \triangleright Incompressible bi-fluid Navier-Stokes equations (to avoid surface fitted-grids)

$$
\frac{\partial u}{\partial t} + (u \cdot \nabla)u = -\frac{1}{\rho} \nabla p + \frac{1}{\rho} \nabla \cdot \mu (\nabla u + (\nabla u)^T) + g,
$$

\n
$$
\nabla \cdot u = 0,
$$

\n
$$
\frac{\partial \alpha}{\partial t} + u \cdot \nabla \alpha = 0 \implies \rho = \rho_a + (\rho_w - \rho_a) H(\alpha), \ \mu = \mu_a + (\mu_w - \mu_a) H(\alpha)
$$

\n+ IC and BCs (wave imposed on the gray zone).

 \hookrightarrow Too costly! \Rightarrow we can only afford few numerical simulations! (how to select??)

Michel Bergmann A hybrid-fidelity model for floating wave energy converters ICCFD, Koke, Japan, July 2024 2 / 18

Reduced Order Models reduced basis, asymptotic models or simplified models

Need to reduce the CPU costs

The Full Order Models are almost never used alone for wind or marine energy applications \Rightarrow large CPU costs, multiscale problem, optimization

- \triangleright Simplified mathematical models (invariance-asymptotic)
- \hookrightarrow Shallow Water Equations, Boussinesq, etc (post doc Umberto Bosi)
- \rightarrow Inviscid incompressible Navier-Stokes equations (PhD Caroline Le Guern)

\triangleright Simplified numerical models based on data (only polar curves for 2D airfoils)

- \rightarrow Actual blades are modeled using extra Volume Forces based on data
- \rightarrow Actuator lines: (post doc Nishant Kumar)

 \triangleright Model Order Reduction based on data (primitive variables)

 \rightarrow Proper Orthogonal Decomposition Reduced Order Model (PhD Beatrice Battisti)

$$
U(x, t) = \sum_{i=1}^{N} a_i(t) \Phi_i(x) \quad U = u, v, w, p, \rho, \mu, ...
$$

Proper Orthogonal Decomposition (POD), Lumley (1967)

 \triangleright Look for the flow realization $\Phi(X)$ that is "the closest" in an average sense to realizations *U*(*X*).

 $(X = (x, t) \in \mathcal{D} = \Omega \times \mathbb{R}^+)$

 $\triangleright \Phi(X)$ solution of problem:

$$
\max_{\mathbf{\Phi}} \langle |(\boldsymbol{U}, \boldsymbol{\Phi})|^2 \rangle, \quad \|\boldsymbol{\Phi}\|^2 = 1.
$$

 \triangleright Optimal convergence *in* L^2 *norm* de $\Phi(X)$ \Rightarrow Dynamical reduction possible.

Lumley J.L. (1967) : The structure of inhomogeneous turbulence. *Atmospheric Turbulence and Wave Propagation*, ed. A.M. Yaglom & V.I. Tatarski, pp. 166-178.

Low dimensional subspace

 \triangleright Equivalent with Fredholm equation, $R(X, X')$ is *space-time correlation tensor*

$$
\int_{\mathcal{D}} R_{ij}(X,X')\Phi_n^{(j)}(X') dX' = \lambda_n \Phi_n^{(i)}(X) \qquad n = 1,..,N_s
$$

 \triangleright Snapshots method, Sirovich (1987):

$$
\int_T C(t,t')a_n(t')\,dt'=\lambda_n a_n(t)
$$

 \triangleright POD basis $\Phi(X)$ with N_s snapshots

$$
U(\mathbf{x},t) = \sum_{n=1}^{N_s} a_n(t) \Phi_n(\mathbf{x}),
$$

$$
\widetilde{U}(\mathbf{x},t) = \sum_{n=1}^{N_r} a_n(t) \Phi_n(\mathbf{x}), \text{ with } N_r \ll N_s.
$$

 \triangleright POD basis $\Phi(X)$ highly depends on the snapshots (sampling problem)

Sirovich L. (1987) : Turbulence and the dynamics of coherent structures. Part 1,2,3 *Quarterly of Applied Mathematics*, XLV N◦ 3, pp. 561–571.

Full Order Model and POD reduced order model

\triangleright A POD ROM in the whole computational domain?

- \hookrightarrow How to deal with complex body deformations and motions?
- \rightarrow Is a single POD ROM accurate in the whole domain?
- \leftrightarrow Is the same accuracy necessary in the whole domain?

\blacktriangleright Past observations, for academic to industrial configurations

- \hookrightarrow Large POD projection errors in the vicinity of the obstacles
- \leftrightarrow Low POD projection errors elsewhere

\blacktriangleright Proposed solution

 \hookrightarrow Couple FOM in the vicinity of the obstacles with POD ROM elsewhere

General configuration

 \hookrightarrow The POD basis functions $\{\mathbf{\Phi}_i\}_{i=1}^N$ $\sum_{i=1}^{N}$ are **learned from data** (2nd part of this talk) \hookrightarrow The POD coefficients $\{a_i\}_{i=1}^N$ $\sum_{i=1}^{N}$ can be obtained by **optimization** (Galerkin-free)

Generalized coordinates $\{a\}_{i=1}^{N_r}$ *i*=1

(a) (Petrov-) Galerkin Reduced Order Model ($N_r \ll N_s$)

$$
\boldsymbol{U} = \boldsymbol{U}_{g} + \sum_{n=1}^{N_{r}} a_{n} \boldsymbol{\Phi}_{n}, \quad \text{POD on "scaled" } \boldsymbol{U} = \left(\boldsymbol{u}, \frac{1}{\rho}, \mu, p\right)^{T}
$$

$$
\left(\boldsymbol{\Phi}_{i}^{u}, \frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{u}\right) = \left(\boldsymbol{\Phi}_{i}^{u}, -\frac{1}{\rho} \boldsymbol{\nabla} p + \frac{1}{\rho} \boldsymbol{\nabla} \cdot \mu (\boldsymbol{\nabla} \boldsymbol{u} + \boldsymbol{\nabla} \boldsymbol{u}^{T})\right).
$$

 \triangleright Dynamical system

$$
\begin{cases}\n\frac{d\,a_i(t)}{dt} = \mathcal{A}_i + \sum_{j=1}^{N_r} \mathcal{B}_{ij} a_j(t) + \sum_{j=1}^{N_r} \sum_{k=1}^{N_r} \mathcal{C}_{ijk} a_j(t) a_k(t) + \sum_{j=1}^{N_r} \sum_{k=1}^{N_r} \sum_{l=1}^{N_r} \mathcal{D}_{ijkl} a_j(t) a_k(t) a_l(t) \\
a_i(0) = (\mathbf{u}(\mathbf{x}, 0), \mathbf{\Phi}_i(\mathbf{x})).\n\end{cases}
$$

 \hookrightarrow Costly \Rightarrow The 4th order tensor involved is to costly to build and to solve!)

- \hookrightarrow If number of modes is 100 \Rightarrow size of 100 millions...
- \hookrightarrow Not compatible with Model Order Reduction
- \hookrightarrow Hyperreduction: Not compatible with "industrial" numerical solver

Generalized coordinates $\{a\}_{i=1}^{N_r}$ *i*=1

(b) Galerkin-free Reduced Order Model

What variables? \Rightarrow whose are measured at inflow AND required for FOM BCs

$$
\text{Velocity:} \quad \widetilde{\boldsymbol{u}} = \boldsymbol{u}_g + \sum_{i=1}^{N_r} \hat{u}_i \boldsymbol{\Phi}_i,
$$
\n
$$
\text{Color function (VOF, LS):} \quad \widetilde{\alpha} = \alpha_g + \sum_{i=1}^{N_r} \hat{\alpha}_i \boldsymbol{\Psi}_i \quad \Rightarrow \rho, \ \mu.
$$

The functions u_g and α_g can be snapshots average, or any desired functions $\hookrightarrow \{\hat{u}\}_{i=1}^{N_r} \leftarrow$ Least squares minimization of $\|\boldsymbol{u}_h - \widetilde{\boldsymbol{u}}\|_2$ in "gray" domains $\Omega_o \cup \Omega_f$, $\hookrightarrow \{\hat{\alpha}\}_{i=1}^{N_r} \leftarrow$ Least squares minimization of $\|\alpha_h - \widetilde{\alpha}\|_2$ in "gray" domains $\Omega_o \cup \Omega_f$. \hookrightarrow More stable than classical Galerkin projection since HD informations are involved

In any case, an adapted POD subspace is required!!

Reduced Order Models POD reduced basis

Example for sea wave energy converter (point absorber)

In sample ("reproduction" with $N_r = 30$ modes) POD basis Φ built using snapshots from exact wave

Example for sea wave energy converter (point absorber)

Out-of-sample ("prediction" with $N_r = 30$ **modes)** POD basis Φ built using snapshots from two "nearby" waves (in parameter space) Example for sea wave energy converter (point absorber)

Out-of-sample ("prediction" with $N_r = 30$ **modes)** POD basis Φ built using snapshots from two "distant" waves (in parameter space)

Robustness of the POD subspace Sampling of the input parameter space

Distances in the solution space

Computation of $\{\Phi_n\}_{n=1}^{N_r}$ *n*=1 \Rightarrow A robust POD subspace is required!

\blacktriangleright How to perform an efficient sampling of input parameter space?

 \rightarrow Previous studies: Uniform Sampling in a Cartesian way. Problem: not optimal \hookrightarrow distance in parameter space \neq "distance" in solution space

\blacktriangleright Iterative sampling based on an error criterion (OLD)

- \leftrightarrow Iterative method to improve the POD basis
- \rightarrow The error is the mathematical projection error computed using the current POD basis
- \rightarrow "Adaptive mesh refinement" using Delaunay triangulation (dual of Voronoi tesselation)

\blacktriangleright Iterative sampling based on a distance criterion (NEW)

 \rightarrow Distance between solution: steady vs. unsteady

\blacktriangleright Steady problems

 \hookrightarrow Computing the distance between steady solutions for different operating conditions is "easy" (Wasserstein distance, relative difference/error)

Distances in the solution space

 \hookrightarrow We thus consider two POD basis $\Phi_1 \in \mathbb{R}^{Nf \times N_{\Phi}}$ and $\Phi_2 \in \mathbb{R}^{Nf \times N_{\Phi}}$.

(The columns of Φ_i provides a basis of a subspace S_i of dimension N_{Φ} in \mathbb{R}^{N_f})

Robustness of the POD subspace Sampling of the input parameter space

Principal Angles Geodesic on the Grassmann manifold

 \hookrightarrow Interpolations using angles or along the geodesic are possible

 \hookrightarrow Be sure the solution to be interpolated is on (or close to) the geodesic!!

 \hookrightarrow Interpolation should be performed using "quite close" points

Principal Angles Between Subspaces (PABS)

(J. Hamm & D.D. Lee, Grassmann Discriminant Analysis)

 \hookrightarrow Definition: the principal angles $0 \le \theta_1 \le \theta_2 \le \cdots \le \theta_{N_{\Phi}} \le \frac{\pi}{2}$ $\frac{\pi}{2}$ between two subspaces span(Φ_1) and span(Φ_2), are defined recursively by

 $\cos \theta_k = \max_k$ $\max_{u_k \in \text{span}(\Phi_1)} \max_{v_k \in \text{span}(\Phi)}$ $\max_{\mathbf{v}_k \in \mathrm{span}(\mathbf{\Phi}_2)} \mathbf{u}'_k$ \boldsymbol{v}_k' **v**_k, subject to $u'_k u_k = v'_k$ u'_k *v*_k = 1, and u'_k *u***_i** = v'_k k'_{k} **v**_{*i*} = 0 (*i* = 1, . . . , *k* − 1)

 \hookrightarrow Practical computation via SVD:

$$
\Phi_1'\Phi_2=U(\cos(\theta))V'
$$

with $U = [\mathbf{u}_1 \dots \mathbf{u}_{N_{\Phi}}], V = [\mathbf{v}_1 \dots \mathbf{v}_{N_{\Phi}}]$ and $\cos \theta = \text{diag}(\cos \theta_1 \dots \cos \theta_{N_{\Phi}})$

Distances in the solution space

Principal Angles Between Subspaces (PABS)

(J. Hamm & D.D. Lee, Grassmann Discriminant Analysis)

 \hookrightarrow Different Metrics are usually used

- Projection:
$$
d_P(S_1, S_2) = \left(\sum_{i=1}^{N_{\Phi}} \sin^2 \theta_i\right)^{\frac{1}{2}}
$$

- Binet-Cauchy: $d_{BC}(S_1, S_2) = \left(1 - \prod_i \cos^2 \theta_i\right)^{\frac{1}{2}}$

 $-$ Max-Min Correlation: $d_{Max}(S_1, S_2) = \sin \theta_1$, $d_{Min}(S_1, S_2) = \sin \theta_{N_{\Phi}}$

- Grassmann distance:
$$
d_G(S_1, S_2) = \left(\sum_{i=1}^{N_{\Phi}} \theta_i^2\right)^{\frac{1}{2}}
$$

Geodesic on the Grassmann manifold

(D. Amsallem and C. Farhat, AIAA Journal, 2008)

- $-$ The subspace $S_i = \text{span}(\Phi_i)$ belongs to the Grassmann manifold $\mathcal{G}(N_{\Phi}, N_f)$ \hookrightarrow $\mathcal{G}(N_{\Phi}, N_f)$ is defined as the set of all N_{Φ} -dimensional subspaces of \mathbb{R}^{N_f}
- − Each *N*^{Φ}-dimensional subspaces of \mathbb{R}^{N_f} can be viewed as a point on $\mathcal{G}(N_{\Phi}, N_f)$
- $-$ It is thus possible to define distance $d_G(S_1, S_2)$, the geodesic between these points.
- \hookrightarrow Practical computation via thin SVD:

$$
(\boldsymbol{I} - \boldsymbol{\Phi}_1 \boldsymbol{\Phi}'_1) \boldsymbol{\Phi}_2 (\boldsymbol{\Phi}'_1 \boldsymbol{\Phi}_2) = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}' \quad \text{with} \quad \boldsymbol{\theta} = \tan^{-1}(\boldsymbol{\Sigma})
$$

 \hookrightarrow Can be used to perform interpolation between more than two subspaces

\blacktriangleright Goal

- \rightarrow We want to predict the flow characteristics for $100 \le Re \le 500$
- \hookrightarrow For low numerical costs

Sampling

 \triangleright Sampling by continuation method on the Grassmann geodesic

 $Re = 125$ *is almost on the geodesic* $Re = 100 \leftrightarrow Re = 150$ *!* Almost uniform sampling in the solution space!!

Subspaces interpolation

Interpolation for one dimensional input parameter space between s_0 and s_1

- \hookrightarrow On the geodesic between two points on the Grassmann manifold S_0 and S_1
- \hookrightarrow \mathcal{T}_{S_0} is the tangent space to the Grassmann manifold at S_0
- $\hookrightarrow \chi_1$ is the geodesic initial condition given by $\Gamma = U \tan^{-1}(\Sigma) V'$ on \mathcal{T}_{S_0}

where $(I - \Phi_0 \Phi_0') \Phi_1(\Phi_0' \Phi_1) = U \Sigma V'$ with $\theta = \tan^{-1}(\Sigma)$

 \hookrightarrow Interpolation $\Phi(s) = \text{span}\left[\Phi_0 V \cos\left(\frac{s-s_0}{s_1-s_0}\theta\right) + U \sin\left(\frac{s-s_0}{s_1-s_0}\theta\right)\right], s \in [s_0, s_1]$

Comparison of projection errors on several basis

Improvement of the interpolation

- \blacktriangleright Potential sources of errors
- \hookrightarrow Computation of direction Γ_I from α and β is not adapted to the solution space
- \hookrightarrow Computation of *s* along direction Γ *I* may not be adapted too

 \hookrightarrow What if one consider $\frac{1}{\mu}$ instead of μ ? or generally $f(\mu)$? Where is the middle?

 \Rightarrow Manifold learning to approximate appropriate $s = f(\mu)$ for interpolations!

Conclusions & Perspectives

\blacktriangleright Sampling and interpolation

- Sampling on Grassmann manifold or PABS
	- \hookrightarrow Depends on the metric used (build on Principal Angles)
- Interpolation efficient in 1D input parameter space (almost linear)
	- \hookrightarrow Fine and efficient sampling \Rightarrow piecewise manifold approximation is good
- Interpolation more difficult in 2D input parameter space
	- \hookrightarrow Solution for $\frac{\mu_1 + \mu_2}{2}$ may be not on the middle geodesic ($s = 0.5$)
	- \hookrightarrow Interpolation parameters (α and β) should respect constrains
	- \hookrightarrow Idea: try to approximate the geometry of the (Grassmann) solution manifold
	- \hookrightarrow Isomap (shortest paths on distance graphs) + Multi-Dimensionnal Scaling

Next: "dig" manifold approximation via Grassmann-MDS

Conclusions & Perspectives

- \triangleright Multi-fidelity numerical modeling: FOM and POD ROM coupling
	- Applied to renewable energy applications (WECs and wind-turbines)
		- \hookrightarrow "Problems" for WECs: POD of bi-fluid configurations not easy Moving front: linear approx. not adapted...

- Snapshots clustering, then POD for each cluster (piecewise linear approx.)
- Snapshots mapping onto reference solution, then POD (non linear approx.) \hookrightarrow Optimal transport (non-linear approx.), quadratic approx. (Stanford)