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NON-ISOTHERMAL MULTIPHASE FLOWS
WITH PHASE CHANGE
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A CONSISTENT MATHEMATICAL FRAMEWORK

LEVEL SET ADVECTION:

HEAVISIDE ADVECTION:

MASS CONSERVATION:

ENTHALPY EQUATION:

NAVIER STOKES SYSTEM:
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A NovEL Low MACH ENTHALPY METHOD

ENTHALPY EQUATION:

h— T RELATION:

@ — h RELATION:

EQUATION OF STATE:

Low MAcCH EQUATION:
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CONSISTENT TIME INTEGRATORS

Time=0

* The use of the same mass flux m,, in
various transport equations ensures
numerical stability for high density ratio
flows

* Option 1: Use the same time integration
scheme for mass, momentum and enthalpy
equations.

Test problem: isothermal advection of a
dense bubble in inviscid gas

* Option 2: Include additional stabilizing
terms (shown in red below) in the pi/po = 10000 (u,v) = (1,1)
momentum and energy equations.

ptLk+l ntlk+l _ gnon

u
p Al P +C (ufd)v, bl(12n)1ul(12n)1) = Ru""M* 4+ viscous + pressure + other forces
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At
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Bhalla et al., A robust incompressible Navier-Stokes solver for high density ratio multiphase flows, J. Comput. Phys. 390 (2019) .



IMPORTANCE OF CONSISTENT INTEGRATORS
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RK-2 integrator is employed for the momentum equation in all 4 cases
Case A: SSP-RK3 integrator for mass equation.

Case B: SSP-RK3 integrator for mass equation, and residual force in the
momentum equation.

Case C: RK-2 integrator for mass equation.

Case D: RK-2 integrator for mass equation, and residual force in the
momentum equation

Cases B, C and D preserve momentum, enthalpy and phase of the system.
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GRID CONVERGENCE
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Test problem: isothermal advection of a
dense bubble in inviscid gas
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SOLVING TWO PHASE STEFAN
PROBLEM WITH DENSITY JUMP
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SOLIDIFICATION PROBLEM

Heat equations

Josef Stefan

Stefan condition

s ,
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Knownfor  Stefan-Boltzmann law

Stefan-Boltzmann constant

Stefan problem

Stefan's equation

Stefan's formula

Stefan flow

Stefan number

Maxwell-Stefan diffusion

Squeeze flow

R P - pS / pL Awards Lieben Prize (1865)

Scientific career
Fields Physicist
Institutions. University of Vienna
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advisors
Doctoral Ludwig Boltzmann
students Marian Smoluchowski

Johann Josef Loschmidt




SOLVING TWO PHASE STEFAN
PROBLEM WITH DENSITY JUMP
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Terms in red boxes pertain to density jumps.
These are ignored in the literature.
We consider them.



SOLVING TWO PHASE STEFAN
PROBLEM

Josef Stefan

~_N
I
-
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Died 7 January 1893 (aged 57)
Vienna, Austria-Hungary

Analytical solution:

Doctoral Ludwig Boltzmann
students Marian Smoluchowski
Johann Josef Loschmidt

erfc (2\/% —A(t) (1 — Rp))
erfc (A(t)R),)

T =T, + (T — Th)

Transcendental equation for A :

K [Leﬁ_ (1- R2) (A%L)] o

2 t
s T =T, e Xer/e o Tn =T e AT
orf <>\ a_L> 71'048 erfc ()\Rp) waol
asS

R. Thirumalaisamy, A. P. S. Bhalla, 2023, A low Mach enthalpy method to model non-isothermal gas-liquid-solid flows with melting and solidification, International
Journal of Multiphase Flow, vol. 169, 104605.



STEFAN PROBLEM WITH DENSITY
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¢ R.Thirumalaisamy, A. P. S. Bhalla, 2023, A low Mach enthalpy method to model non-isothermal gas-liquid-solid flows with melting and solidification, International

Journal of Multiphase Flow, vol. 169, 104605.



STEFAN PROBLEM WITH DENSITY

Shrinkage p°/p" > 1

B

/N
-+~
SN——"
w0
I
*
&

Journal of Multiphase Flow, vol. 169, 104605.
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¢ R.Thirumalaisamy, A. P. S. Bhalla, 2023, A low Mach enthalpy method to model non-isothermal gas-liquid-solid flows with melting and solidification, International



ADAPTIVE MESH REFINEMENT

PCM-gas interface: Tagging cells
based on the signed distance function

(B)t=0s

(D)t =0.09s

(F)t=01s

Liquid-solid interface:
1. p-based tagging
2. V-based tagging
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LASER-INDUCED MELTING OF METALS
WITH VOLUME CHANGE

Numerical studies have relied on experimental data to validate heat source (e.g.,
laser beams) induced melting of metals and alloys.

We use two phase Stefan analytical solution to validate heat source-induced
melting of metals in presence of gas.

T, = 1500K

L IL
L W exaet Solid T; = 1500 K Gas | ¢'6 = —k" ATt 5
dz dz

Solid

Time=0
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THERMOCAPILLARY FLOWS WITH

Low MACH ENTHALPY METHOD

)

(T — Ty

o

'9

fss = oknd + V00
0

O0.1t) /o

(D)

w2

=
>

We solve the enthalpy

equation
(not temperature)
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Re = Ma = 0.72, Ca = 0.0576
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SIMULATING METAL CASTING
DEFECTS

Pipe shrinkage

B Liquid

1 Solid

1 Gas

Shrinkage defect Protrusion defect

Ludwig, A., Wu, M. and Kharicha, A., 2016. Simulation in metallurgical processing: Recent developments and future perspectives. JOM, 68, pp.2191-2197.
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SIMULATING POROSITY DEFECTS

Time=0

B Liquid

1 Solid

1 Gas
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MELTING AND RE-SOLIDIFICATION OF ALUMINUM
(SURFACE TENSION EFFECTS)

Solid Aluminum
. Liquid Aluminum

Time=0

T >Ty t<0.2 T>Ty t<0.2
T =Ty t>0.2 T=Ty t>0.2

o ()
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IMPLEMENTATION

IBAMR

https://github.com/IBAMR/IBAMR

SAMRAI 8 R ERRF

Ax=D T

PETSc |

IBAMR is a distributed-memory (MPI) parallel implementation of the immersed
boundary (IB) method with support for Cartesian grid adaptive mesh refinement
(AMR). Written in C++ and Fortran.
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