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Abstract: To address the intricate challenges in optimizing the aerodynamic shape of high-

speed vehicles, this study introduces a high-precision surrogate model method based on fusion 

strategy. Firstly, to meet the demands of the surrogate optimization strategy for a large number 

of high-precision samples, a method for constructing aerodynamic samples based on data fusion 

correction is presented. By correcting the calculation results of a large number of low-precision 

grids with the results of a small number of high-precision grids as a reference, this method 

improves data accuracy and significantly reduces the time required for sample calculations. This 

provides a more efficient and reliable means of establishing samples for high-precision 

surrogate models. Secondly, a double-stage fusion surrogate model is constructed, which can 

achieve a more accurate regression modeling of aerodynamic relationships, and improving the 

accuracy and reliability of the surrogate model under the same prediction samples, with an MAE 

of only 0.63%. Combining the DFS with GA and applying it to drag reduction optimization in 

high-speed vehicles, the resulting optimal model reduces drag coefficient by 9.27% compared 

to the base model. This result confirms the feasibility of the surrogate model based on the fusion 

strategy, providing a more accurate and efficient method for aerodynamic shape optimization in 

high-speed vehicles. 
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1 Introduction 

High-speed vehicles occupy crucial position in the field of aerospace technology [1,2]. The 

aerodynamic shape design and configuration research of these vehicles are key issues in the 

development of the entire system, forming the basis for subsequent control, trajectory, and propulsion 

system designs [4-6]. One of the core tasks of aerodynamic design is the evaluation of the aerodynamic 

characteristics of high-speed vehicles. Accurate aerodynamic analysis can better support subsequent 

optimization designs. The use of surrogate models for predicting aerodynamic performance has been 

widely studied. However, compared to traditional aircraft [7,8], high-speed vehicles exhibit more 

pronounced nonlinearities, coupling effects, and uncertainties in the aerodynamic performance [9,10]. 

These characteristics impose higher accuracy requirements on surrogate models. If the surrogate model 

is not properly constructed, the final optimization results may deviate significantly from the actual 

global optimum. Additionally, the stability margins and design flexibility of high-speed vehicles are 

much smaller than those of aircraft [11,12]. As a result, the number of shape design variables increases, 

leading to a rise in sample size and accurate computation time, which extends the design cycle. 
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Variable-fidelity surrogate models present an effective strategy for the optimization process. By 

integrating low-fidelity sample data to aid in the construction of surrogate models, it is possible to attain 

higher global accuracy with a reduced number of high-fidelity samples. This method significantly 

enhances optimization efficiency. For instance, Chang et al. [13] proposed using the multiplicative 

scaling method to locally approximate high-fidelity analysis results with low-fidelity models, and 

Alexandrov et al. [14] combined this approach with the trust region method. Robinson et al. [15] 

introduced an improved space mapping method, successfully applying it to the variable-fidelity 

aerodynamic optimization of wings and flapping wings. 

Variable-fidelity models based on Co-Kriging and Hierarchical-Kriging (HK) models are widely 

used. The Co-Kriging model was first applied to aerospace engineering design by Forrester [16,17] and 

Kuya et al. [18]. Subsequent studies have extensively explored Co-Kriging, for instance, by 

concentrating on simplifying the calculation of the Co-Kriging model’s correlation function [19,20], or 

by integrating gradient information [21,22] as low-cost auxiliary data to enhance modeling efficiency. 

Han [23] proposed a simpler and more practical Hierarchical-Kriging (HK) model by sequentially 

building low- and high-fidelity Kriging models. In this model, the predicted values from the low-fidelity 

model were directly used as the global trend function in the high-fidelity model. This approach 

addressed the robustness and efficiency issues of Co-Kriging models and avoided the difficulty of 

calculating cross-covariances in Co-Kriging. 

To meet the requirements for surrogate model accuracy and sample size in high-speed vehicle 

optimization, this paper develops a high-precision surrogate method based on a fusion strategy. The fast 

aerodynamic modeling based on data fusion correction (DFC) is used to constructed the initial samples. 

A small amount of high-fidelity data is used to correct and merge a large amount of low-fidelity data, 

reducing sample construction time and enhancing design accuracy. The fusion surrogate (DFS) model 

strategy replaces the original model for analysis. The DFS model, composed of interpolation and 

regression surrogate models, integrates the advantages of both types, offering higher predictive 

accuracy than traditional surrogate models. Using the high-precision surrogate method based on the 

fusion strategy, combined with genetic algorithms, for drag reduction design of high-speed vehicles has 

yielded satisfactory results, demonstrating the strong engineering applicability of this method. 

2. Simulation methods 

2.1 Model design 

The model used in this study is simplified on the X-33 vehicle [24], retaining only its canned fins 

and removing the body flaps and twin vertical tails, as shown in Figure 1. The parameters that need to 

be optimized are marked in the Figure 1 (Fixed bottom width W2). 

 

Figure 1: Model used in this study 
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2.2 Numerical method 

The flow field calculation of the model uses the CFD method, and the finite volume method is 

used to discretize the flow control equation. The calculation of the flux and the viscous flux is realized 

by the AUSM+ format and the central difference format, respectively. The discrete equations are solved 

by implicit time advancement, and the turbulence model uses the Spalart-Allmaras (SA) model.  

To verify the feasibility of the calculation method, it is verified in hypersonic condition. The 

hypersonic model selects the HB-2 model for the force test in the hypersonic wind tunnel (HWT) of 

JAXA [25]. As shown in the Figure 2, the calculated result is in good agreement with the experimental 

values, indicating that the numerical method has high analysis accuracy and can meet the optimization 

requirements. 

    

           (a) HB-2 model                 (b) Pitching moment coefficient comparison 

Figure 2: Pitching moment coefficient comparison between numerical aerodynamic coefficients and 

literature results 

3 Surrogate Model based on Fusion Strategy 

3.1 Fast Aerodynamic Modeling Based on Data Fusion Correction 

The optimization design of high-speed vehicle requires a substantial number of initial aerodynamic 

samples. Given the challenges of limited computational resources and the extensive computational 

demands of three-dimensional model grids, this study adopts a data fusion correction (DFC) strategy to 

achieve a high-precision large sample dataset while conserving computational resources. 

This strategy involves the fusion correction of data obtained from high- and low-fidelity sample 

points with varying grid densities. High-fidelity data typically necessitates more computational 

resources and time to process, whereas low-fidelity data, due to its lower resolution, can be processed 

more quickly. By using a small sample of high-fidelity aerodynamic data as the reference set, the 

accuracy of the large sample of low-fidelity aerodynamic data is elevated to the high-fidelity level. This 

method leverages the rapid processing capability of low-fidelity data to expedite the overall sample 

construction process, thereby saving significant computational time and resources without 

compromising data accuracy. In this study, a nested sample set of high- and low-fidelity sample points 

is used as the initial sample set, where high-fidelity sample points are a subset of low-fidelity sample 

points. 

The DFC for aerodynamic datasets can be expressed as: 

Fu( ) ( ) ( )y x x x = +         (1) 
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where Fu( )y x  represents the fused data, ( )x  is the regression model between the low-fidelity 

aerodynamic data Lo( )y x  and the high-fidelity aerodynamic data H( )y x , and ( )x  is the deviation 

model between ( )x  and H( )y x . 

The DFC not only merges data of different fidelities but also integrates different surrogate models. 

First, a regression model ( )x  for low-fidelity data Lo( )y x ) is established based on the high-fidelity 

training sample set (Eq.(2)). Through multiple training iterations, it ensures that the high- and low-

fidelity data are on the same scale and share the same overall trend. Then, at the high-fidelity H( )y x  

sample points, the deviation between the high-fidelity aerodynamic data H( )y x  and the regression 

model of the low-fidelity aerodynamic data ( )x  is calculated. An interpolation model for this 

deviation ( )x  is then established to more accurately estimate the intermediate values (Eq.(3)). 

*
Lo( ) ( ) ( )i ix y x b  = − +       (2) 

( ) ( )x Z x  = +          (3) 

where *( )i i −   represents the support vectors, b is the offset,    is the mathematical 

expectation of the Gaussian random process ( )x , and ( )Z x  is the Gaussian random process with a 

mean of 0 and a variance of 2   . 

 
Figure 3: Fast Aerodynamic Modeling Based on Data Fusion Correction 

Figure 4 shows the different precision grid models of the base model. The coarse mesh has 310,389 

grid points, while the fine mesh has 1,847,219 grid points, with the computation time for the fine mesh 

being five times that of the coarse mesh. Using the Latin Hypercube Sampling method [14], 160 sample 

points are selected within the design space. All samples are constructed with the low-fidelity grid, and 

40 of these samples are randomly chosen to construct high-fidelity models. The remaining 120 low-

fidelity samples are designated for subsequent fusion correction. 

    

(a) Coarse mesh        (b) Fine mesh 

Figure 4: Different grid models 
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As shown in Figure 5, there is a difference in magnitude between the low-fidelity and high-fidelity 

data before fusion. Even after normalizing the magnitudes, the trends of the low-fidelity data do not 

align with those of the high-fidelity data. After applying the DFC strategy, the fused data closely 

matches the high-fidelity results in both magnitude and trend, with a mean absolute error (MAE) of 

only 0.018. This demonstrates that the fusion strategy is effective and can be used for the initial samples 

in subsequent surrogate modeling. 

 

Figure 5: Drag coefficient before and after fusion 

3.2 Double-stage Fusion Surrogate Model 

For engineering optimization design problems, the surrogate model is not only required to have 

higher prediction accuracy but also needs to accurately reflect the fundamental characteristics of the 

original physical model to meet the requirements of optimization design. Considering the significant 

nonlinearity of hypersonic aerodynamic performance, this study constructs a double-stage fusion 

surrogate (DFS) model to predict the models' drag coefficient. The DFS is constructed from both 

regression surrogate model and interpolation surrogate model, integrating the advantages of both types. 

It has higher prediction accuracy and can more accurately reflect the changing characteristics of the 

original model [26].  

The construction process of the DFS model is illustrated in Figure 5. Initially, a regression model 

( )Rf x is employed to fit the overall distribution of the original aerodynamic sample ( )f x , serving as 

the first-layer surrogate model. The ( ) ( ) ( )R Re x f x f x= − , contains local characteristic information of 

the original model that the regression model itself cannot capture. Next, leveraging the precise fitting 

capabilities of the interpolation surrogate model, a second-layer surrogate model is constructed to model 

, ( )R Ie x  to fit ( )Re x . The second-layer model is used to adjust the regression model, correcting the 

local information to obtain the DFS model.  

In this study, the interpolation model and the regression model used are the Kriging model [27] 

and the BP neural network [28], respectively. The Kriging model is a typical representative of 

interpolation-type surrogate models, known for its flexibility and good adaptability to deterministic 

problems, though it performs poorly in large design space problems [29]. The BP neural network, on 

the other hand, excels in handling strong nonlinearity in large design spaces, albeit at the cost of 

substantial computational effort [29]. 
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Figure 6: Flowchart of double-layer surrogate model 

MAX (Max Absolute Error), RMSE (Root Mean Square Error, Eq.(4)) and MAE (Mean Absolute 

Error, Eq.(5)) are used to measure the prediction accuracy of the surrogate model. In Eq.(4)- Eq.(5), iy  

is the true function value and ˆiy  is the predicted value of the surrogate model. Figure 7 shows the 

comparison of MAX, RMSE, and MAE for each surrogate model. As shown in the Figure 7, in predicting 

the drag coefficient of high-speed vehicle, the errors of the DFS model are smaller than that of the BP 

neural network, regardless of the MAX, MAE or RMSE. This fully demonstrates that the DFS model has 

higher prediction accuracy than traditional surrogate models.  

( )
2

1

1
ˆ

m

i i

i

RMSE y y
m =

= −          (4) 

( )
1

1 m

i i

i

MAE y y
m =

= −          (5) 

    

(a) Predicted value of drag coefficient       (b) Prediction errors 

Figure 7: Prediction results and errors of drag coefficient of different surrogate models 

4 Optimization of high-speed vehicle 

For achieving shape optimization, the genetic algorithm (GA) is used for optimization design of 

high-speed vehicle, which provides a richer selection space to find the optimal solution. As shown in 

Figure 8, during the optimization process, the data generation strategy based on data fusion correction 

and the double-stage fusion surrogate model are used to provide the initial population for optimization. 
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Figure 8: Optimization flowchart 

The freestream condition is set at an altitude of H=40 km and a Mach number of 10. The 

optimization goal in this study is to minimize the drag coefficient of the model, with a constraint that 

geometric shape parameter variations are within a 5% threshold (Eq.(6)). 

D

,0 ,0

min    

s.t.    0.95 1.05 ( 1,2...14)

obj

j j j

f C

x x x j

=

  =
     (6) 

The optimal model illustrated in Figure 9b reveals notable distinctions, particularly in the wing 

sweep angle, sweepback angle, and a reduction in the nose position. Despite minimal alterations in the 

overall model length, an elongation is observed in the first cone's length, coupled with a reduction in 

thickness. From Figure 10, it can be seen that the opt model reduces the pressure at the trailing edge of 

the body, and the high-pressure area on the lower surface of the first cone moves backward. The drag 

coefficient of the optimized model experiences an 8.63% decrease compared to the base model, with a 

mere prediction error of 0.683%. These results confirm the reliability and effectiveness of the surrogate 

model based on fusion strategy employed in this study. 

Table 1 Comparison of model shape parameters before and after optimization (Body) 

Model Lh L1 L2 Hh,up Hh,dn H1,up H1,dn Wh W1 LE 

Base 0.901 7.168 11.815 0.899 2.123 2.395 1.505 7.265 2.110 0.00 

Opt 0.946 7.526 11.224 0.854 2.017 2.275 1.429 7.628 2.216 0.20 

Table 2 Comparison of model shape parameters before and after optimization (Wing) 

Model Lw Hw φ ϕ 

Base 2.963 6.998 54.077 0 

Opt 2.815 6.648 51.373 -14.874 

   

(a) Base model (CD=0.2404) 
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(b) Optimal model(CD=0.2197) 

Figure 9: Different shapes of high-speed vehicle 

 

Figure 10: Comparison of XY-sectional pressure coefficient distribution  

5. Conclusion 

This paper proposes a high-precision surrogate method based on a fusion strategy for the 

aerodynamic shape optimization of high-speed vehicles. To address the challenge of increasing design 

samples for high-speed vehicles, a fast aerodynamic modeling based on data fusion correction (DFC) 

is established. This method uses a small amount of high-precision aerodynamic data to correct a large 

number of low-precision samples, significantly reducing the time required to create the initial sample 

set. Due to the nonlinear variations in hypersonic aerodynamics, which decrease the prediction accuracy 

of traditional surrogate models, a double-stage fusion surrogate model (DFS) combining regression and 

interpolation is developed, offering higher predictive accuracy across the entire design space. Utilizing 

a surrogate optimization strategy and genetic algorithm, the high-precision surrogate method is applied 

to the aerodynamic design of high-speed vehicles. The optimal model demonstrates an 8.63% drag 

coefficient reduction at hypersonic speeds compared to the base model. These results indicate that the 

proposed design method meets practical engineering design requirements and exhibits engineering 

applicability. 

References 

1. Obering H III, Heinrichs R L. Missile Defense for Great Power Conflict: Outmaneuvering the 

China Threat[J]. Strategic Studies Quarterly, 2019, 13(4): 37-56. 

2. Walker S, Sherk J, Shell D, et al. The DARPA/AF Falcon Program: The Hypersonic Technology 

Vehicle #2 (HTV-2) Flight Demonstration Phase[C]. The 15th AIAA International Space Planes 



 ICCFD12

Twelfth International Conference on        
Computational Fluid Dynamics (ICCFD12), 
Kobe, Japan, July 14-19, 2024 

 

 

and Hypersonic Systems and Technologies Conference, 2008. 

3. Edwin J S, Charles W, Kenneth W I. Flight-Determined Subsonic Lift and Drag Characteristics of 

Seven Lifting-Body and Wing-Body Reentry Vehicle Configurations with Truncated Bases[J]. 

AIAA Paper, 1999. 

4. Dennis, David H, George G E. The Aerodynamic Characteristics of Some Lifting Bodies[C]//Joint 

Conference on Lifting Manned Hypervelocity and Reentry Vehicles: A Compilation of the Papers 

Presented, NASA TM-X-67563, 1960: 103-119. 

5. Sawyer W, Jackson Jr. An Overview of NASA’s Role in Maneuvering Missile Aerodynamic 

Technology[C]//20th Aerospace Sciences Meeting, Orlando, FL, U.S.A, 1982. 

6. Wang G X. Warhead Technology[M]. Beijing: Astronautic Publishing House, 1993. 

7. Edwin J S, Charles W, Kenneth W I. Flight-Determined Subsonic Lift and Drag Characteristics of 

Seven Lifting-Body and Wing-Body Reentry Vehicle Configurations with Truncated Bases[J]. 

AIAA Paper, 1999. 

8. Dennis D H, George G E. The Aerodynamic Characteristics of Some Lifting Bodies[C]//Joint 

Conference on Lifting Manned Hypervelocity and Reentry Vehicles: A Compilation of the Papers 

Presented, NASA TM-X-67563, 1960: 103-119. 

9. Sun C Y, Mu C X, Yu Y. Some Control Problems for Near Space Hypersonic Vehicles[J]. Acta 

Automatica Sinica, 2013, 39(11): 1901-1913.(in Chinese) 

10. Ye Y D. Study on aerodynamic characteristics and design optimization for high-speed near space 

vehicles[J]. Advances in Mechanics, 2009, 39(6): 683-694. (in Chinese) 

11. Campion E D, Castillo R. NASA’s Space Shuttle[R]. NASA Office of Public Affairs, January, 1996. 

12. Jameson A D. X-37 Space Vehicle: Starting a New Age in Space Control[R]. AD Report, April, 

2001. 

13  Chang K J, Haftka R T, Giles G L, et al. Sensitivity-Based Scaling for Approximating Structural 

Response[J]. Journal of Aircraft, 1993, 30(2): 283-288. 

14. Alexandrov N M, Dennis J E, Lewis R M, et al. A Trust-Region Framework for Managing the Use 

of Approximation Models in Optimization[J]. Structural Optimization, 1998, 15(1): 16-23. 

15. Robinson T D, Eldred M S, Willcox K E, et al. Surrogate-Based Optimization Using Multifidelity 

Models with Variable Parameterization and Corrected Space Mapping[J]. AIAA Journal, 2008, 

46(11): 2814-2822. 

16. Forrester A I J, Keane A J. Recent Advances in Surrogate-Based Optimization[J]. Progress in 

Aerospace Sciences, 2009, 45(1): 50-79. 

17. Forrester A I J, Sóbester A, Keane A J. Multi-Fidelity Optimization via Surrogate Modeling[J]. 

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 

463(2088): 3251-3269. 

18. Kuya Y, Takeda K, Zhang X, et al. Multifidelity Surrogate Modeling of Experimental and 

Computational Aerodynamic Data Sets[J]. AIAA Journal, 2011, 49(2): 289-298. 

19. Zimmermann R, Han Z H. Simplified Cross-Correlation Estimation for Multifidelity Surrogate 

Co-Kriging Models[J]. Advances and Application in Mathematical Sciences, 2010, 7(2): 181-202. 

20. Han Z H, Zimmermann R, Görtz S. A New Co-Kriging Method for Variable-Fidelity Surrogate 

Modeling of Aerodynamic Data[R]. AIAA-2010-1225. Reston: AIAA, 2010. 

21. Chung H S, Alonso J J. Using Gradients to Construct Co-Kriging Approximation Models for High-

Dimensional Design Optimization Problems[R]. AIAA-2002-0317. Reston: AIAA, 2002. 

22. Yamazaki W, Mavriplis D J. Derivative-Enhanced Variable Fidelity Surrogate Modeling for 



 ICCFD12

Twelfth International Conference on        
Computational Fluid Dynamics (ICCFD12), 
Kobe, Japan, July 14-19, 2024 

 

 

Aerodynamic Functions[J]. AIAA Journal, 2015, 51(1): 126-137. 

23. Han Z H, Görtz S. Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling[J]. AIAA 

Journal, 2012, 50(3): 1885-1896. 

24. Hollis B R, Horvath T J, Berry S A, Hamilton H H II, Alter S J. X-33 Computational Aeroheating 

Predictions and Comparisons with Experimental Data[C]. AIAA-99-3559, 1999. 

25. Kuchi-Ishi S, Watanabe S, Nagai S, Tsuda S, Koyama T, Hirabayashi N, Sekine H, Hozumi K. 

Comparative Force/Heat Flux Measurements between JAXA Hypersonic Test Facilities Using 

Standard Model HB-2 (Part 1: 1.27 m Hypersonic Wind Tunnel Results)[R]. JAXA Research & 

Development Report, 2005. 

26. Zhang D H, Gao Z H, Huang L K, et al. Double-Stage Metamodel and Its Application in 

Aerodynamic Design Optimization[J]. Chinese Journal of Aeronautics, 2011, 24(5): 568-576. 

27. Martin J D, Simpson T W. Use of Kriging Models to Approximate Deterministic Computer 

Models[J]. AIAA Journal, 2005, 43(4): 853-863. 

28. Zhang D H, Gao Z H, Li J Z, et al. Aerodynamic and stealth synthesis design optimization of UAV 

based on double-stage metamodel[J]. Acta Aerodynamica Sinica, 2013, 31(3): 394-400. (in 

Chinese) 

29. Simpson T W, Peplinski J D, Koch P N, et al. Metamodels for Computer-Based Engineering Design: 

Survey and Recommendations[J]. Engineering with Computers, 2001, 17(2): 129-150. 


