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Abstract: To achieve a consistent finite volume discretization, the interfacial fluxes must be
accurate at least to second order. The unstructured mesh based finite volume solvers currently
employed in routine industrial computations use arbitrary volumes exhibiting high skewness. These
solvers use second order accurate convective interfacial fluxes obtained through linear solution
reconstruction, while the viscous fluxes are still formally first order accurate. In this paper, a
Staggered Update Procedure (SUP) in the context of a consistent and higher order accurate finite
volume method is presented. In contrast to the classical finite volume method wherein the vertex
values are interpolated to required accuracy, an independent vertex update based on meshless
method is introduced. The convective fluxes are determined to second order accuracy at the flux
computing interfaces with the use of linear solution reconstruction. On the other hand, in order to
determine the viscous fluxes to the same order of accuracy as that of the convective fluxes, when
used with a linear reconstruction step, a novel defect correction strategy in relation to Green-Gauss
procedure is developed. The benefits of the proposed SUP methodology is established through an
unsteady laminar flow past a circular cylinder in 2D.

Keywords: Staggered Update Procedure (SUP), Higher order Finite Volume Method, Meshless
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1 Introduction
The most widely used CFD flow solvers for aeronautical applications are based on the solution of
Reynolds-Averaged Navier Stokes (RANS) equations. Most of the production codes using finite volume
methodology employing linear solution reconstruction are formally first order accurate on unstructured
meshes. Nevertheless, these solvers have earned the confidence of designers and engineers, and have been
used extensively in the last two decades in solving several problems of industrial relevance owing to,
(i)their general applicability in terms of handling complex geometries, (ii)their robustness in terms of
both residual and iterative convergence, and (iii)the computational cost, in other words, the efficiency
in providing reliable design data within shorter turnaround times.

For many aeronautical applications, such as flow past high-lift configurations, aeroacoustic noise
prediction, high angle of attack wing flows, rotor blade flows, hypersonic flows around space vehicles,
and internal flows encountered in propulsion systems, accurate computation of flow field is crucial.
However, widely available RANS based solvers face limitations in predicting turbulent, separated flows,
and are believed to break down in such scenarios. Hence, developing a robust, higher order accurate
numerical flow solver for industrial computation has been an active research area within CFD community.
The demand for such methods have has further increased with the significant advancements in the HPC
technology and the use of higher fidelity CFD methods such as LES, DES, hybrid RANS/LES approaches
becoming more common, in the recent years. Our work on Staggered Update Procedure (SUP) is an
attempt to achieve higher order accuracy on unstructured meshes without losing robustness.

The essential idea of SUP is to update solution variables not just at cell centres, but also at the
cell vertices. This is at variance with the classical finite volume method, where the vertex values are
interpolated to a required accuracy. The concept of SUP was originally proposed by Shende and Bal-
akrishnan [1] in the context of rotated difference scheme [2]. In this work, it was brought out that the
solutions thus obtained exhibited significant dependence on the way the solution is interpolated at the
vertices, clearly underlining the importance of accurate vertex value interpolation. It is in this context
SUP, where an independent update is employed at the vertices, was proposed. We have adopted Upwind
- Least Squares Finite Difference (LSFD-U) [3] procedure for solution update at vertices. LSFD-U is
a generalized finite difference method that only utilize point clouds to discretize the partial differential
equations and do not involve any spatial integration like in FVM, hence, they are relatively easy to
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implement. The objective here is to exploit the solution available at the vertices in arriving at a higher
order solution procedure on unstructured meshes.

Interestingly, much of the literature on the development of higher order unstructured mesh-based
finite volume schemes has predominantly focused on the discretization of convective fluxes, with limited
attention given to viscous flux discretization (with the exception of works like [4, 5, 6, 7]). This imbalance
directly impacts the accuracy of the solution and its rate of convergence. Hence, there is a gap for higher
order accurate viscous discretization. We would like to address this issue in particular and explore the
benefits, if there are any at all, in determining the viscous fluxes to the same order of accuracy as the
convective fluxes. To accomplish a higher order accurate discretization for viscous fluxes, at least to the
commensurate accuracy of convective fluxes, second order accurate gradients at finite volume faces are
essential.

The Green-Gauss based framework given by Jawahar and Kamath [8] for computing interfacial gra-
dients is known to be robust and performs well, in terms of accuracy. Although this procedure recovers
second order accuracy on uniform Cartesian grids, the accuracy degenerates on irregular mesh elements,
which is often encountered in practical scenarios due to geometric complexities. In order to meet the ac-
curacy constraint under such conditions, we developed a defect correction strategy [9] aimed at achieving
genuinely second order accuracy of gradients at volume interfaces, while adhering to the Green-Gauss
based gradient finding procedure. Consequently, the second order accuracy of interfacial gradients as
well as centroidal and nodal gradients are obtained through an iterative procedure.

In our earlier work [10], we have demonstrated the superior accuracy of SUP by solving model problem
for a low Peclet number. Subsequently, the extension of this methodology to flow governing equations is
established in [11, 12]. A systematic grid convergence study was conducted by considering the laminar
flow past NACA 0012 airfoil. Furthermore, the benefits of consistent viscous discretization was brought
out by obtaining solutions on a coarse mesh. The current paper begins by reviewing the Navier-Stokes
equations, followed by the details of discretisation of SUP methodology. An unsteady laminar flow past
a circular cylinder corresponding to a low Reynolds number is investigated in this paper. The higher
accuracy and reduced numerical diffusion of SUP is established by comparing the finite volume results
obtained on a very fine structured mesh.

2 Governing Equations
The non-dimensional, unsteady compressible Navier-Stokes equations in conservative form can be ex-
pressed as,

∂w

∂t
+∇ · [(f

con

+ f
vis

) (g
con

+ g
vis

)] = 0 (1)

In the above equation, w = [ρ ρu ρv e]
T is the vector of conserved variables. The inviscid flux

vectors are given as, f
con

= [ρu ρuu+ p ρuv (e+ p)u]
T and g

con
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T .
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The total energy per unit volume is given as, e = p

γ−1 + ρ(u2+v2)
2 , and the equation of state is given by,

p = ρT
γM2

∞
. The laminar viscosity and thermal conductivity are determined using Sutherland’s formula[13].

3 Solution Methodology
A schematic representation of an unstructured mesh consisting of triangular elements is shown in Figure
1. The notation ‘i’ represents the centroid of the finite volume, while ‘v’ denotes the vertices forming
the volume. Unlike, conventional finite volume method, the SUP updates solution variables not only
at cell centres, but also at cell vertices. Alternatively, SUP can be viewed as a cell-centered finite
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Figure 1: Stencil employed in SUP

volume procedure with a governing PDE based vertex value interpolation. The discretization details are
explained in the following subsections.

3.1 Volume update
A cell-centred finite volume approach is employed for state update of finite volume. The computational
domain is discretized into a set of non-overlapping control volumes and the conservation laws of mass,
momentum and energy are integrated over these volumes. The state update for a finite volume i, as

Figure 2: A typical finite volume

shown in Figure 2, obtained using single point quadrature can be expressed as,

w̄n+1
i − w̄n

i

∆t
= − 1

Ωi

∑
J

f⊥J∆SJ (2)

where f⊥J is the total interfacial flux vector determined normal to the volume interface J.

3.2 Vertex update
In SUP framework, the flux derivatives at the cell vertex are obtained using a variant of Upwind-Least
Squares Finite Difference (referred to as LSFD - U : Method II) [4, 14]; which is a generalized finite
difference based technique that invariably employs method of least squares on a local cloud of points.
A typical point cloud about vertex v is shown in Figure 3 with the neighbouring nodes denoted as w.

Figure 3: 2D cluster for LSFD – U : Method II

A mid-way fictitious interface W is introduced on the ray joining v and w. Using the method of least
squares and assuming linear variation of fluxes between the node v and its neighbour w, the expressions

3



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

for flux derivatives can be represented in the form of matrix-vector equation as below:

G
−→
∂f =δ⃗ (∆f

W
)

G
−→
∂g =δ⃗ (∆g

W
)

(3)

with the following definitions of the matrix and vectors,

G =
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Here, G is the geometric matrix resulting from 2-D linear least squares approximation, and ∆(·)

W
=

(·)
W

− (·)v. Note that, f and g are components of flux vectors, f and g, respectively. Hence, the flux
derivatives required for state update at v can be expressed as,

fxv
=

2∑
l=1

G−1
1,l δl(∆f

W
) and gyv

=

2∑
l=1

G−1
2,l δl(∆g

W
). (4)

Referring to Figure 3, the fluxes at the fictitious interface, i.e., f
W

and g
W

are need to be evaluated in
addition to the fluxes at vertex v.

3.3 Computation of convective fluxes
Within the framework of SUP, an upwind flux is computed along the tangential direction of the volume
interface in addition to the normal upwind flux.

Figure 4: Upwind fluxes at a volume interface

For a given volume interface J as shown in Figure 4, i and j represent the left and right cells,
respectively; J1 and J2 are the vertices forming the interface. Let n̂ = (nx, ny) and t̂ = (tx, ty) be the
unit vectors normal and tangential to the interface J forming a right hand co-ordinate system, along
which upwind fluxes are computed. In the present work, Roe’s flux difference splitting scheme [15] is
adopted for approximating both of the convective interfacial fluxes. Bringing in Roe’s flux difference
splitting scheme, the convective interfacial fluxes using appropriate extrapolated left and right states can
be cast as below:

f
con

⊥J =
1

2
(f

con+

⊥ (ϕJ
i ) + f

con−

⊥ (ϕJ
j ))−

1

2

∑
k

αbk |λbk |⃗rbk

f
con

∥J =
1

2
f
con+

∥ (ϕJ
J1
) + f

con−

∥ (ϕJ
J2
)− 1

2

∑
k

αbk |λbk |⃗rbk
(5)

where, ϕ represents one of the primitive variables and ϕJ
(·) = ϕ(·) + ∇ϕ(·) · r⃗J(·), is the extrapolated

state at volume interface. In above equation, αbk denotes the strength of kth wave, λbk represents the
kth eigenvalue of the Roe averaged matrix and r⃗bk denotes the corresponding eigenvector. The normal
convective flux, f

con

⊥J , directly goes into finite volume state update at cell centres. These higher order
flux computations require solution gradients at cell centres as well as at cell vertices to represent the
linear polynomial. In 2D, the upwind estimate of fluxes in these directions are available at W on the ray
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joining v-w. The upwind flux vectors, f
con

W
and g

con

W
, are obtained by making use of Equation (5):

f
con

W
= f

con

⊥J nx + f
con

∥J tx

g
con

W
= f

con

⊥J ny + f
con

∥J ty
(6)

3.4 Computation of viscous fluxes
In finite volume method, the computation of viscous fluxes at volume interface require the interfacial
velocity and temperature gradients. Concerning vertex update, the viscous flux derivatives, i.e., f

vis

xv
and

g
vis

yv
are determined using the linear least squares based expressions provided in Equation (4). It can be

appreciated that the LSFD-U procedure makes use of global stencil of grid points, thus, satisfying the
elliptic nature of viscous fluxes. To sum up, the computation of viscous fluxes in SUP framework require
gradients at volume interface as well as at vertices.

3.5 Gradient computation
In a typical finite volume procedure, employing linear reconstruction, and therefore requiring single point
flux quadrature, the velocity gradients required for the computation of viscous fluxes at quadrature point,
are obtained as volume averaged gradients over the covolume as shown in Figure 5 by using Green-Gauss
procedure[8]. Consider any primitive variable, say ϕ, for which the discrete approximation of gradient

Figure 5: Covolume built around a volume interface

using single point quadrature can be expressed as,

∇ϕ
num

J ≃ 1

ΩJ

4∑
k=1

ϕkn̂k∆Sk (7)

where, ϕk is the value of solution variable at kth quadrature point. Also, n̂k and ∆Sk represent the
unit normal and length of the kth edge of the covolume, respectively. Typically on an irregular grid, the
solution gradients obtained are first order accurate at any point inside the covolume.

Our objective here is to compute viscous fluxes at volume interface to commensurate accuracy as
that of convective fluxes obtained using a linear reconstruction procedure. This is achieved by the way of
annihilating the O(h) leading error terms arising due to, (i) non-coincidence of the face centre, where the
viscous fluxes are determined, with the centroid of the covolume, and (ii) use of single point quadrature.
A defect corrected Green-Gauss procedure is proposed towards this goal. For a detailed discussion
regarding the accuracy of Green-Gauss procedure and development of defect correction strategy, readers
are referred to our report [9]. Only the essential steps are outlined here.

A defect corrected ϕ, i.e.,ϕ̃k is defined as:

ϕ̃k = ϕ̇k − 1

2
[∆ϕxk

xk +∆ϕyk
yk] (8)

where, ∆ϕxk
= ϕxk

− ϕxJ
and ∆ϕyk

= ϕyk
− ϕyJ

with xk = xk − xJ and yk = yk − yJ . Here, the
notation ϕ̇k is the corrected value of the solution variable at the kth quadrature point. The expression
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for the same is given as:

ϕ̇k =
ϕ̇1 + ϕ̇2

2
(9)

where the solution values at the nodes consisting of a covolume edge are modified as following,

ϕ̇1 = ϕ1 +
∂ϕ

∂s

∣∣∣∣
1

∆Sk

4
; ϕ̇2 = ϕ2 −

∂ϕ

∂s

∣∣∣∣
2

∆Sk

4

where, ∂ϕ
∂s

∣∣∣
1,2

= [(∇ϕ)1,2 · ŝ]. Consequently, replacing ϕk by ϕ̃k in Equation (7) will result in second

order accurate gradients at face centre within the framework provided by SUP while continuing to use
single point quadrature, and is expressed as :

∇ϕ
(2)

J ≃ 1

ΩJ

4∑
k=1

ϕ̃kn̂k∆Sk (10)

It is worth noting that the above correction is valid iff the gradients are recovered to second order
accuracy both at volume centroid and vertex. In order to accomplish this, closed paths are identified
around cell centre and vertex as shown in Figure 6 and are referred to as diamond path and petal path,
respectively. The figures suggest that the paths involved in obtaining these gradients coincide with the
path employed for face gradients. Hence, a face based procedure that simultaneously and recursively
solves the three coupled defect correction strategies, is employed which recovers second order accurate
gradients not only at volume interface, but also at centroids and vertices.

(a) Diamond path for cell centre (b) Petal path for vertex

Figure 6: Closed paths for surface integration

These higher order accurate gradients are then used for linear solution reconstruction required for
higher order convective flux computations as well as to compute viscous flux terms within SUP. The
defect-corrected Green-Gauss procedure is iterative in nature and hence, computationally expensive.
However, these additional computations can be effectively submerged by accelerating the solver using
many core accelerator based processors. We have demonstrated the acceleration of the SUP solver by
off-loading the gradient finding task onto GPU using OpenACC based programming model [16].

4 Results
An unsteady flow past a circular cylinder is investigated in this section. The test case corresponds to
M∞ = 0.1, Re∞ = 70 (based on cylinder diameter, d) and α = 0◦. At this Re, a pair of alternate
vortices are formed on the rear side of cylinder and are carried away with the surrounding main flow.
This flow is simulated using an industry standard finite volume solver, HiFUN1(High Resolution Flow

Table 1: Details of meshes around 2D circular cylinder

Mesh Np Nc Nw

Present study 10982 21732 200
Fine mesh 1984790 1980500 1000
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Solver on Unstructured meshes) and SUP on a coarse triangulated mesh. Results are compared with
fine grid solution obtained on a fine structured mesh using HiFUN. The mesh details are presented in
Table 1. Different views of coarse mesh is shown in Figure 7.

(a) Around cylinder (b) Near wake region (c) Far wake region

Figure 7: Views of mesh around circular cylinder in different regions of flow field

To perform the unsteady simulation, the dual time stepping procedure [17] based on second order
accurate backward differencing is used for HiFUN simulations whereas the fourth order accurate explicit
Runge-Kutta (RK4) time marching scheme is employed for SUP. The time step size used for all the
simulations is set as 3.125x10−4.

The colour map of instantaneous Mach number contours in the wake region for all the simulations are
presented in Figure 8. It is evident from these plots that there is significantly less diffusion in the wake
obtained using SUP even on coarse mesh as compared to that of HiFUN solution on the same mesh.
Additionally, at the same instance, the Z- vorticity contours are compared in Figure 9. On the given
coarse mesh, the vortical structures from HiFUN diffuse earlier as compared to SUP. In other words, the
vortex street, in case of SUP simulation, has additional length of 20d.

(a) HiFUN (Fine mesh) : Full view (b) HiFUN (Fine mesh) : Close-up view

(c) HiFUN : Full view (d) HiFUN : Close-up view

(e) SUP : Full view (f) SUP : Close-up view

Figure 8: Comparison of Mach number contours

1https://sandi.co.in/products/
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(a) HiFUN (Fine mesh) : Full view (b) HiFUN (Fine mesh) : Close-up view

(c) HiFUN : Full view (d) HiFUN : Close-up view

(e) SUP : Full view (f) SUP : Close-up view

Figure 9: Comparison of Z- vorticity contours

  

(a) At x/d = 5

  

(b) At x/d = 20

  

(c) At x/d = 100

Figure 10: Comparison of u velocity profiles at different stations in the wake

Figure 10 presents the comparison of streamwise velocity profiles across the wake at three different
stations corresponding to x/d = 5, 20 and 100. Improvement in the prediction of wake deficit can be
asserted in case of SUP as compared to that of HiFUN on the given mesh. In addition, the comparison of
surface pressure and skin friction coefficient distribution over the cylinder surface are depicted in Figures
11 and 12, respectively. Better predictions are obtained with SUP.

The variation of integrated load coefficients, i.e., lift and drag coefficients with time for these unsteady
simulations are presented in Figure 13. The cl variation of SUP is in phase with that of fine grid solution.
The St and time-averaged drag coefficients for all the simulations are provided in Table 2. The numbers
predicted by SUP are closer to that of obtained on fine mesh using HiFUN.

Table 2: Summary of Strouhal number (St) and averaged drag coefficient

cd,avg St
HiFUN 1.359 0.1426
SUP 1.364 0.1443
HiFUN (Fine mesh) 1.369 0.1445
Tritton [18] - 0.1477
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(a) Full view (b) View at Window 1 (c) View at Window 2

Figure 11: Comparison of surface pressure distribution

(a) Full view (b) View at Window 1 (c) View at Window 2

Figure 12: Comparison of skin friction coefficient distribution

  

(a) cl variation with time (b) cd variation with time

Figure 13: Variation of integrated load coefficients

5 Conclusion and Future Work
The efficacy of the SUP methodology is established by solving an unsteady flow problem on a coarse
triangulated mesh at a low Reynolds number. The improved solution accuracy and reduced numerical
diffusion offered by SUP is encouraging and it shows lots of promise for p-adaptive DES calculations.
In addition, our proposed methodology offers two significant advantages that are directly relevant to
modern computer hardware. One of the important bottlenecks in the utilization of the processors comes
from the latency associated with memory access. Compared to conventional finite volume schemes, our
newly developed SUP algorithm operates more efficiently with the set of data accessed. This not only
enhances the utilization of present-day processors but also improves solution accuracy. The second aspect
pertains to the inherent data parallelism in the proposed methodology, which makes it naturally suitable
for accelerating on the many core accelerator based processors such as GPUs.
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