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Abstract: A family of new implicit time marching schemes based on Direct Integration and
Temporal Reconstruction (DITR) is developed and tested in this paper. These schemes can be
used to solve ordinary differential equations (ODEs) directly or solve ODEs arising from semi-
discrete schemes solving partial differential equations (PDEs), including the compressible Navier-
Stokes equations. The most significant advantages of these methods are that temporally third-
and fourth-order schemes can be constructed straightforwardly, and require fewer stages than
some popular implicit Runge-Kutta schemes. As an ODE solver, the DITR method are found to
be A-stable, with two variants of them being L-stable. A matrix-free iteration method for solving
the DITR equations is described for practical implementation of DITR. Numerical results show
that DITR methods achieve high order of accuracy with comparatively lower computational cost.
When reaching the same error, some DITR methods are able to save significant amount of time
compared with the implicit ESDIRK4 method.
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1 Introduction
In computational fluid dynamics (CFD), high-order numerical methods have the capability of resolving
complex flows effectively and efficiently, which have been attracting great attention recently. Popular
high-order CFD methods, including discontinuous Galerkin (DG) methods [1, 2, 3, 4, 5], spectral volume
[6] and spectral difference [7] methods, PnPm procedures [8], FR/CPR methods [9, 10, 11, 12], and finite
volume (FV) methods [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], generally adopted the method of line,
in which the governing equations are spatially discretized at first resulting in a system of ODEs. The
system of ODEs is then solved with ODE integrators such as the popular strong stability preserving
Runge-Kutta (SSPRK) methods [24].

Although explicit ODE integrators are simple and efficient for a wide range of CFD problems, the
Courant-Friedrichs-Lewy (CFL) condition that limits physical time step in explicit methods could make
them inefficient in notably inhomogeneous or anisotropic transient flows, such as wall-bounded turbu-
lence. Such inefficiency could be overcome by applying implicit ODE solvers which usually have better
stability attributes. Due to Dahlquist’s second barrier [25], only second and first order linear multistep
ODE methods could achieve A-stability. Therefore, the L-stable second-order backward differentiation
formula (BDF2) is extensively adopted in solving transient CFD problems. Different from multistep
methods, the single-step implicit Runge-Kutta (IRK) methods with multiple internal stages can achieve
higher order of accuracy while preserving stability [26]. Among the IRK methods, fully coupled IRK
methods could achieve optimal order for given number of stages, but they require the solution of a
nonlinear system with its dimension several times larger than that of the ODE. The enlarged algebraic
system could be especially troublesome for its implementation in CFD solvers. Pazner and Persson
[27] made effort in efficiently solving fully IRK methods with DG, and Jameson [28] discussed how to
adopt dual time stepping into fully IRKs. Due to the difficulties in solving fully IRK methods, singly
diagonally implicit Runge-Kutta (SDIRK) methods are more commonly used in CFD, for example in
[15]. SDIRK methods have lower-triangular butcher tableau, enabling the stage values to be solved in a
sequence. As a special case of SDIRK, ESDIRK methods are SDIRK with an explicit first stage, which
are constructed to have second stage order while being L-stable [29, 30]. High-order ESDIRK schemes
and BDF2 have been tested in [31, 32] to solve flow problems, whose results illustrate better accuracy
and higher efficiency of high-order ESDIRK methods compared to second order BDF2.
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Apart from fully IRK and SDIRK methods, another class of implicit RK methods, mono implicit RK
methods (MIRK) [33] with explicit internal stages and an implicit final stage, allow the implicit system
to have the same number of dimensions as the original ODE. Cash and Signhal derived examples of
A-stable and L-stable high-order MIRK methods in [34, 35]. Kulikov and Shindin presented a similar
type of method called nested implicit RK (NIRK) [36]. Discussion was made on symmetry, stiff accuracy
and other advantageous properties of a series of Gauss type NIRK methods. [37]. The major drawback
of NIRK or MIRK schemes is that the Jacobian matrices of the nonlinear algebraic problems for each
NIRK or MIRK step are polynomials of the Jacobian of the ODE’s right-hand-side. Cash and Singhal
proposed to find MIRK methods whose Jacobian could be approximately factorized, so that the Newton
iteration could be realized approximately by solving a series of successive linear problems [35]. Kulikov
and Shindin found certain factorization approximation could sabotage the stability of the method in [37],
and analyzed how to choose the approximation of Jacobian in [38]. MIRK and NIRK methods are more
attractive than SDIRK methods for they require fewer inner stages. Typical fourth order stiffly accurate
ESDIRK requires 5 implicit internal stages to be solved, while MIRK and NIRK could solve only one
implicit stage.

MIRK and NIRK methods have less implicit stages than SDIRK methods, which gives them potential
to gain better efficiency in large scale problems. However, current literature has seldom explored the
application of MIRK or NIRK methods in solving PDEs. The fully IRK methods, on the other hand,
have been practiced in finite volume [28] and DG [27] as mentioned before, but their implementations in
CFD methods are significantly more complex compared to SDIRK type methods.

Different from previous approaches, the current paper aims to construct implicit time marching
schemes based on temporal reconstruction. By combining polynomial approximation and numerical
quadrature rules in the direction of time, stable, high-order accurate and efficient implicit ODE methods
termed as DITR could be obtained straightforwardly. The basic idea of the DITR scheme will be
presented in Section 3. Briefly speaking, the construction of the DITR schemes consists of the following
two steps. The first step is the direct integration of the system of first-order ODEs. When the right-hand
side is integrated using the three point Gauss-Lobatto rule, the resulting DITR schemes have two stages
and are at most temporally fourth-order accurate. The actual order of accuracy is then determined by
the second step which is the temporal reconstruction. When the temporal reconstruction uses only the
information of n and n + 1 steps, the DITR schemes are single step schemes similar to the MIRK or
NIRK schemes. When the temporal reconstruction uses the information of n − 1, n and n + 1 steps,
the resulting DITR schemes are multistep methods that are different from the common implicit linear
multistep methods such as the Adams-Moulton and BDF schemes [39]. The stability of the DITR schemes
is mainly determined by the temporal reconstruction step. When adopting proper quadrature rules and
temporal reconstructions in these two steps, single-step and multistep methods with arbitrary orders
of temporal accuracy can be constructed. Therefore, the DITR approaches are new methodologies for
designing implicit time marching schemes that are different from the IRK and linear multistep methods.
It will be shown that the new DITR schemes can be implemented in a matrix-free style, guaranteeing
their portability. The new implicit time marching schemes are further applied to high-order compact
finite volume method to test their capabilities in flow problems. Numerical results illustrate that the
DITR schemes are high-order accurate and competitive with the 4th order ESDIRK method in efficiency.

The rest of the paper is organized as follows. High-order compact finite volume schemes are introduced
in Section 2 as the spatial discretization. The construction and analyses of DITR methods are presented
in Section 3. Section 4 illustrates some numerical results of DITR solving the Euler and N-S equations,
combined with spatial discretization from Section 2. Last, Section 5 gives the concluding remarks.

2 High-order compact finite volume method
The new time-marching method developed in the current paper can be applied to any spatial discretiza-
tions when solving time-dependent PDEs such as the compressible Euler and Navier-Stokes equations.
However, the time marching schemes’ actual performance will be affected by the spatial discretizations.
Therefore, this section will provide a brief description of finite volume spatial discretization, and addi-
tional details of the high-order finite volume scheme used in numerical tests are specified.
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2.1 Governing equations
The compressible Navier-Stokes equations have the conservative form:

∂U

∂t
+∇ · (F− Fv) = 0 (1)

where U is vector of conservative variables and F = [F1,F2,F3], Fv = [Fv,1,Fv,2,Fv,3] are inviscid and
viscous tensors of their flux. In Cartesian coordinates xk, k = 1, 2, 3, the components are

U =


ρ

ρu1

ρu2

ρu3

E

 , Fj =


ρuj

ρu1uj + pδ1j
ρu2uj + pδ2j
ρu3uj + pδ3j
(E + p)uj

 , Fv,j =


0
τ1j
τ2j
τ3j∑3

k=1 ukτkj −Kj

 (2)

where ρ is density, ui, i = 1, 2, 3 are velocity components, p is pressure, E is total energy per unit volume,
τij , i, j = 1, 2, 3 are viscous stress tensor components and Ki, i = 1, 2, 3 are heat flux components. δij
is Kronecker delta. With ideal gas equation of state, Newtonian viscosity and Fourier heat conduction,
additional relations

E =
p

γ − 1
+

1

2
ρ

3∑
k=1

(ukuk),

p = ρRgT,

τij = µ

(
∂ui

∂xj
+

∂uj

∂xi

)
− 2

3
µδij

3∑
k=1

∂uk

∂xk
,

Ki = −κ
∂T

∂xi

(3)

are used to close the equations with T being temperature, γ being specific heat ratio, Rg being gas
constant, µ being dynamic viscosity and κ being thermal conductivity. Specific heat ratio γ is fixed to
1.4 in this paper. The current paper only considers using simple gas property with κ = µcp/Pr, and
µ = µ∞ being a constant, while cp is special heat capacity at constant pressure and Prandtl number
Pr is fixed to 0.71 in this paper. When µ = 0, Fv = 0 and equation (1) becomes Euler equation. The
equations discussed above are in 3D form, and assuming constant distribution of values over x3 yields
the 2D version of NS and Euler equations.

2.2 High-order finite volume spatial discretization
This subsection provides a general framework of high-order finite volume discretization. The compu-
tational domain Ω is divided into Ncell cells Ωi, i = 1, 2, ...Ncell which are non-overlapping, forming a
mesh. An averaging of conservative quantities over each cell is

Ui =
1

Ωi

∫
Ωi

U(x)dΩ (4)

where Ωi is the volume of Ωi.
Next, a degree k piecewise polynomial reconstruction is conducted to approximate the distribution

of quantities

Ui(x) = Ui +

NDOF(k)∑
l=1

Ul
iφi,l(x) (5)

in which Uj(x) is the local polynomial distribution on cell Ωj , and φj,i(x) are polynomial basis functions.
Eq.(5) can also be considered as a scalar field

ui(x) = ui +

NDOF(k)∑
l=1

ul
iφi,l(x) (6)

where ui(x) is one of ρ(x), ρu1(x) . . . and should not be confused with the velocity components u1, u2, u3
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which was used in the governing equations.
There are NDOF(k) polynomial bases for reconstruction on each cell. The current paper uses zero-

mean Taylor basis for reconstruction [15]. Given a specific reconstruction method, the reconstruction
coefficients Ul

i (or ul
i for its components) can be determined using the distribution of mean value Ui, i =

1, 2...Ncell and boundary conditions.
With the piecewise polynomial approximation, the PDEs (1) can therefore become ODEs with cell

averaging applied

dUi

dt
+

∑
j∈Si,j ̸=i

(∫
fi,j

[F̃(Ui,Uj)− F̃v(Ui,Uj ,∇Ui,∇Uj)] · ndA

)
= 0 (7)

where F̃(Ui,Uj) and F̃v(Ui,Uj ,∇Ui,∇Uj) are approximations of exact fluxes on the cell interfaces,
and fi,j = Ωi ∩ Ωj is the interface between i, j cells. Set Si denotes the compact stencil of cell Ωi,
consisting of cell Ωi and its direct face neighboring cells. The piecewise polynomial approximation
(5) does not guarantee a continuous distribution on interfaces, thus the numerical fluxes F̃(Ui,Uj),
F̃v(Ui,Uj ,∇Ui,∇Uj) are functions of the approximate field on both sides. Inviscid numerical flux
F̃(Ui,Uj) is typically computed with an approximate Riemann solver which will be specified for each
numerical test in the paper. Numerical viscous flux F̃v(Ui,Uj ,∇Ui,∇Uj) in this paper follows the
practice of Wang [15]. The integration of flux terms on the cell interfaces are conducted using numerical
quadrature rules with enough algebraic precision.

As the spatial derivatives are approximated in (7), it is referred to as the semi-discretized form of
finite volume method. The inviscid term has a truncation error of O(hk+1) for smooth problems, with
h being the size of mesh. As the approximate fields Ui are functions of average values Ui, (7) can be
rearranged into the assembled form

dU

dt
= R(t,U) (8)

with

U =

 U1

. . .
UNcell

 , R =


−
∑

j∈S1,j ̸=1

(∫
f1,j

[F̃− F̃v] · ndA
)

. . .

−
∑

j∈SNcell
,j ̸=Ncell

(∫
fNcell,j

[F̃− F̃v] · ndA
)
 . (9)

The arguments in the numerical fluxes are omitted. The right-hand-side vector R is also a function
of t because boundary conditions or additional source terms could depend on t generally speaking.

2.3 Variational reconstruction
In order to determine the coefficients of polynomial bases Ul

i (or ul
i) in Eq.(5), a reconstruction method

needs to be specified. Traditional second-order FV methods for unstructured grid needs only to recon-
struct a k = 1 polynomial, namely linear distribution on each cell. The variational reconstruction [15] is
a compact high-order reconstruction scheme, which features high-order accuracy achieved on a compact
stencil. The current section will explain the variational reconstruction and specify relevant details.

The current paper uses local zero-mean Taylor basis, similar to [15]. Taking 2 dimensional polynomials
as an example:

φi,l =

(
x− xc,i

∆xi

)pl
(
y − yc,i
∆yi

)ql

−
(
x− xc,i

∆xi

)pl
(
y − yc,i
∆yi

)ql

(10)

where [xc,j , yc,j ]
T = xc,j are barycenters of cell Ωj , ∆xi,∆yi are the cell’s length scale, and pl, ql

are powers of the bases. For k = 3 basis used in two-dimensional cases, pl = [1, 0, 2, 1, 0, 3, 2, 1, 0]l, and
ql = [0, 1, 0, 1, 2, 0, 1, 2, 3]l. The mean value term lets the basis have zero mean values, which is calculated
with: (

x− xc,i

∆xi

)pl
(
y − yc,i
∆yi

)ql

=
1

Ωj

∫
Ωj

(
x− xc,i

∆xi

)pl
(
y − yc,i
∆yi

)ql

dΩ. (11)

The length scales are chosen to be the largest distance of nodes from the barycenter, which has the
from

∆xj = ∆yj = max
k

(∥xj,k − xc,j∥2) (12)
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where xj,k are coordinates of nodes belonging to cell Ωj .
The variational reconstruction defines the solution of reconstruction coefficients to be the minimum

point of a globally defined functional I
I =

∑
If (13)

where If are interface jump integrations (IJI) defined on each cell interface f . Hereafter, we use f = fij
to denote the interface of cell Ωi and Ωj by default. Using the two-dimensional case as an example, the
current paper uses IJI in the form of

If = ωG
f

∫
Ωi∩Ωj

p+q≤k∑
p+q=0

[
ωD
f (p, q)dp+q

ij

(
∂p+qui(x, y)

∂xp∂yq
− ∂p+quj(x, y)

∂xp∂yq

)]2
df (14)

where ωG
f is geometric weight and ωD

f is derivative weight. The facial length scale dij is taken as

dij = ∥xc,i − xc,j∥2 (15)

which is the distance between the barycenters of the cells. The IJI represents facial discontinuities of
reconstruction polynomials using function values and their various partial derivatives on the interface.
For 2-D simulation and cubic (with k = 3) reconstruction, the current paper uses

ωD
f (0, 0) = 1× ωD(0)

ωD
f (1, 0) = ωD

f (0, 1) = 1× ωD(1)

ωD
f (2, 0) = ωD

f (0, 2) = 1× ωD(2), ωD
f (1, 1) =

√
2× ωD(2)

ωD
f (3, 0) = ωD

f (0, 3) = 1× ωD(3), ωD
f (1, 2) = ωD

f (2, 1) =
√
3× ωD(3)

(16)

with
ωD(0) = 1, ωD(1) = 0.5925, ωD(2) = ωD(3) = 0.2117 (17)

as the derivative weight. This form of derivative weight in Eq.(16) is rotational invariant and isotropic.
The coefficients in Eq.(17) are taken from [40], which were obtained through the optimization of dissi-
pation and dispersion relations.

The geometric weight uses the form

ωG
f =

√
S

1
d−1 d−1

ij (18)

where d is the number of spatial dimension and S is the area of the interface. This form of geometric
weight is also taken from [40].

The minimization problem
[ul

i] = argmin(I) (19)

defines the solution to the variational reconstruction system. It is observed that I is a quadratic function
of ul

i, i = 1...Ncell and I ≥ 0, therefore I is a positive semi-definite quadratic form about the global vector
of reconstruction coefficients. Consequently, the minimization problem converts to a linear equation

∂I

∂ul
i

= 0, l = 1, 2, . . .NDOF(k), i = 1, 2, . . . Ncell. (20)

This linear equation can be arranged in a cell-block form:∑
f=fij ,j∈Si,j ̸=i

Aijui =
∑

f=fij ,j∈Si,j ̸=i

Bijuj + bij(uj − ui) (21)

where Si is the compact stencil of i composed of cell Ωi and its face neighbors. Local reconstruction
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coefficient vector is ui = [u1
i , u

2
i . . . ]

T. The reconstruction coefficient matrices and vectors in Eq.(21) are

Aij =

(ωG
f

∫
Ωi∩Ωj

p+q≤k∑
p+q=0

ωD
f (p, q)2d

2(p+q)
ij

∂p+qφi,r

∂xp∂yq
∂p+qφi,l

∂xp∂yq
df

)
lr


NDOF(k)×NDOF(k)

,

Bij =

(ωG
f

∫
Ωi∩Ωj

p+q≤k∑
p+q=0

ωD
f (p, q)2d

2(p+q)
ij

∂p+qφj,r

∂xp∂yq
∂p+qφi,l

∂xp∂yq
df

)
lr


NDOF(k)×NDOF(k)

,

bij =

[(
ωG
f ω

D
f (0, 0)2

∫
Ωi∩Ωj

φi,ldf

)
l

]
NDOF(k)×1

.

(22)

The local coefficients matrices and vectors Eq.(22) can be calculated at the start of computation.
The linear reconstruction system Eq.(21) is solved with block-SOR method. The details of linear solving
of variational reconstruction and the treatments of boundary conditions can be found in [15]. The fact
to be emphasized here is that the reconstruction is implicit, and the reconstruction coefficients must be
obtained through a series of iterations. To ensure the efficiency of the numerical method, the variational
reconstruction is used together with temporally implicit discretization of the governing equations. During
an implicit solving procedure, the updating of mean values and reconstruction coefficients are decoupled
and executed alternately, with the block-SOR iteration carried out only once for every iteration of the
implicit marching scheme. As each block-SOR updating is compact in the sense of data dependency,
the variational reconstruction is able to have better data locality and less communication during the
iteration process.

3 Direct integration with temporal reconstruction (DITR) meth-
ods for high order time marching

3.1 General ideas
Considering the first order ODE equation (8) arising from high-order finite volume method with t ∈ [0,∞)
and U ∈ RN :

dU

dt
= R(t,U)

which can be considered a more general first order ODE with U being a general solution vector. For
example, in finite difference schemes, U represents the vector of grid point values. And for finite volume
schemes, U is the vector of all cell averages. A direct integration of equation (8) leads to a time-marching
relation

U
n+1

= U
n
+

∫ tn+1

tn
R(t,U)dt (23)

In order to acquire the integration result in equation (23), a numeric quadrature rule in the interval
[tn, tn+1] is used. For example, the current paper uses quadrature rule based on three-point polynomial
interpolation, and the direct integration has the form:

U
n+1 −U

n

∆tn
=

1

∆tn

∫ tn+1

tn
R(t,U)dt

≈b1R(tn,U(tn)) + b2R(tn+c2 ,U(tn+c2)) + b3R(tn+1,U(tn+1))

(24)

where tn+c2 = tn + c2(t
n+1 − tn) and c2 ∈ (0, 1). ∆tn = tn+1 − tn is the time step size. The parameter

c2 represents the relative place of the second abscissa in the quadrature rule, where the first and third
fixed at tn and tn+1. Using quadratic polynomial interpolation, the weights of the quadrature rule will
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be:
b1 =

1

2
− 1

6c2
,

b2 =
1

6c2(1− c2)
,

b3 =
1

2
− 1

6(1− c2)
.

(25)

The quadrature rule defined with Eq.(24) and Eq.(25) has algebraic precision of degree 2. When c2 = 1/2,
the quadrature rule has algebraic precision of degree 3 and becomes the three point Gauss-Lobatto rule.
The numeric integration process used in equation (24) is referred to as a direct integration process
because it is directly derived from the ODE.

Besides U
n+1

, U(tn+c2) is also unknown. To make Eq.(25) solvable, the temporal reconstruction
is introduced in the present paper. The temporal reconstruction is to reconstruct U(t) from known
U at previous time steps and the desired solution U

n+1
of the numerical schemes. Since dU

dt = R

can be computed from U, R at previous time steps as well as Rn+1 can be also used in the temporal
reconstruction. The inclusion of U

n+1
and Rn+1 in the reconstruction makes the scheme implicit. Using

the reconstructed U(t), U(tn+c2) can be evaluated, making Eq.(25) solvable. The current paper has
only considered using a subset of U(t),R(t,U(t)) at t ∈ {tn+1, tn, tn−1} as conditions of the polynomial
reconstruction. Generally, the polynomial interpolation of U(t) could be expressed as

U(t) ≈ An
0 (t)U

n−1
+An

1 (t)U
n
+An

2 (t)U
n+1

+∆tnDn
0 (t)R

n−1 +∆tnDn
1 (t)R

n +∆tnDn
2 (t)R

n+1
(26)

where An
i (t), D

n
i (t), i = 0, 1, 2 are polynomial base functions. Due to the precision of quadrature rule,

the polynomial reconstruction is only expected to reach 3rd order constructing a 4th order accurate
scheme. Consequently, at most 4 out of the 6 conditions would be used at the same time. The polynomial
interpolation in the direction of time in Eq.(26) is referred to as temporal reconstruction, for a continuous
distribution of U is reconstructed with point values, similar to the finite volume reconstruction.

Combining the direct integration in Eq.(24) and a temporal reconstruction in Eq.(26), a Direct
Integration with Temporal Reconstruction (DITR) method is determined. The current paper sticks to
the same formula of direct integration in Eq.(24), while experimenting on different forms of temporal
reconstruction in Eq.(26).

As a remark, the Adams-Moulton scheme which is one of the implicit linear multistep methods also use
the direct integration approach. However, it relies on the reconstruction of R(t) to make the numerical
quadrature similar to the right-hand side of Eq.(25) computable. For the third order scheme, quadratic
reconstruction in terms of Rn+1,Rn,Rn−1 is used. It is well known that the high-order Adams-Moulton
schemes have rather poor stability property. The present DITR scheme reconstructs U rather than R.
According to Eq.(26), more information can be used in the reconstruction, making the present method
more compact and flexible. The present approach can achieve high-order of accuracy and better stability
property when the reconstruction is designed properly.

If the quadrature rule in direct integration is replaced with midpoint rule, and the temporal recon-
struction uses linear reconstruction, the implicit midpoint method for ODE can be derived, which is 2nd
order accurate. A high order accurate DITR method could only be obtained with a high order accurate
quadrature rule and high degree temporal reconstruction.

Assuming the quadrature rule has algebraic precision of degree m, and the polynomial interpolation
is of degree n, a straightforward analysis on local truncation error could be conducted. Approximation
(24) yields a truncation error of O((∆t)m+2) expressed in equation (27)

U
n+1 −U

n
=

∫ tn+1

tn
R(t,U)dt

=∆tn
[
b1R(tn,U(tn)) + b2R(tn+c2 ,U(tn+c2)) + b3R(tn+1,U(tn+1))

]
+O((∆tn)m+2)

(27)

due to the precision degree of quadrature rule. Approximation Eq.(26) has a truncation error of

7



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

O((∆t)n+1) expressed in Eq.(28)

U(tn+c2) = An
0 (t

n+c2)U
n−1

+An
1 (t

n+c2)U
n
+An

2 (t
n+c2)U

n+1

+∆tnDn
0 (t

n+c2)Rn−1 +∆tnDn
1 (t

n+c2)Rn +∆tnDn
2 (t

n+c2)Rn+1

+O((∆tn)n+1)

(28)

as a result of polynomial degree. Substituting Eq.(28) into the tn+c2 stage of Eq.(27), the truncation
error of the entire scheme becomes O((∆t)n+2) +O((∆t)m+2):

U
n+1

=U
n
+∆tn

[
b1R(tn,U

n
) + b2R(tn+c2 ,U

n+c2
+O((∆tn)n+1)) + b3R(tn+1,U

n+1
)
]

+O((∆tn)m+2)

=U
n
+∆tn

[
b1R(tn,U

n
) + b2R(tn+c2 ,U

n+c2
) + b3R(tn+1,U

n+1
)
]

+O((∆tn)m+2 +O((∆tn)n+2))

(29)

where U
n+1

,U
n

are step values assumed to be accurate here, and U
n+c2 is the approximate c2 stage

value determined by the temporal reconstruction. Equation (29) assumes R(t,U) to be sufficiently
regular and therefore does not change the order of error. Therefore, for smooth problems the order of
accuracy of a DITR method is theoretically min(m,n) + 1.

The following sections will illustrate some practical DITR methods based on equations (24) and (26).

3.2 Variants of DITR methods
3.2.1 The DITR U2R2 method

To make the method single-step and 4th order accurate, we choose U
n
,U

n+1
, Rn,Rn+1 as the in-

terpolation conditions, making the interpolation basically cubic Hermite interpolation. Therefore, the
interpolation of U(tn+c2) is:

U
n+c2

= a1,U2R2U
n
+ a2,U2R2U

n+1

+∆tnd1,U2R2R
n +∆tnd2,U2R2R

n+1
(30)

with U
n+c2 being the numerical approximation of U(tn+c2) and the interpolation bases at c2 node being:

a1,U2R2 = 1− (3c2
2 − 2c2

3),

a2,U2R2 = 3c2
2 − 2c2

3,

d1,U2R2 = c2 − 2c2
2 + c2

3,

d2,U2R2 = −c2
2 + c2

3.

(31)

The temporal reconstruction of Eq.(30) combined with direct integration equation (24) forms the
DITR U2R2 method. Here U2R2 denotes 2 U and 2 R step values at n, n+1 used in the reconstruction.
Following analyses indicate that using the most recent U and R will yield a scheme with better stability.
Therefore, the current paper does not include the time step indices in the naming of DITR methods.
This naming convention is continued in the following methods.

When c2 = 1/2, quadrature rule in equation (24) has precision of degree 3, making the DITR U2R2
method 4th order accurate, and the stage value U

n+c2 has a precision of degree 3. When c2 ̸= 1/2,
DITR U2R2 becomes 3rd order accurate.

In order to further examine the accuracy order, equations (31), (24) can be reformulated into a
standard IRK method, yielding a Butcher tableau shown in Table 1.

0 0 0 0
c2 d1 + a2b1 a2b2 d2 + a2b3
1 b1 b2 b3

b1 b2 b3

Table 1: Butcher tableau of DITR U2R2
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According to table 1 with the coefficients determined by (31) and (25), one can find that the 4th
order accurate DITR U2R2 method with c2 = 1/2 is actually the Lobatto IIIA method of order 4 [39].
The classic order and stage order of DITR U2R2 could also be verified using Table 1 via the simplifying
assumptions, which is a trivial procedure given the formulae provided in [39].

Following standard analysis based on Dahlquist’s equation dy
dt = λy [39], the stability function giving

by y1 = R(hλ)y0 applied to DITR U2R2 is in the form:

RU2R2(z) = −4 z − 2 c2 z − c2 z
2 + z2 + 6

2 z + 2 c2 z − c2 z2 − 6
(32)

which becomes the (2,2)-Padé approximation when c2 = 1/2 and DITR U2R2 becomes Lobatto IIIA.
Analysis on equation (32) would show that c2 ∈ [1/2, 1) is a sufficient and necessary condition of DITR
U2R2 being A-stable given c2 ∈ (0, 1). The limit at infinity

lim
z→∞

RU2R2(z) =
1− c2
c2

(33)

confirm that DITR U2R2 is unable to achieve L-stability by adjusting c2.
DITR U2R2 (c2 = 1/2) or Lobatto IIIA method is symmetric, which is a preferable property when

integrating reversible systems including orbital motion and particle systems. However, the symmetry in
this ODE method could be considered harmful in CFD application. Most CFD systems of interest are
physically dissipative, while for a symmetric method R(z) → 1 when z → ∞, which means the method is
more likely to preserve spurious modes arising from spatial discretization. Although DITR U2R2 cannot
achieve L-stability, using a value of c2 > 1/2 would still produce limz→∞ R(z) ∈ (0, 1), which would be a
useful property in the simulation of dissipative systems. With c2 > 1/2, stiff modes could vanish faster
over the time steps, while c2 = 1/2 tends to preserve them.

3.2.2 The DITR U2R1 method

Giving up one interpolation condition in DITR U2R2 forces the scheme to have 3rd order accuracy. The
current paper removes Rn from U2R2, namely using U

n
,U

n+1
, Rn+1 for interpolation, which is able to

produce an L-stable DITR scheme.
Similar with U2R2, DITR U2R1 has the interpolation written as:

U
n+c2

= a1,U2R1U
n
+ a2,U2R1U

n+1

+∆tnd2,U2R1R
n+1

(34)

with U
n+c2 being the numerical approximation of U(tn+c2) and the interpolation bases at c2 node being:

a1,U2R1 = 1− (2c2 − c2
2),

a2,U2R1 = 2c2 − c2
2,

d2,U2R1 = c2
2 − c2.

(35)

The temporal reconstruction equation (34) combined with direct integration equation (24) forms the
DITR U2R1 method.

The interpolation bases shown in (35) are quadratic. Therefore, the scheme yields 3rd order accuracy
and the choice of c2 does not affect the order of accuracy. Similar to U2R2, DITR U2R1’s order of
accuracy can be examined using standard procedures for Runge-Kutta methods[39].

The linear stability function for DITR U2R1 is

RU2R1(z) =
2 z + 6

z2 − 4 z + 6
, (36)

which is (1,2)-Padé approximation and not affected by c2. It can be found |RU2R1(z)| < 1,∀Re(z) < 0,
and obviously limz→∞ RU2R1(z) = 0. Therefore, DITR U2R1 method is L-stable.

The stability function also shows that when R is a linear function of U, the solution is not affected
by c2. However, for nonlinear R, c2 changes the behavior of U2R1.
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3.2.3 The DITR U3R1 method

To exploit the information when multiple previous steps are available, using conditions from tn−1 would
be preferable. The current paper chooses U

n−1
,U

n
, U

n+1
and Rn+1 as U3R1’s interpolation conditions,

as other choices do not produce sufficient linear stability. The interpolation at c2 node becomes:

U
n+c2

= a0,U3R1U
n
+ a1,U3R1U

n
+ a2,U3R1U

n+1

+∆tnd2,U3R1R
n+1

(37)

with U
n+c2 being the numerical approximation of U(tn+c2) and the interpolation bases at c2 node being:

a0,U3R1 = −c2 (c2 − 1)
2

Θ(Θ + 1)
2 ,

a1,U3R1 =
(Θ + c2) (c2 − 1)

2

Θ
,

a2,U3R1 =
c2
(
−Θ2 c2 + 2Θ2 −Θ c2

2 + 3Θ− 2 c2
2 + 3 c2

)
(Θ + 1)

2 ,

d2,U3R1 =
c2 (Θ + c2) (c2 − 1)

Θ + 1
.

(38)

where Θ = ∆tn−1/∆tn.
The temporal reconstruction equation (37) combined with direct integration equation (24) forms the

DITR U3R1 method.
The method is 4th order when c2 = 1/2, when both the interpolation and integration has precision

of degree 3. For the special case of c2 = 1/2, simplified coefficients are given:

a0,U3R1 = − 1

8Θ (Θ + 1)
2 ,

a1,U3R1 =
Θ+ 1

2

4Θ
,

a2,U3R1 =
6Θ2 + 11Θ + 4

8 (Θ + 1)
2 ,

d2,U3R1 = −
Θ+ 1

2

4 (Θ + 1)
.

(39)

Linear stability is analyzed when Θ = 1 and c2 = 1/2. The solution to the test problem produces
two solutions: (

R
(1)
U3R1(z)

R
(2)
U3R1(z)

)
=

(
10 z−

√
−6 z3+129 z2+432 z+576+24

6 z2−29 z+48
10 z+

√
−6 z3+129 z2+432 z+576+24

6 z2−29 z+48

)
. (40)

It is obvious R
(1)
U3R1(z) → 0, R

(2)
U3R1(z) → 0 when z → ∞. When observed numerically, it is found both

|R(1)
U3R1(z)| and |R(2)

U3R1(z)| are less than 1 in the left half plane of z. The current paper therefore believes
the DITR U3R1 method is indeed L-stable. Note that DITR U3R1 is not a linear multistep method, and
the root locus curve analysis used in those methods can not be directly applied here. To the author’s
knowledge, no such implicit time marching method has been reported in the literature.

With 4th order accuracy and observed L-stability, the DITR U3R1 method is potentially more fa-
vorable than U2R2 and U2R1.

3.2.4 Summary of DITR methods

The U2R2, U2R1 and U3R1 variants of the DITR method can be written is a unified form. The first
equation is the direct integration:

U
n+1

= U
n
+∆tn

(
b1R

n + b2R
n+c2 + b3R

n+1
)

(41)
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with weights decided by (25), and also listed Table 2. For simplicity, in numerical expressions, notations
such as Rn+c2 = R(tn+c2 ,U

n+c2
) are used from now on.

b1 b2 b3
1
2 − 1

6c2
1

6c2(1−c2)
1
2 − 1

6(1−c2)

Table 2: Butcher tableau of DITR U2R2

The second equation is the temporal reconstruction:

U
n+c2

= an0U
n−1

+ an1U
n
+ an2U

n+1
+∆tn

(
dn1R

n + dn2R
n+1
)

(42)

where the coefficients vary in different schemes according to Table 3. The time step ratio for the two-step
U3R1 method is Θ = ∆tn−1/∆tn.

DITR Method U2R2 U2R1 U3R1

an0 0 0 − c2 (c2−1)2

Θ (Θ+1)2

an1 1− (3c22 − 2c23) 1− (2c2 − c22)
(Θ+c2) (c2−1)2

Θ

an2 3c22 − 2c23 2c2 − c22
c2 (−Θ2 c2+2Θ2−Θ c2

2+3Θ−2 c2
2+3 c2)

(Θ+1)2

dn1 c2 − 2c22 + c23 0 0
dn2 −c22 + c23 c22 − c2

c2 (Θ+c2) (c2−1)
Θ+1

Table 3: Interpolation coefficients for different DITR methods

In practice, the current research chooses c2 = 0.5, 0.55 for U2R2. U2R2 c2 = 0.5 has optimal order
of accuracy (4th order), but it is symmetric. U2R2 c2 = 0.55 is 3rd order accurate but breaks symmetry
and gains some stability.

For U2R1, c2 does not affect order of accuracy and stability. We empirically choose c2 = 0.25 for
U2R1, the reason roots in the convergence of solving PDEs using dual time stepping .

For U3R1, since any c2 gives L-stability, so c2 = 0.5 which offers optimal 4th order of accuracy is
always used.

3.3 Iteration method for solving DITR
In practice, the implicit equations Eq.(41) and Eq.(42) are solved iteratively. In order to utilize the
matrix-free linear solvers implemented for BDF and ESDIRK methods, the current section will introduce
a iteration method. The equations are reformulated into[

Fn+c2

Fn+1

]
= 0 (43)

where [
Fn+c2

Fn+1

]
= P

[
Gn+c2

Gn+1

]
= P

[
an
0 U

n−1
+an

1 U
n
+an

2 U
n+1−U

n+c2

∆tn + dn1R
n + dn2R

n+1

U
n−U

n+1

∆tn + b1R
n + b2R

n+c2 + b3R
n+1

]
(44)

where G are the un-preconditioned residual functions and P is a preconditioning matrix:

P =

[
P11I P12I
P21I P22I

]
(45)

where Pij entries are scalar real values. Using the dual time stepping technique [41], and a linearized
backward euler method for updating [42], the current paper proposes a iteration process with two sub-
steps in each iteration:(

I

∆τ
− ∂Fn+c2(U

n+c2
,U

n+1
)

∂U
n+c2

)
∆U

n+c2,m
= Fn+c2(U

n+c2,m
,U

n+1,m
)(

I

∆τ
− ∂Fn+1(U

n+c2
,U

n+1
)

∂U
n+1

)
∆U

n+1,m
= Fn+1(U

n+c2,m+1
,U

n+1,m
)

(46)
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where ∆U
n+c2,m

= U
n+c2,m+1 −U

n+c2,m and ∆U
n+1,m

= U
n+1,m+1 −U

n+1,m
. In the first updating

formula in Eq.(46), U
n+1

is considered static and the linearizing is only performed on U
n+c2 . The second

updating formula then makes U
n+c2 static, and performs linearizing on U

n+1
only. Note that the right

side F functions and Jacobian terms ∂F
∂U

always uses the latest versions of U
n+c2 and U

n+1
. Both U

n+c2

and U
n+1

are updated immediately after each increment values are obtained. The linear systems are in
the same form of those in BDF and ESDIRK methods, and they can be solved using matrix-free linear
solvers like LU-SGS solvers.

The current paper chooses preconditioning to be

P =

[
I βI
0 I

]
(47)

and β values are chosen for each DITR method. For U2R2 c = 0.5, we empirically choose β = 1. For
U2R2 c = 0.55, we empirically choose β = 1.333. For U2R2 c = 0.25, we empirically choose β = 1. For
U3R1, we empirically use β = 1.333 for all Θ.

4 Numerical tests
During numerical tests, BDF2 and ESDIRK4 methods taken from [29, 31] are chosen to be baseline time
marching methods. For DITR methods, instances of U2R2 c2 = 0.5, U2R2 c2 = 0.55, U2R1 and U3R1
are tested.

The isentropic vortex, two dimensional vortex shedding and double Mach reflection problems use P 3

variational reconstruction finite volume method declared in section 2 as spatial discretization. Iterative
solution of the implicit reconstruction is conducted before each right-hand-side evaluation, which consists
of 1 block-Jacobi iteration by default. Pseudo time iteration on mean values are solved using 5 times
of block-Jacobi iteration by default, which is found both stable and efficient enough for VFV solving
transient problems. The inviscid numerical flux for the isentropic vortex and vortex shedding problems
are approximate Riemann solvers of Roe [43]. For the double Mach reflection problem, the local Lax-
Friedrichs flux is used.

4.1 Isentropic vortex
The isentropic vortex problem is a classic accuracy testing problem for Euler equations. The settings
can be found in [22]. The free-stream flow is (ρ, u, v, p) = (1, 1, 1, 1), and a perturbation at initial time:

(δu, δv) = ϵ
2π exp

(
1−[(x−xc)

2+(y−yc)
2]

2

)
(−y + yc, x− xc)

δT = − (γ−1)ϵ2

8γπ2 exp
(
1− [(x− xc)

2 + (y − yc)
2]
)

δS = 0

(48)

with ideal gas setting of T = p/ρ, S = p/ργ , γ = 1.4. Initial vortex center is chosen (xc, yc) = (5, 5), and
vortex strength is ϵ = 5. The analytic solution to the isentropic vortex problem is a translation of initial
field with speed (1, 1). The computational domain is [0, 10]× [0, 10], using periodic boundary conditions.

First, the implicit ODE integrators are tested with aggressively large time steps. The mesh is 40×40
square grid, and solution is calculated until t = 10 with ∆t = 1. The CFL number based on ∆t,∆x is
roughly 11, making the propagation of the vortex hard to simulate.

Results of large time step testing are shown in figure 1. Clearly, from figure 1f, BDF2 almost
completely smears the initial vortex with only 10 steps for one period. The higher order methods
somehow preserve the characteristics of a vortex. DITR U2R2 c2 = 0.5 produces significant numerical
oscillation along the propagation direction as shown in figure 1a, while the DITR U2R2 c2 = 0.55
inhibits them better in figure 1b. The peak value in the vortex center produced by DITR U2R2 c2 = 0.5
is comparable with ESDIRK4, while DITR U2R2 c2 = 0.55 gives a flatter density peak. Both U2R1
and U3R1 methods are L-stable like ESDIRK4, and they are indeed better at suppressing non-physical
oscillations. Note that it seems ESDIRK4 outperforms all the DITR methods in this case, but DITR
only needs 2 internal stages to be solved while ESDIRK4 needs 5.

Next, precision and efficiency of different ODE methods are qualitatively evaluated with isentropic
vortex solved on a 160× 160 grid until t = 2. The fine mesh makes spatial discretization error negligible
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(a) DITR U2R2 c2 = 0.5 (b) DITR U2R2 c2 = 0.55 (c) DITR U2R1

(d) DITR U3R1 (e) ESDIRK4 (f) BDF2

Figure 1: Density of isentropic vortex problem, with aggressively large time step ∆t = 1 at t = 10

compared with time marching error. The density error is defined as an L1 norm in the form of

ϵρ =

∫
|ρ− ρa|dxdy

100
(49)

with ρ the numeric result of density and ρa the analytic result.
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(a) Density error vs. time step size
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(b) Density error vs. total CPU time consumption

Figure 2: Convergence and efficiency test with isentropic vortex problem

Results of convergence and efficiency study with isentropic vortex is shown in figure 2.
Figure 2a shows that with the same time step size, ESDIRK4 has the best accuracy, while DITR

U2R2 c2 = 0.5 is close to ESDIRK4 when time step is refined. DITR U2R2 c2 = 0.55 is less accurate
than DITR U2R2 c2 = 0.5, but it performs almost as well as DITR U2R2 c2 = 0.5 when time step is
large. DITR U3R1 and U2R1 are less accurate than U2R2 methods with the same time step.

As of order of error, in Figure 2a, error of ESDIRK4 is barely able to reach 4th order of convergence,
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while DITR U2R2 c2 = 0.5 and U3R1 methods are also able to reach 4th order convergence with smaller
time steps. U2R1 and U2R2 c2 = 0.55 methods are closer to the 3rd order slope, which conforms with
their theoretical order.

Figure 2b implies that when consuming the same computational resource, DITR U2R2 methods have
the best accuracy and efficiency. All the high-order time marching methods have better efficiency than
BDF2, while DITR U2R2 methods have better efficiency than ESDIRK4. The symmetric DITR U2R2
c2 = 0.5 has better efficiency compared with more stable DITR U2R2 c2 = 0.55.

4.2 Two dimensional vortex shedding
Vortex shedding from a circular cylinder and forming a vortex street is a classic test problem for transient
fluid simulation. Due to the refined mesh near solid wall, such cases usually prefer implicit time marching
over explicit ones whose time steps are bounded by CFL condition. The current paper studies the 2D
laminar case, where Reynolds number Red = ρ∞u∞d/µ∞ is 1200, with Mach number being Ma = 0.1.
Parameters are normalized so that freestream speed, density and diameter of the cylinder are unit values.
Small Mach number makes the flow more incompressible, and the speed of sound makes time steps in
explicit time marching restricted. Implicit time marching schemes can automatically omit the restrictions
of the speed of sound, thus being potentially more favorable.

(a) Mesh (b) Vorticity distribution

Figure 3: Mesh and a instance of z-vorticity distribution in Re = 1200 vortex shedding problem

Figure 3a demonstrates the unstructured grid used in the Re = 1200 vortex street calculation, and
Figure 3b demonstrates z-vorticity distribution in the 2-D vortex street after it is fully developed.

In order to quantitatively compare different time marching schemes, the time marching error is
compared. Using the same mesh as in Figure 3a and the same compact FV spatial discretization, a
numeric reference solution is calculated with ESDIRK4 using very fine time step ∆t = 0.00125. In the
reference solution, restart information at t = 200 is stored, in which the vortex street has fully developed.
Next, starting from the t = 200 flow field, combined with different time marching schemes and time step
sizes varying from 0.04 to 0.1, transient flow is simulated until t = 210. CPU consumption and error
values are evaluated. The transient errors are defined with

∥ϵMy∥2t,2 =
1

Nt

Nt∑
i=1

(My,i −My,ref (ti))
2

∥ϵMx∥2t,2 =
1

Nt

Nt∑
i=1

(Mx,i −Mx,ref (ti))
2

(50)

where Nt is the number of time steps for t ∈ (200, 210], ti is the time on time steps, and My,i and Mx,i
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are the norms of time derivatives of y and x momentum:

My =

∫
Ω

∣∣∣∣∂ρuy

∂t

∣∣∣∣ dΩ, Mx =

∫
Ω

∣∣∣∣∂ρux

∂t

∣∣∣∣dΩ (51)

Meanwhile, My,ref (ti) and Mx,ref (ti) are those values obtained in the reference solution.
This manner of calculating transient error avoids the difficulty of preserving all the transient solutions

at each time step of the very fine reference solution. As the reference solution uses significantly smaller
time step, its temporal error is considered to be negligible. In other words, the reference solution is a
good enough approximation of the exact solution of the semi-discretized FV equations Eq.(8). Compared
with the reference solution, the solution using regular time steps induces major temporal discretization
error, which can be illustrated with the errors constructed in Eq.(50).

In order to mitigate the influence of the error induced by implicit dual time stepping in each step,
each dual time stepping are terminated after the residual is smaller than 10−7 of the starting value.
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Figure 4: Convergence and efficiency analysis with ϵMy in Re = 1200 vortex shedding problem
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Figure 5: Convergence and efficiency analysis with ϵMx in Re = 1200 vortex shedding problem

Results of the errors versus time step size and CPU time are illustrated in Figure 4 and 5. Figure
4a and 5a illustrates the results of convergence analysis, where with the refinement of time step, the
temporal discretization error is reduced. The ESDIRK4, DITR U2R2 c2 = 0.5, DITR U3R1 methods
approximately 4th order convergence in Figure 4a and 5a, while U2R1 and U2R2 c2 = 0.55 are 3rd order.
BDF2 is indeed 2nd order accurate, and is only able to be comparable with high-order methods when
∆t is very small. Among the DITR methods, U2R2 c2 = 0.5 has the smallest error. U3R1 and U2R2
c2 = 0.55 are close but U3R1 has higher order of convergence. Although better than BDF2, U2R1 has
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the worst error of vortex street simulation among DITR methods.
Figure 4b and 5b use CPU Time as the horizontal axis, therefore comparison of efficiency is illustrated.

In Figure 4b and 5b, in order to achieve an error with magnitude of 10−3, the high-order methods are
significantly more economic than the 2nd order BDF2. Among the high order methods, DITR U2R2
c2 = 0.55 is close to ESDIRK4 in efficiency, while U2R2 c2 = 0.5 and U3R1 are more efficient than
ESDIRK4. The most efficient U2R2 c2 = 0.5 takes less than 70% of the time used in ESDIRK4 when
the error is 10−4.

4.3 Double Mach reflection
The double Mach reflection problem [44] is tested to compare the resolution capabilities of different time
marching schemes. The double Mach reflection computes inviscid ideal gas in [0, 4]× [0, 1], initialized by
a Ma 10 moving shock located at x = 1/6 + cot(60◦)y. The boundary of y = 0, x ∈ [1/6, 4] is inviscid
wall, and all other boundaries conforms with the Ma 10 moving shock. Details about the initial and
boundary settings may be found in [44]. The compact FV scheme is additionally equipped with an
accuracy preserving CWBAP limiter [45], which grants the ability to capture spatial discontinuities. To
handle strong discontinuities, the local Lax-Friedrichs flux is used here. The computations are conducted
on a uniform quadrilateral mesh with mesh size h = 1/480. Physical time step is set to a relatively large
∆t = 2× 10−4, and the solutions at t = 0.25 are compared.

(a) DITR U2R2 c2 = 0.5 (b) DITR U2R2 c2 = 0.55

Figure 6: Density in double Mach reflection problem, DITR U2R2

Figure 6, 7 and 8 illustrate a zoomed view of density distribution. From Figure 8, it is observed
BDF2 produces a deformed Mach stem, which, according to further tests, can be corrected by using
smaller ∆t. Using the same ∆t = 2 × 10−4, all high-order methods produce a normal Mach stem.
Meanwhile, the second order BDF2 completely smears the K-H instability in the shear layer, despite
that the spatial discretization is 4th order accurate. All high-order time march methods methods can
successfully simulate K-H instability and resolve the small structures induced. The results of DITR U2R2
c2 = 0.5, U2R2 c2 = 0.55 and U3R1 are very similar with ESDIRK4, while U2R1 appears to produce
less vortices in the shear layer.

Like the results from isentropic vortex and vortex shedding simulation, using the same time step,
DITR methods use less time than ESDIRK4 due to the reduction of stage numbers. The U2R2 c2 = 0.5
method consumes around 63% of ESDIRK4’s time, and U3R1 uses 79%.

5 Conclusion
The current paper has described a method of developing time marching schemes using a direct integra-
tion and a temporal reconstruction. Using one form of quadrature rule and several forms of temporal
reconstruction, a series of specific DITR methods are discovered and analyzed. The DITR U2R2 method
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(a) DITR U2R1 (b) DITR U3R1

Figure 7: Density in double Mach reflection problem, DITR U2R1 and U3R1

(a) ESDIRK4 (b) BDF2

Figure 8: Density in double Mach reflection problem, baseline methods
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is A-stable, and with c2 = 0.5, U2R2 is 4th order accurate. The DITR U2R1 method is L-stable with
3rd order accuracy, and the DITR U3R1 method is L-stable with 4th order accuracy.

After analyzing the results of numerical tests, it is confirmed all the DITR methods can exhibit their
theoretical order of accuracy. With the same time step, DITR methods are much more accurate than
BDF2 and comparable with ESDIRK4. Due to having only 2 stages, DITR methods takes less time than
ESDIRK4 each step. When reaching the same accuracy, some DITR methods are distinctively faster
than ESDIRK4. In summary, the DITR methods are steady implicit time marching methods that are
easy to implement and more efficient.
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