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1 Introduction
The present study demonstrates a strategy for formulating the model equations for sediment-related
gravity-driven mass flows moving in rugged mountainous areas. Given that these hazardous flows are
typically thin compared to their lateral extension, and considering the extensive computational domain,
numerical simulations often rely on models with depth-integrated governing equations to achieve high
computational efficiency. Therefore, the choice of coordinate system becomes crucial for providing an
appropriate description. Many models for simulating these hazardous flows are presented in Cartesian
coordinates due to the ease of mathematical formulation and the associate numerical implementation.
However, there are several intrinsic shortcomings when simulating these hazardous flows using depth-
averaged model equations given in Cartesian coordinates, e.g., (cf. Fig. 1)

• Ambiguous definition of flow thickness: counted in vertical or normal direction?

• Deviated velocity direction for deep slopes;

• Once the erosion/deposition rate is velocity-dependent, the direction deviation would induce in-
correct rate.

As shown in Fig. 1b, for a uniform flow in an inclined channel, the flow depth (hCart) defined in the
vertical-horizontal-oriented Cartesian coordinates Oxy differs from the one (hTH) defined in the terrain-
following coordinates O⇠⇣ . Despite the difference in depth definition, the volume of a flow with length
L remains unchanged. However, the gravity-driven acceleration reads ax = g tan ✓ (with g as the gravi-
tational acceleration) in Oxy, while it is a⇠ = g sin ✓ in O⇠⇣ . Consequently, the projection of a⇠ onto the
horizontal x-axis is a⇠,x = g sin ✓ cos ✓. Hence, we have a⇠,x = ax(cos ✓)2, indicating that a higher ac-
celeration exists in Cartesian coordinates at deep slopes. The discrepancy becomes significant when the
slope is deep (e.g., with respect to a slope of 1/3.735 = tan 15�, the discrepancy would be approximately
7.2%.). So, when using the Cartesian coordinate system, a gradual variation in topography should be a
prerequisite condition for more accurate computation.

On the other hand, the terrain-fitted coordinate system [1, 2, 3] may address these shortcomings,
but its applicability is limited by the shallow curvature of the topography. As suggested in [4], we
propose a smoothed-terrain-following coordinate system in which the coordinates are adjusted to follow

Figure 1: (a) Coordinate system Oxz and O⇠⇣ , where significant deviation for the velocity direction can
be found at deep slopes. (b) A uniform flow along a inclined channel infinitely long.
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Figure 2: (a) Coordinate systems Oxyz and O⇠⌘⇣ , where the position vector of a point above the smoothed-
reference topographic surface is denoted by its distance and the associated projection on the surface,
r = rb + dn n. (b) The sub-topography, ⇣b, is added on the smoothed (coordinate) surface to account
for the variation of the local topography.

the smoothed basal surface. A “sub-topography” is placed on the smoothed surface to replicate the high-
resolution elevation provided in the digital elevation map (DEM) or when erosion/deposition occurs.
In addition to the presentation of the model equations, various numerical examples will be illustrated
to demonstrate the superior key features of the present proposal. The CUDA-GPU techniques are
employed in the numerical implementation (coding) for a high-performance computation, and a 3D user-
interactive illustration platform (ANSI-Platform) has been developed for scenario investigation as an
efficient powerful tool for hazard assessment, risk analysis, or evaluating the planned disaster mitigation
countermeasures.

2 Model equations in a smoothed-terrain-following coordinate
system

2.1 Smoothed-terrain-following coordinate system
In the modern Geographic Information System (GIS) system, the topography is represented by the digital
elevation model (DEM), which is a set of altitudes of terrain locations over a horizontal regular grid. The
DEM therefore fits a vertical-horizontal-oriented Cartesian coordinates Oxyz, where the x- and y-axis
coincide with horizontal grids and the z-direction points upwards for the elevation.

Assuming the DEM-defined topography to be a smooth surface, a terrain-fitted coordinate system
O⇠⌘⇣ can be introduced [1, 2], where the projections of ⇠-axis and ⌘-axis on the horizontal plane coincide
with x-axis and y-axis, respectively (see Fig. 2a). Letting ⌦b be the transformation matrix for points
at the topographic surface, and ⌧ ⇠, ⌧ ⌘ and ⌧ ⇣ , denote the corresponding basis vectors, the unit normal
vector can be determined by

n = g⇣ =
⌧ ⇠ ⇥ ⌧ ⌘

||⌧ ⇠ ⇥ ⌧ ⌘||
= nxêx + nyêy + nzêz , (1)

where êx, êy and êz are the basis vectors of Oxyz. For a point above the topographic surface with
a distance dn, its position vector r can be decomposed by the projection vector of the point on the
topographic surface rb and the distance dn to the basal surface, i.e.,

r = rb + dn n , (2)

see Fig. 2a. The expression (2) is not applicable always. The point is uniquely defined by (2), only when
the distance dn is less than the local curvature radius.

Despite adopting the assumption of shallow flow, the flow thickness may exceed the local curvature
radius, thereby violating the unique description of (2). As a compromise, we propose to define the terrain-
following coordinates on a smoothed reference surface with respect to a highly rugged topography. That
is, the topographic elevation can be smoothed by some smoothing filter, e.g., the 3⇥ 3 or 5⇥ 5 Gaussian
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filter, with which the smoothing process can be performed for several times to meet the shallow curvature
requirement. Following [4], we applied the 3⇥ 3 smoothing filter,

z
smoothed

b,(i,j) = 0.0751 zbi�1,j+1
+ 0.1238 zbi,j+1

+ 0.0751 zbi+1,j+1
+

0.1238 zbi�1,j + 0.2044 zbi,j. + 0.1238 zbi+1,j +

0.0751 zbi�1,j�1
+ 0.1238 zbi,j�1

+ 0.0751 zbi+1,j�1
,

(3)

for data point (i, j) to construct the smoothed reference surface for the terrain-following coordinates.
With this smoothing approach, a “sub-topography”, ⇣b, is introduced to overlay the smoothed topographic
surface and replicate the topography defined by the DEM, see Fig. 2b. It should be noted that the sub-
topography ⇣b is accounted for along the normal direction defined on the smoothed reference basal surface.
Meanwhile, 4zb, denoting the elevation difference in the smoothing process, is calculated vertically.
Hence, ⇣b is determined by the elevation difference 4zb and the mesh sizes (4x and 4⇠) in the two
coordinate systems,

⇣b = 4zb 4x/4⇠ , (4)

for ensuring the mass conservation within the mesh 4x, cf. Fig. 2b. It is noted that the magnitude of
⇣b varies when erosion or deposition takes place.

2.2 Two-phase model over erodible surface for debris flows
In the present study, we employ a two-phase model over erodible surface proposed by Wong et al., [5]
to investigate the proposed approach of smoothed-terrain-following coordinate. The flow body and the
ground are supposed to be composed by two constituents, the grain particles and the viscous interstitial
fluid. The local basal surface (sub-topography over the smoothed basal reference surface) evolves in
accordance with the local erosion (volume) rate as

@⇣b

@t
=

E
s

�s

b

=
E
f

�f

b

. (5)

In (5), Es and E
f represent the erosion (volume) rates for the solid and fluid phase, respectively, and �

s,f
b

with �
s

b
+ �

f

b
= 1 denote the porosities of the erodible bed. Here, �s

b
+ �

f

b
= 1 means that the entrained

or deposited material is fully saturated during the process.
The model equations are identical to the ones in Wong et al., [5] and given in dimensionless form,

where a characteristic length L of the flow body along the smoothed reference basal surface is introduced
with a respective characteristic flow thickness H. In deriving the resultant model equations, a small
aspect ratio ✏ = H/L ⌧ 1 is utilized to isolate the physically insignificant terms. The resultant mass
balance equations for the solid and fluid phases read

@

@t
(Jbh

s) +
@

@⇠
(Jbh

s
v
s

⇠) +
@

@⌘
(Jbh

s
v
s

⌘) = ✏JbE
s (6)
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, (7)

respectively, where Jb = det(⌦b), hs = h�
s and h

f = h�
f with h representing the total flow thickness,

(�s
,�

f) and (v⇠, v⌘) denote the depth-averaged volume concentrations and the tangential components of
the depth-averaged velocity in the terrain-following coordinate system, respectively.

As given in [5], the depth-averaged, leading-order momentum equations read
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of the solid phase, and
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(11)

for the fluid phase.
In (8) – (11), (vx, vy) are the projected components of the tangential velocity (v⇠, v⌘) on the horizontal

xy-plane. Since only the tangential velocity is considered (i.e., v⇣ ⇡ 0), they are related by

vx = ⌦11v⇠ + ⌦12v⌘ , vy = ⌦21v⇠ + ⌦22v⌘ , vz = ⌦31v⇠ + ⌦32v⌘ ,

and
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where we note @⇠(·) = @(·)/@⇠ and @⌘(·) = @(·)/@⌘, and ↵⇢ (equal to ⇢
s
/⇢

f) stands for the density ratio
of flowing body. Notations F
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y represent the drags due to the velocity difference between the
two phases,
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with cD the drag (between the constituents) coefficient. For the fluid phase,
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account for the viscous effects, where NR = ⇢
f
H
p
gL/µ

f with µ
f the fluid viscosity and g the gravitational

acceleration (cf. [3]).
On the right-hand side of (8) – (11), terms (i) are the components of the normal pressure at the

bottom, which are caused by the reaction force of gravity; terms (ii) represent the effects caused by
the sub-topography on the smoothed reference surface; terms (iii) indicate the basal drags with �b

being the angle of basal friction of the solid phase; terms (iv) stand for the momentum loss due to
erosion/deposition; and terms (v) denote the basal drags for the fluid phase. Terms (ii) are introduced
to account for the effects caused by the “sub-topography”, where

�1121 = ⌦�1

11
@⇠⇣b + ⌦�1

21
@⌘⇣b and �1222 = ⌦�1

12
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22
@⌘⇣b . (15)

The aspect ratio ✏ in terms (ii) indicates that the topography gradients (with respect to the smoothed
reference surface), @⇠⇣b and @⌘⇣b, should be small (i.e., shallow topography). In terms (iii) and (v),
kvk =

⇥
(vx)2 + (vy)2 + (vz)2

⇤1/2 represents the speed of the solid/fluid constituent. In terms (iii) for the
solid phase, ps
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means the solid pressure at the basal surface, where
the centripetal accelerations of the two constituents,
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are considered (cf. [6, 1, 3]). The terms (v) consist of two parts, the first one refers to the Navier drag
as employed in Tai et al.,[3], and the second part stands for the Manning drag [7], where nM stands for
the Manning coefficient, and ⇧M = H

4/3
/(gL) is a factor for the consistency of dimension.

It is noted that the reference surface becomes a flat plane after smoothing the topography for infinite
times. Consequently, the model equations are transformed into Cartesian coordinates, as elaborated
in [5]. However, a highly rugged topography results in large topography gradients, where the small
aspect ratio ✏ in terms (ii) indicates the necessity for a gradual variation of the topographic surface. The
present approach provides a smoothed reference surface for constructing the coordinate system, while
maintaining the gentle topography gradients.

2.3 Erosion and deposition rates
In Wong et al., [5], the erosion-deposition (volume) rate is suggested to be the sum of the erosion and
deposition rates, i.e.,

E
s = E

s
�D

s
, (16)

where they are determined by
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with ↵E and ↵D the erosion and deposition coefficients, respectively. In (17)1,  ̃ is related to the Shields
parameter suggested in [8],
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Table 1: Parameter values for simulating the debris flow in testing example and Hsiaolin event (HS)
Testing Example Hsiaolin event (HS) Description

✏ = H/L 0.1 m/0.1m 10 m/10 m aspect ratio
↵⇢ = ⇢

f
/⇢

s 1.42/2.60 1.42/2.60 density ratio
x 2[0, 90] m 2[0, 3,700] m computational domain
y 2[-20, 20] m 2[0, 2,210] m computational domain

�x = �y 0.2 m 10 m mesh size
�b 14.2� 14.2� angle of basal friction (solid phase)
#
f

b
5.0 5.0 Navier fluid friction coefficient

cD 6.0 6.0 drag coefficient
µ
f 0.5245Pa · s 0.5245Pa · s viscosity of interstitial fluid

NR 268 268 viscous number
d n.a. 5 (0.5m) sediment median diameter
 ̃th n.a. 0.054 threshold for Shields parameter
ṽlim n.a. 1.6 critical speed for deposit
! n.a. 2.1777 sediment settling speed (dimensionless)
⌃̃th n.a. 0.016 threshold for deposit
�
f

b
n.a. 0.38 porosity of bottom

↵E 0.0 0.00008 erosion coefficient
↵D 0.0 0.04 deposition coefficient
nM 0.03 0.03 Manning’s coefficient
⇧M 0.04736 0.04736 factor for Manning coefficient
CFL 0.1 0.1 CFL number

Here, d represents the sediment (median) diameter, and ⌧
total

b
denotes the resultant basal friction, which

is the sum of the basal drags caused by both constituents. As indicated in (17)1 , no erosion occurs when
 ̃   ̃th. The threshold value  ̃th depends on the mean diameter of the sediments as listed in [9]. In
(17)2, ! means the sediment settling speed and ⌃̃b includes the dependences of the flow speed and the
mean sediment diameter,

! =

"✓
13.95

NR d

◆2

+ 1.09✏d

✓
1� ↵⇢

↵⇢

◆#1/2

�
13.95

NR d
and ⌃̃b =

✓
ṽlim �

kvs
k

p
d

◆
�
s
. (19)

Eq. (19)1 is an empirical formula suggested by [10]. Notation ṽlim in Eq. (19)2 is a critical speed, above
which no deposit takes place, and its value can be determined by means of the Hjulström-Sundborg
diagram (see [11, 12]), and ⌃̃th = 0.01 ṽlim is set in the present study.

3 Numerical examples
The equation system, (6) – (11) and (16) – (17), is implemented based on a CUDA-GPU-accelerated
simulation tool, MoSES_2PDF developed by [13], in which the anti-diffusive, nonoscillatory central
scheme proposed by [14, 15] is employed. To achieve high accuracy in time and space, the two-step
modified Euler (second-order RK) method is adopted, and the Minmod TVD slope limiter is utilized
in cell reconstruction. For time marching, the time interval �t is calculated with a constant Courant-
Friedrichs-Lewy number (CFL= 0.1) at each time step. We refer the readers to [3, 13] for details.

The model equations are derived and given in dimensionless form. We choose H = L = 0.1m
for the transformation between the dimensionless variables and dimensional ones, so that one unit of
dimensionless length is equal to 0.1m and 0.101 s for one dimensionless time unit. The dimensionless
parameters used in the computation and their associated physical quantities are summarized and listed
in Table 1, wherein the following relations have been utilized,

⇣
x, y, z, zb, ⇠, ⌘, ⇣, ⇣b, d

⌘

dim

= L

⇣
x, y, z, zb, ⇠, ⌘, ✏ ⇣, ✏ ⇣b, ✏ d

⌘

non

,

⇣
vx, vy, vz, v⇠, v⌘,!, t

⌘
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=
p
gL

⇣
vx, vy, vz, v⇠, v⌘,!, t/g

⌘

non

,

⇣
↵E , ↵D,  ̃th, ⌃̃b, ⌃̃th

⌘

dim

=
⇣
✏
1/2

↵E , ✏
3/2

↵D,  ̃th, ✏
�1/2⌃̃b, ✏

�1/2⌃̃th

⌘

non

.

(20)
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Figure 3: Chute geometry, smoothed basal surfaces and sectional views after various smoothing processes.

Figure 4: Topography contours and results computed with various smoothing reference surfaces at time
levels t = 0.49, 2.5, 3.50, 6.00 and 7.50 s, where the smoothing number 0, 20, 200 and 2, 000 are
considered. The outline of the bump obstacle on the horizontal plane is marked by the solid cyan line.

3.1 Idealized testing example
We consider a finite mass of grain-fluid mixture released from the state of rest, flowing down an inclined
curved chute and merging into a horizontal deposition zone. The chute consists of three sections: the
inclined section, the transition zone, and the horizontal plane. As shown in Fig. 3a, the inclined section
is curved with a parabolic concave profile in the cross-slope direction, and a bump exits on the horizontal
plane as an additional obstacle. The chute covers x 2 [0, 90]m and y 2 [�20, 20]m, of which the inclined
part lies in the range for x  24m, and the horizontal flat plane ranges from x � 40m. In the transition
zone, the inclination angle linearly decreases from '0 = 40� to zero. In the cross-slope y-direction, the
inclined section, (x  24), is curved with an additional elevation zadd = y

2
/100 cos'(x) on the inclined

flat plane, where the magnitude of zadd linearly decrease to zero when merging into the horizontal plane.
Besides, a parabolic bump with a height of 1m and a radius of 6.0m centered at (50.0, 0.0) is added as
obstacle on the horizontal plane. Figure 3bc show the smoothed reference surface (in orange color) with
200 and 2, 000 times of smoothing process by the filter given in (3). Figure 3ef are the corresponding
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sectional views of the original (black dashed line) and smoothed (orange solid line) basal surface along
y = 0, and Fig. 3d depicts the sectional view for the case of 20 smoothing processes.

The initial mass comprises a parabolic shell, h(x, y, t), with the center of the shell at (x, y) =
(12.0, 0.0). The computational domain covers x 2 [0, 90] and y 2 [�20, 20] with totally 181⇥ 81 meshes.
Figure 4 illustrates the computed results with respect to the coordinate surface constructed by 0, 20,
200 and 2, 000 smoothing processes at time levels t = 0.49, 2.5, 3.50, 6.00 and 7.50 s, where the bump
obstacle on the horizontal plane is outlined by the solid cyan line. Neither erosion nor deposition is
considered in this campaign. The results well demonstrate the impacts of the “sub-topography” over the
smoothed reference surface on the flow behavior. The longest traveling distance and the widest exten-
sion in cross-slope direction are found in the computation with the coordinate surface after a smoothing
process of 2, 000 times. In terms of the distribution of flow thickness, no significant impact can be found
when the number of smoothing process is up to 20 times. Henceforth, the smoothing process of 20 times
is adopted in the application of a large-scale event, to investigate the impacts of the smoothing process
on both the flow paths and erosion/deposition.

Figure 5: The smoothed reference surfaces. (a) Without smoothing process. (b) With process of smooth-
ing 2 times. (c) With process of smoothing 20 times. The 3D imagines are given by the ANSI-Platform,
and the lower pie charts illustrate the corresponding curvatures of the reference surfaces in x- and y-
directions (cf. Table 2).

Table 2: Percentage of curvature radii Rcurv after various smoothing processes (cf. Fig. 5)
without smoothing smoothed ⇥2 smoothed ⇥20

|x| |y| |x| |y| |x| |y|

Rcurv � 1, 000m 12.8% 12.1% 17.4% 15.7% 35.1% 29.6%

1, 000 > Rcurv � 100m 51.8% 49.5% 65.6% 61.2% 62.6% 64.4%

100 > Rcurv � 50m 20.9% 20.9% 12.7% 15.4% 2.3% 5.8%

Rcurv < 50m 14.6% 17.6% 4.3% 7.7% 0.03% 0.19%

3.2 Application to large-scale event
The proposed approach with smoothed-reference surface is applied to simulating the flow behavior in a
historical event, the 2009 Hsiaolin (HS) event, which took place during the Typhoon Morakot in 2009 in
the mountain area in southern Taiwan. In this event there are ca. 2.4 ± 2 Mm3 of displaced material,
and the traveling distance reaches up to 2.8 km. In the simulation, the used DEM and initial released
masses are identical to the ones used in [12], and the DEM is with a resolution of 10 m. Three cases are
considered, that the reference surfaces are smoothed by 0, 2, and 20 times, and they are indexed by “HS-
F00”, “HS-F02”, and “HS-F20”, respectively. Figure 5 shows the 3D views of the reference surface after
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Figure 6: (a) Contour plots of the topography and the released mass in HS case, where the red-line
marked area indicate the location of Hsiaolin village. (b) & (c) Contour plots of the reference surface
with smoothing process of 2 and 20 times, respectively, where the corresponding �zb are shown by color
scales. (d) – (f) Flow thickness computed with reference surface with smoothing process of 0, 2 and 20
times, respectively.

smoothing process of 0, 2, and 20 times, respectively, while the bottom panels present the associated
curvatures in x- and y-directions as percentages. The percentage of high curvatures (x, y > 0.02,
equivalent to a curvature radius less than 50m) significantly reduces from about 17.6% to 7.7% and
0.2% after smoothing of 2 and 20 times, respectively. Figure 6a illustrates the contour plots of the
topography and the released mass in HS case, where the red-line-marked area indicate the location of
Hsiaolin village. The contour plots of the reference surface after smoothing process of 2 and 20 times,
respectively, along with the corresponding elevation difference �zb (shown by color scales), are depicted
in Fig. 6bc. In the panel (b) of Fig. 6, the elevation difference �zb ranges from �30.1 to 17.1 m, just
after two times of smoothing process. With smoothing process of 20 times, �zb increases to be in the
range of [�45.5, 41.6] m. In both panels (b) and (c), the extreme values indicate either the peak locations
(light yellow) or valley areas (dark blue). It is noted that the maximum terrain elevation difference is
more than 1, 010 m.

Panels in columns (d), (e) and (f) of Fig. 6 show the distributions of flow thickness at time levels
50, 180 and 1, 400 s, where the results are computed with respect to the smoothed reference surfaces
by 0, 2, and 20 times, respectively. These results are in good agreement with previous studies, e.g., the
single-phase model in [16, 17], the two-phase approach [3], the simplex multi-phase model [4], and the
two-phase model over erodible bed [5]. Although there are approximately three major flow lines, most of
the material is aggregated in the middle flow branch (main stream as marked in the red dashed square
in Fig. 6d). The results indicate that these reference surfaces do not have significant impacts on the
distributions of the flow body, even the erosion and deposition are taken into account. Together with
the evolutions of the volume of moving mass (see Fig. 7), only tiny discrepancy of the mass amount in
mobility can be found. As shown in Fig. 7, the mass volume reaches the maximal magnitude at about
98 s, reduces to the initial amount at ca. 180 s, while most of the material has deposited at 1, 400 s.
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Figure 7: Evolution of the total volume of the moving mass, with the inset showing a local view around
t = 98 s.

Figure 8: Discrepancies of flow paths computed between different reference surfaces. (a) Smooth (⇥0)
vs Smooth (⇥2). (b) Smooth (⇥0) vs Smooth (⇥20). (b) Smooth (⇥2) vs Smooth (⇥20).

Consequently, as shown in Fig. 8, no significant discrepancy among the flow paths can be identified. It
is noted that in both Figs. 7 and 8, the results of flow thickness less than 0.01 cm are filtered. So, the
discrepancies in the flow paths are tiny. Nonetheless, Fig. 7 reveals the tendency that the smoothed
reference surface may results in a slightly less volume of flow body during the movement, i.e. slightly
weaken the erosion and slightly enhance the deposition.

Some differences can be identified when one examines the depths of the erosion scar or deposition heap.
Figure 9 illustrates the erosion and deposition depths computed with the three reference surfaces. At the
first glance, either the erosion scars or the deposition heaps are rather similar. Significant discrepancies
are found in the Anonymous Creek Valley locating northern from the Hsiaolin village, the square area
marked by red-dashed line. The local views are depicted in Fig. 10. At t = 50 s, the material of the main
stream flows through the Anonymous Creek Valley with high speed, so that the erosion process dominates
at the bottom. The patterns of erosion scar among the three cases are similar. Higher erosion depth is
identified in the case HS-F00 at t = 180 s, where no smoothing process is used for the reference surface.
At this stage, one can find that the smoothing process weakens the erosion. In the period t 2 [180, 1400] s,
the deposition process dominates, and the deposition heap develops from the river bed into the valley.
In both cases of HS-F00 and HS-F02, significant erosion scar is found on the southern slope of the valley
and deposition heap develops on the northern slope. One can find that, in the HS-F20 case, the depth
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Figure 9: Depths of erosion and heights of the deposition heap. (a) Without smoothing process (HS-F00).
(b) With smoothing process of 2 times (HS-F02). (c) With smoothing process of 20 times (HS-F20).

Figure 10: Local views of the red dashed line marked area in Fig. 9. (a) Without smoothing process
(HS-F00). (b) With smoothing process of 2 times (HS-F02). (c) With smoothing process of 20 times
(HS-F20).

of erosion on the souther slope is more gentle in comparison with the ones in HS-F00 or HS-F02, but the
height of the deposition heap on the northern slope covers a slightly larger area. That is, the smoothing
process may slightly weaken the erosion and slightly enhance the deposition. It is suspected that the
sub-topography ⇣b on the smoothed reference surface is computed based on mass conservation with
respect to the elevation difference �zb, yielding a more gentle magnitude for ⇣b (cf. (4)) as well as for
the depths of erosion/deposition heap. The results in Figs. 6 to 10 reveal that no significant discrepancy
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for the flow paths can be identified among the three cases, but the erosion/deposition behaviors may
be distinct. Here we would like to emphasize that the erodible bottom is assumed to be homogenous
and no local geological conditions, such as the bedrock or colluvium, is considered in the computation.
So, the discussion focuses on the impacts of the smoothed reference surfaces on the flow paths and the
erosion-deposion heaps.

4 Concluding remarks
The key advantage of depth-integration process for modeling gravity-driven flows on non-trivial topo-
graphic surfaces is the reduction of computational complexity, where a two-dimensional model equations
are needed for describing the flows over a three-dimensional topography. In the depth-integration ap-
proach, the directions of the depth-averaged velocity are parallel to the coordinate axes, so that the
employed coordinate system plays a crucial role in terms of accuracy. In the present study, we propose
a general approach, which integrates the terrain-following coordinate and the conventional (vertically-
horizontally-oriented) Cartesian coordinate systems for modeling gravity-driven shallow flows over rugged
topographies. The employment of the depth-integration process (for reducing the complexity of compu-
tation) results in the depth-averaged velocities parallel to the coordinate directions. This characteristic
induces high deviation in the direction of the averaged velocity, when the topography added to the co-
ordinate axis/plane is significant, because the flow follows on the basal surface. The terrain-following
coordinate system can mitigate this shortcoming, but it is generally limited by the employment of a
shallow curvature of the topographic surface. In the present approach, the terrain-fitted coordinate
axes are assigned to coincide with a smoothed basal surface, on which a highly rugged landform (called
“sub-topography”) is added for reproducing the pre-smoothed topography. In comparison with the con-
ventional Cartesian coordinate, this approach reduces the deviation of the flow velocity direction, and
the constraint of shallow curvature is fulfilled without losing the precision of the landform. Furthermore,
after performing Gaussian filtering for infinite times, the coordinate axes tend to be straight and compa-
rable to the Cartesian ones. In other words, the proposed approach unifies the terrain-fitted coordinate
system and the Cartesian coordinate one.

In the numerical example of idealized chute, no significant discrepancy is found between the results
computed with the pre-smoothed surface and with smoothing process up to 20 times (see Fig. 4), where
no erosion-deposition is taken into account. In the back-calculation of historical event (2009 Hsaiolin
landslide event in Taiwan) for examining the key features of the present approach, the erosion-deposition
process is taken into account. As listed in Table 2, twice performances of the smoothing process can
reduce the area of high curvature (curvature radius < 50 m) by more than 55%, and more than 99% in case
of smoothing for 20 times. The results reveal that, with smoothing process up to 20 times, the smoothed
reference surfaces do not have significant influences on the flow paths. However, the employment of
the smoothing process may slightly weaken the erosion process and slightly enhance deposition in the
Anonymous Creek Valley in the Hsiaolin cases, although the difference of the maximum total volume
for the moving mass is less than 0.5%. With the significant reduction of large curvature areas and the
low deviation of the depth-averaged velocity from the tangential directions of the basal surface, high
potential for the present approach in engineering applications can be expected.
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