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1 Abstract

Base on a solid-liquid phase change model on the phase field method, this talk gives two extended models
in certain cases, one with added enhanced materials in the phase change material [1], one with convection
phenomena [2].

1.1 Phase change problem with enhancers

In latent heat storage, certain non phase change materials (non-PCMs) with high thermal conductivity
are incorporated into the phase change materials (PCMs) with the aim of enhancing the efficiency of
heat/cold storage. We term this type of non-PCMs as ‘enhancer’, for example graphite and copper foam,
usually with a complex skeleton structure [3, 4]. A phase field model describes the solidification and
melting phenomena of PCMs with enhancers. This model is governed by the energy equation coupled
with the Allen-Cahn equation. A penalty technique is applied in the Allen-Cahn equation to describe the
complex structure of the non-PCMs. We use the concept of thermal resistance to define the boundary
condition on the contact interface of two materials to ensure the temperature jump. Thanks to the hybrid
dual formulation, the temperature can be solved as a monolithic function while satisfying the temperature
jump on the material interface. The Raviant-Thomas (RT0) and P0 finite elements are used to solve the
temperature, to satisfy the temperature jump on the interface. Simulations are performed using the open
source finite element software FreeFem++. To improve computational efficiency, under the framework of
FreeFem++, the mesh refinement is conducted by the Mmg module, and the parallelization is performed
by the domain decomposition library ffddm. 2D and 3D simulations are carried out for both melting
and solidification processes of a fossil-based organic PCM, CRODATHERM60 in the graphite skeleton
on different porous structures to validate this model.

1.2 Phase change problem with natural convection

Numerical simulations of convective solid-liquid phase change problems have long been a complex problem
due to the movement of the solid-liquid interface layer, which leads to a free boundary problem. The
seond part of this talk introduces a convective phase change heat transfer model based on the phase field
method. The governing equations consist of the incompressible Navier-Stokes-Boussinesq equations, the
heat transfer equation, and the Allen-Cahn equation. The Navier-Stokes equations are penalised for
imposing zero velocity within the solid region. For numerical methods, the mini finite element approach
(P1b-P1) is used to solve the momentum equation spatially, the temperature and the phase field are
approximated by the P1b elements. In the temporal discretization, the phase field and the temperature
are decoupled from the momentum equation by using the finite difference method, forming a solvable
linear system. A maximum bound principle for the phase field is derived, coming with an estimation of
the tolerance of the time step size, which depends on the temperature range. This estimation guides the
time step choice in the simulation. The accuracy and effectiveness of the proposed method have been
validated through real-world cases of melting and solidification with linear or nonlinear buyangcy force,
respectively. The simulation results are in agreement with experiments in references.
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2 Governing equations

We list the three models for phase change problem: the classical model and two extended models based
on the classical one.

2.1 Classical phase change model on phase change problem

The following phase change model has been introduced in 1992 [5]. According to the asymptotic analysis,
solutions to the phase field equations formally approach those of a sharp interface model, the Stefan
problem, which incorporates surface tension. The uniqueness and existence of the solution of the Stefan
problem had been established in [6]. Let Ω be a bounded domain, ∂Ω = ΓD

⋃
ΓN is the boundary.

Model A (phase change model for pure PCM):

αε2ϕt = ε2∆ϕ− f(ϕ) + λε(T − Tm)g(ϕ), in Ω,

ρ(ϕ)cp(ϕ)Tt = ∇ · (κ(ϕ)∇T )− 1

2
ρs∆Hmϕt, in Ω,

T = TD, ∂nϕ = 0, on ΓD,

∂nT = 0, ∂nϕ = 0, on ΓN ,

T (x, 0) = T0, ϕ(x, 0) = ϕ0, in Ω,

with

F (ϕ) =
1

8
(ϕ2 − 1)2, f(ϕ) = F ′(ϕ) =

1

2
ϕ(ϕ2 − 1),

G(ϕ) =
1

5
ϕ5 − 2

3
ϕ3 + ϕ, g(ϕ) = G′(ϕ) = (1− ϕ2)2.

ρ(ϕ) =
1− ϕ

2
ρs +

1 + ϕ

2
ρl, cp(ϕ) =

1− ϕ

2
cps +

1 + ϕ

2
cpl, κ(ϕ) =

1− ϕ

2
κs +

1 + ϕ

2
κl.

Here, the phase field function ϕ labels the solid phase as -1 and the liquid phase as 1. Between the two
phases, there is a smooth transition of certain thickness ε. α is the thermal diffusivity of the PCM. F (ϕ) is
the double-well potential. G(ϕ) ensures that the phase change temperature is active only at the interface,
and has minimum at ±1. f and g are their corresponding derivatives so that f(±1) = g(±1) = 0. T
represents the temperature. Tm is the melting temperature, TD is the heating/cooling temperature on
the boundary. ρ, cp, and κ are the density, the specific heat capacity, and the thermal conductivity,
respectively. ∆Hm is the latent heat per mass.

2.2 PCM with enhancers

A bounded domain Ω is considered in this case, includeing several circular enhancers inside (see an
example given in Figure 1). The subdomain consisting of enhancers is denoted by ΩB =

⋃m
i=1 ΩBi , m is

the number of enhancers. The PCM is filled up in Ω\ΩB , and the non-PCM in ΩB . The definition of ϕ
in Ω\ΩB is as same as in model A, while the value of ϕ in ΩB is fixed as:

ϕ(x, t) =

{
1, fluid

−1, solid
in Ω\ΩB , ϕ(x, t) =

{
1, melting

−1, solidification
in ΩB . (2)

Figure 1: Domain with several enhancers.
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As with the above definitions, within enhancers, our approach depends on the specific phase transition
process: If the PCM in Ω\ΩB transitions from the solid phase to the liquid phase (melting process),
we set ϕ = 1 to mark the non-PCM in ΩB . Conversely, we set ϕ = −1 if the PCM transitions from
the liquid phase to the solid phase (solidification process). By distinguishing the labelling values of
non-PCM during melting and solidification, in the initial state of phase field, we label the PCM and
non-PCM by different values, this introduces a high-energy initial state, which ensures that the phase
field always transits from high energy to low energy. This design ensures that the phase field model
accurately reflects the energy evolution trend during the entire phase change process.

Taking account for the enhancers, we introduce a piece-wised characteristic function χ to indicate
the position of enhancers, as follows:

χ =

{
0, x ∈ Ω\ΩB ,

1, x ∈ ΩB .

Let M be a constant larger than ε−2. The model considering enhancers is given as follows:
Model B (phase change model for PCM with enhancers):

αε2ϕt = ε2∆ϕ− f(ϕ) + λε(T − Tm)g(ϕ) + χM(1± ϕ), in Ω,

ρ(ϕ)cp(ϕ)Tt = ∇ · (κ(ϕ)∇T )− 1

2
ρs∆Hmϕt, in ΩB

⋃
(Ω\ΩB),

[κ∂nT ] = 0, R(κ∂nT ) = [T ], on ∂ΩB ,

T = TD, ∂nϕ = 0, on ΓD,

∂nT = 0, ∂nϕ = 0, on ΓN ,

T (x, 0) = T0, ϕ(x, 0) = ϕ0, in Ω.

Density, heat capacity and conductivity are global functions of phase field ϕ and χ:

ρ(ϕ) = (
1− ϕ

2
ρs +

1 + ϕ

2
ρl)(1− χ) + ρBχ,

cp(ϕ) = (
1− ϕ

2
cps +

1 + ϕ

2
cpl)(1− χ) + cpBχ,

κ(ϕ) = (
1− ϕ

2
κs +

1 + ϕ

2
κl)(1− χ) + κBχ.

2.3 Phase change model with natural convection

A solid-liquid system is placed in a bounded domain Ω, governed by the incompressible Navier-Stokes
equations, with the Boussinesq approximation accounting for buoyancy effects, and the phase change
problem as in Model A. The velocity u, the pressure p, the phase field ϕ and temperature T are solved
by the following equations:
Model C (phase change model with convection):

ut + u · ∇u− ν∆u+∇p−A(ϕ)u = FB, in Ω, (4a)

∇ · u = 0, in Ω, (4b)

αε2ϕt = ε2∆ϕ− f(ϕ) + λε(T − Tm)g(ϕ), in Ω, (4c)

ρcp(Tt + u · ∇T ) = ∇ · (κ∇T )− ρs∆Hm

2
g(ϕ)ϕt, in Ω, (4d)

T = TD, ∂nϕ = 0,u = 0, on ΓD, (4e)

∂nT = 0, ∂nϕ = 0,u = 0, on ΓN , (4f)

T (x, 0) = T0, ϕ(x, 0) = ϕ0, in Ω. (4g)

where ν is the dynamic viscosity of the PCM in fluid state. the Carman-Kozeny penalty term A(ϕ)u
ensures velocity vanishes in the solid region, and L denotes the liquid fraction within [0, 1], as follows:

A(ϕ) = −CCK(1− L(ϕ))2

(L(ϕ))3 + b
, L(ϕ) = ϕ · (ϕ > 0), (5)
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where CCK > 0 is a sufficiently large number and b > 0 is a small number, to prevent the denominator
from being zero. The buoyancy force FB is linearized according to the Boussinesq approximation,
reflecting the influence of temperature-induced density changes on the fluid dynamics:

FB =
ρ(T )− ρ(Tm)

ρ(Tm)
g ≈ edβ(T − Tm), (6)

where g is the gravity, ed is the unit vector in the vertical direction, and β is the thermal expansion
coefficient.

3 Snippets of Simulation

We present one of our simulations in melting processes. Further details on our work are referred to our
recent publication [1, 2].

3.1 Results for Model B

The 500× 700 pixel binary image in the left of Figure 2 displays the porous medium structure obtained
from a scanning electron microscope (ref. [7]). The domain size in this structure is 0.035×0.045 m2, the
white part represents the graphite skeleton, the black part represents CRODATHERM60. We perform
the melting simulation. The left boundary acts as the heating boundary, with the remaining boundaries
set as adiabatic. The initial mesh in the right of Figure 2 is refined on the skeleton outline and the left
border.

Figure 2: Porous media illustration: binary image (left), initial mesh (right).

(a) Temperature contours

(b) Phase field contours

Figure 3: Porous media: temperature and phase field contours at t = 100, 1800, 3800, 6000 s.

Figure 3 shows the temperature and phase field contours at t = 100, 1800, 3800, 6000 s. The skeleton
of graphite is always marked with ϕ = 1, shown in red colour. Black lines outline the skeleton, and white
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lines are the contours of T = Tm, coinciding with the interface of the phase field. It can be observed
from Figure 3(a) that each piece of the skeleton is isothermal, implying that the heat transfer within the
graphite piece is almost instantaneous.

3.2 Results for Model C

Model C is validated by a water freezing process, over temperatures from 10◦C to −10◦C, from an
experiment of Kowalewski and Rebow in 1999 [8]. The nonlinear density variation of pure water below
T < 10.2◦C leads to a nonlinear Boussinesq force. The density-temperature correlation is proposed by
Gebhart and Mollendorf [9] as follows:

ρ(T ) = ρf (1− w|T − Tm|q),

with the density ρf = 999.972 kg/m
3
on phase change temperature Tm = 0◦C, w = 9.2793×10−6 [(◦C)−q],

with q = 1.894816. The temperature is mapping from the interval [−10, 10] to [−1, 1]. Thus the scaled
buoyancy force in (6) is expressed as:

FB(T ) = βω|T |qed,

where β = 5.21383× 108 is the thermal expansion coefficient [10]. The dimensionless thermal conductiv-
ities for water are κs = 3.91 for solid and κl = 1 for liquid. To avoid nonlinearity of the energy equation,
the global thermal conductivity is approximated as a linear combination of the previous phase field ϕn

as follows:

κ(ϕn) =
1− ϕn

2
κs +

1 + ϕn

2
κl.

The computational domain is a unit square. The initial temperature is set at 0.5, above the melting
temperature:

u0 = 0, T0 = 0.5, ϕ0 = 1.

The boundary conditions are organized as follows:

u = 0 on ∂Ω,

T = 1 on Γhot, T = −1 on Γcold,

ϕ = 1 on Γhot, ϕ = −1 on Γcold,

∂T

∂n
= 0,

∂ϕ

∂n
= 0, on Γup ∪ Γbottom.

The other parameters are set as: ε = 0.01, α = 130, λ = 820, ρ = 1, cp = 1,∆Hm = 8, ν = 1, Cck =
106, b = 10−7, tmax = 1.61 and h ∈ [0.002, 0.07]. Time step size is set as ∆t = 0.001.

In Figure 4(a), the final pressure distribution is depicted. The left portion of the figure, i.e. the liquid
state, shows pressure values ranging from −3.2× 104 to 3.1× 104. The right portion corresponds to the
solid state, wherein pressure values approximately equal to 0. Figure 4(b) displays an experimental
image from Kowalewski and Rebow 1999 [8], with two vortices on the left liquid portion. The phase
change temperature contours at t = 0.75 and t = 1.61 of our simulation are depicted, comparing with
the simulation results of Sadaka [10]. Our contours match them well.

Figure 5 depicts the contours of the phase field, streamlines, and temperature at t = 0.2, 0.6, 0.9, and
1.61. In Figure 5(a), The streamlines show a non-uniform flow direction within the cavity, two vortices
are formed. At t = 1.61, the streamlines resemble the experiment result in Figure 4(b). In Figure 5,
the highest and lowest temperatures still occur at the top and bottom respectively, due to convection
dominance. However, the temperature is not uniformly stratified because of the nonlinear buoyancy
force. In summary, the model can well capture the flow patterns and phase transition dynamics, and
reflect the nonlinear buoyancy effects.
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(a) (b)

Figure 4: Water freezing: (a) Pressure distribution at t = 1.61. (b) Comparison of interface positions:
image from the experiment by Kowalewski and Rebow 1999 [8], our numerical results with 6 MPI
processors, and numerical results from Sadaka et al. 2020 [10] at t = 0.75 and 1.61.

(a) Phaes field and streamlines contours.

(b) Temperature contours.

Figure 5: Water freezing: phase field, streamlines and temperature contours at t = 0.2, 0.6, 0.9 and 1.61.
The white line indicates the contour of the phase change temperature T = 0.
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