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Abstract: In recent years, both NASA and ESA have run Technology Demonstration Missions
employing Hypersonic Inflatable Aerodynamic Decelerators (HIADs), an inflatable structure cov-
ered by a flexible heat shield which is used to decelerate and protect space vehicles entering the
atmosphere at hypersonic speed. This paper describes a recently developed numerical technique to
simulate the Fluid-Structure interaction between the hypersonic stream and the flexible structure
of the HIAD. We do so by using a front-tracking/shock-fitting technique that models both the
bow shock and the thin membrane of the HIAD as double-sided surfaces of negligible thickness.
Shock-motion is governed by the Rankine-Hugoniot jump relations, whereas a non-linear membrane
model is used to simulate the deformation of the HIAD under the combined effect of the inflation
and aerodynamic pressure. Local re-meshing is used to ensure that the surface triangulations used
to geometrically describe both the material interfaces and the bow-shock are conforming with the
background tetrahedral grid that fills the fluid domain. The computational examples cover three
different HIADs of increasing geometrical complexity. We also show that fitting, rather than cap-
turing, the bow shock allows to preserve the design order of the spatial discretization scheme in
the entire shock-downstream region.

Keywords: Fluid-Structrure Interaction, Hypersonic flows, Shock-capturing, Shock-fitting.

1 Introduction
Typical rigid aeroshells used to protect spacecrafts during atmospheric entry are limited in size by the
launch vehicle shroud. In contrast, Hypersonic Inflatable Aerodynamic Decelerators (HIADs) - an inflat-
able structure protected by a flexible heat shield - are packed in a stowed configuration during launch
and deployed only prior to atmospheric entry to produce an aeroshell many times larger than the diam-
eter of the launch vehicle. A large deployable heatshield creates more drag and starts the deceleration
process in the upper reaches of the atmosphere, allowing not only heavier payloads, but also landing
at higher altitudes [1]. Both NASA [1, 2, 3, 4, 5] and ESA [6, 7, 8] have run Technology Demonstra-
tion Missions employing HIADs. In a recent conference paper [9], we propose to use HIADs for Drag
Modulation [10] during an aerocapture manouver to compensate unforeseen variations in atmospheric
density that may be encountered during re-entry and eventually lead to mission failure. In [9], drag
modulation is accomplished by using a variable inflation pressure to change both the shape, hence the
drag coefficient, and cross-sectional area of the HIAD during the aeocapture manouver. In the present
paper we describe in detail the Fluid/Structure interaction (FSI) numerical methodology that has been
used in [9] to simulate the deformation induced on the thin and flexible structure of the HIAD by the
combined effect of the inflation and aerodynamic pressure. In the proposed FSI technique the thin and
deformable structure of the HIAD is modeled using a front-tracking technique, i.e. it is geometrically
represented as a lower dimensional manifold (a surface triangulation in the 3D space) which undergoes a
Lagrangean displacement under the combined effect of the inflation pressure, acting on the inner side of
the HIAD, and the aerodynamic pressure exerted on the surface of the HIAD exposed to the hypersonic
stream. The use of a front-tracking approach to model thin and deformable structures is not new: it has
already been used in a similar setting to study the FSI between parachutes and the surrounding fluid,
see e.g. [11, 12, 13, 14].

The mutual interaction between the structure and the fluid can be handled either by using volumetric
meshes that match the surface tessellation of the structure at the interface [11] or, alternatively, using
Immersed Boundary techniques; see e.g. [12, 13, 14] for examples pertaining to parachutes. Our approach
belongs to the former class and it is similar in this respect to the Deforming-Spatial-Domain/Stabilized
Space–Time (DSD/SST) formulation reviewed in [15].
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The originality of the present study is that it models gas-dynamic discontinuities in the same way as it
handles material interfaces, i.e. as double-sided triangulated surfaces of discontinuity that bound regions
of the flow-field where a smooth solutions to the governing PDEs exists. The space-time evolution of the
gas-dynamic discontinuities, as well as their upstream/downstream flow states, are computed by enforcing
the Rankine-Hugoniot (R-H) jump relations, which also provide the local speed of the discontinuity. This
modeling option is known as shock-fitting (S-F) [16] and it is alternative to the shock-capturing (S-C)
approach that is almost universally used in fluid-dynamics simulations within a continuum framework.

S-F allows to overcome most of the troubles suffered by S-C schemes when dealing with shocked-
flows, which include: a “captured” shock-width that exceeds by orders of magnitude the physical one and
the presence of spurious disturbances along the “captured” shock-front which spoil the solution in the
entire shock-downstream region [17, 18, 19]. Because of this, S-F techniques allow to obtain solutions
characterized by a small discretization error even on rather coarse grids.

In the unstructured-grid S-F technique developed by the authors [20, 21] the computational domain
is filled with a fixed, background mesh which is locally adapted in the neighbourhood of the moving
discontinuities to ensure that the volumetric tetrahedral grid is always conforming with the surface trian-
gulation used to represent the gas-dynamic discontinuities. Following the same idea, the thin membrane
of the HIAD is also modelled using surfaces of zero-thickness. However, while the displacement of the
gas-dynamic discontinuities is computed by enforcing the R-H relations, the displacement/deformation
of the structure induced by the combined effect of the inflation and aerodynamic pressure is computed
using a structural solver.

In this paper, the aforementioned technique will be used to study the FSI between an hypersonic
stream and three different HIADs of increasing geometrical complexity. We will do so under the simpli-
fying assumption of inviscid flow. Even if ignoring viscous effects precludes the possibility of computing
the heat flux on the thermal protection system, it has no effect on the FSI algorithm, which is the main
focus of the present paper, and only a minor effect on the computed drag coefficient.

Structural analyses of the Inflatable Re-entry Vehicle Experiment (IRVE) HIAD are reported in [1,
22, 23]. Reference [23] also accounts for the effect of the aerodynamic pressure on the static and modal
analysis of the IRVE HIAD. None of the aforementioned papers, however, can describe the two-way
interaction between the deformable HIAD and the hypersonic stream, which is instead possible using the
FSI technique described herein.

Algorithmic details about the proposed methodology are given in § 2 and its application to three
different HIADs of increasing geometrical complexity is reported in § 3. For the simplest geometry, we
include a global and local grid-convergence analysis.

2 Methodology
The three-dimensional, unstructured-grid, shock-fitting technique developed over the past decade by
some of the authors [20, 21] features a modular software structure which comprises different packages:
unstructured volumetric and surface mesh-generators, the shock-fitting module and an unstructured
shock-capturing solver. Gasdynamic discontinuities, either shock-fronts or contact-surfaces, are geo-
metrically modeled as double-sided triangulated surfaces of negligible tickness which can freely float
throughout the computational domain. This is filled with a tetrahedral grid which is locally re-meshed
in the neighbourhood of the moving discontinuities to ensure that the volumetric mesh is always con-
forming to the surface triangulation of the fitted discontinuities. Volumetric and surface mesh generation
is accomplished using the public domain software packages tetgen [24] and mmgs [25], respectively. The
shock-fitting module UnDiFi-3D ensures that the flow variables on the upstream and downstream sides
of a discontinuity obey the Rankine-Hugoniot jump relations and also supplies the local speed of the
discontinuities. These behave as internal boundaries of zero thickness for an in-house developed shock-
capturing code (eulfs [26, 27]) which is used to discretize the governing PDEs in the smooth regions of
the flow-field.

One of the appealing features of the aforementioned approach consists in the possibility of using
as black boxes off-the-shelf software packages, either commercial, public-domain or in-house, all driven
by the UnDiFi-3D S-F module. This approach adds flexibility to the technique because it allows to
easily replace some of the component software packages with similar ones; for instance: we have used
GRUMMP [28] in place of tetgen as tetrahedral mesh generator in [21] and the S-C solver NEO [29, 30, 31]
instead of eulfs in [32].

In the present paper, we extend the UnDiFi-3D shock-fitting software package by making it capable
to deal with the deforming membrane of the HIAD, which is modeled as a double-sided surface of zero
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thickness: its inner side is exposed to the constant inflation pressure, pinf , whereas the outer side to
the spatially variable aerodynamic pressure exerted by the fluid. Assuming constant inflation pressure
is consistent with the fact that in the present study we limit ourselves to steady flows. By doing so, we
avoid simulating the inflation process and prescribe a spatially constant inflation pressure on the inner
side of the HIAD. The displacement of the membrane due to the differential effect of the pressure forces
acting on its two sides is simulated using the non-linear structural solver available in the commercial
package MSC Nastran [33].

2.1 Structural model
Inflatable objects typically undergo significant deformations, making linear analysis, which assumes
small deflections and strains as well as stresses below the material’s yield stress, unreliable. Therefore,
studying these problems requires a nonlinear approach to account for the effects of non-linearity. I n
nonlinear structural analysis, deflections and stresses do not vary proportionally with the loads. The
structure’s response is contingent upon its current state, and the equilibrium equations acknowledge that
the stiffness of the structure is influenced by both displacements and external loads. As the structure
deforms under loading, its stiffness changes, which in turn alters the structure’s response. Consequently,
nonlinear problems require incremental solution methods that break the problem into steps: calculating
displacements and then updating stiffness at each step. Each step uses the outcomes from the previous
step as a starting point. This process requires frequent generation and inversion of the stiffness matrix,
increasing both the time and cost of the analysis. Additionally, because the response is not proportional
to the loads, each load case must be resolved independently, making the principle of superposition
inapplicable.

Nonlinear effects can be classified into three categories: material non-linearity, geometric non-linearity,
and nonlinear boundary conditions. Material non-linearity arises from the nonlinear relationship between
stresses and strains, and large strains can further influence material behavior. Geometrically nonlin-
ear problems involve large displacements, where “large” implies displacements that invalidate the small
displacement assumptions made in linear analysis. Boundary conditions and/or loads can also induce
non-linearity. For instance, a follower force may be locally non-conservative, but represent a conservative
loading system when integrated over the structure, such as in the case of a pressurized cylinder.

In this paper only the geometrical and load-induced non-linearities are considered whereas the ma-
terials are linear elastic. Under these hypothesis, the equilibrium equations translate the fact that the
internal stresses balance the external forces at steady-state:

∇ ·P+ b0 = 0 (1)

In Eq. (1) P is the second Piola-Kirchhoff stress tensor and b0 is the body force per unit volume in the
reference configuration.
The constitutive equations describe the material behavior and relate the stress tensor P to the strain
tensor E:

P = C : E (2)

The symbol ’:’ in Eq. (2) denotes a double contraction between the fourth-order elastic tensor C and
the Green-Lagrange strain tensor E:

E =
1

2
(FTF− I) (3)

where F is the deformation gradient tensor.

2.1.1 Updated Lagrangian Approach

Generally, deformations of structures are analyzed through a Lagrangian approach that can be classified
in two alternative categories: the total Lagrangian method and the updated Lagrangian method. In
the total Lagrangian approach, the equilibrium is expressed with the original undeformed state as the
reference; in the updated Lagrangian approach, the current configuration acts as the reference state. In
the updated Lagrangian approach used in this paper, the configuration of the structure is updated at
each increment; in particular, the Green-Lagrange strain tensor E defined by Eq. (3) is updated through
the deformation gradient given by:

F =
∂x

∂X
(4)
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where x are the current coordinates and X are the reference coordinates. This approach is particularly
useful for problems involving large deformations.

2.1.2 Finite Element formulation

The system governing equilibrium equations can be obtained by invoking the principle of virtual work [34]:
for a system in equilibrium, the total virtual work, δW , done by the internal and external forces during
any virtual displacement is zero:

δW = δWint + δWext = 0 (5)

In Eq. (5) δWint is the work done by the internal forces (stresses) within the material when it undergoes
the virtual displacement. For a continuum, this can be written as:

δWint =

∫
Ω0

P : δE dΩ0 (6)

δWext in Eq. (5) is the work done by the external forces (such as applied loads and reactions) during the
virtual displacement and can be expressed as:

δWext = −
(∫

Ω0

b0 · δu dΩ0 +

∫
Γt

t0 · δu dΓ0

)
(7)

Considering a three-dimensional continuum and a nonlinear problem, the stationary condition (5) results
in: ∫

Ω0

P : δE dΩ0 =

∫
Ω0

b0 · δu dΩ0 +

∫
Γt

t0 · δu dΓ0 (8)

where δu represents the virtual displacement, Ω0 is the domain in the reference configuration, Γt is the
boundary with applied tractions t0 and δE is the virtual strain tensor.

To discretize the domain, we divide it into finite elements. Within each element, the displacement
field u and its variations δu are approximated using shape functions Ni:

u ≈
n∑

i=1

Nidi, δu ≈
n∑

i=1

Niδdi

where di are the nodal displacements, which include linear and angular displacements and n is the number
of nodes in the finite element. For surfaces discretized with quadrangular elements the Lagrangian shape
functions in natural coordinates (ζ, η) are:

N1(ζ, η) =
1

4
(1− ζ)(1− η)

N2(ζ, η) =
1

4
(1 + ζ)(1− η)

N3(ζ, η) =
1

4
(1 + ζ)(1 + η)

N4(ζ, η) =
1

4
(1− ζ)(1 + η)

In the FEM formulation, strains and nodal displacements are related by the strain-displacement matrix
B which involves derivatives of the shape functions with respect to reference coordinates. For a surface
element, B is constructed as:

B =

∂N1

∂X 0 ∂N2

∂X 0 · · · ∂Nn

∂X 0

0 ∂N1

∂Y 0 ∂N2

∂Y · · · 0 ∂Nn

∂Y
∂N1

∂Y
∂N1

∂X
∂N2

∂Y
∂N2

∂X · · · ∂Nn

∂Y
∂Nn

∂X

 (9)

The Green-Lagrange strain tensor E in Eq. (3) can then be written as follows:

E =
1

2
[Bd+ (Bd)T + (Bd)T (Bd)] (10)
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and the discretized form of the equilibrium equations (8) for an element becomes:

Kd = f (11)

where K is the element stiffness matrix, d is the vector of nodal displacements, and f is the vector of
nodal forces. The element stiffness matrix K is given by:

K =

∫
Ve

BTCB dV (12)

where Ve is the volume of the element and C is the energy tensor, see Eq. (2).
The nodal force vector f includes contributions from external forces and body forces:

f =

∫
Ve

NTb dV +

∫
Se

NT t dS (13)

where b is the body force per unit volume and t is the traction force per unit area on the surface Se.

2.1.3 Iterative solution strategy

The Newton-Raphson method is here used to iteratively solve the system of algebraic equations arising
from the FEM discretization of the equilibrium condition. The system of equations is nonlinear, because
element nodal forces are nonlinear functions of displacements. Since the error vanishes at constrained
points and the constraint forces vanish at free points, the unbalanced forces acting at nodal points at
any iteration step are conveniently defined as an iterative convergence monitor by defining the residual
vector R:

Ri = fext − fint
(
di
)

(14)

where fext is the external force vector, fint is the internal force vector and the superscript i indicates the
iteration counter.

The displacement vector is updated iteratively as:

di+1 = di +∆d (15)

where ∆d is the solution to the linear system:

Ki
T∆d = Ri (16)

The tangential stiffness matrix KT :

KT =
∂R

∂d
(17)

that appears in Eq. (16) is the sum of the material stiffness, Km, and differential stiffness, Kd:

KT = Km +Kd (18)

The differential stiffness, which is caused by the initial stress, can be written as follows:

Kd =

∫
Ve

GTMG dV, (19)

where matrix G consists of derivatives of the shape functions and matrix M is a function of the stresses.
The iterative scheme consists in repeatedly solving the linear system (16) and updating the displace-

ment vector according to (15) until the residual error R and the incremental displacements ∆d become
negligibly small.

2.1.4 Verification case

As a verification test, we study the case of a side wind impacting an hemispherical dome. In this scenario,
the governing equations for shells of revolution under a non-axisymmetric load can be written as follows
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using spherical coordinates:

∂

∂φ
(r0Nθφ) +

∂Nθ

∂θ
r1 +Nθφr1 cosφ+ pθr0r1 = 0

∂

∂φ
(r0Nφ) +

∂Nθφ

∂θ
r1 −Nθr1 cosφ+ pφr0r1 = 0

Nφ

r1
+

Nθ

r2
= −pz

(20)

In Eq. (20) r0, r1, r2 are curvature radii: the first two related to the parallel (θ) and the meridian
direction (φ), respectively, whereas r2 is the distance between the generic surface material point and
the intersection between the curvature radius and the rotational axis, see Fig.1. For the purpose of the

Figure 1: Hemispherical dome subjected to wind loading

present analysis, which is applied to a spherical shell of radius a = 1 m, we have:

r1 = r2 = r∗ = 1 m

and
r0 = r∗ sinφ.

In Eq. (20) pϑ, pφ, pz are the components of the external load whereas Nθ and Nφ are the two membrane
forces per unit length and Nθφ is the shear force.
If we neglect frictional forces and assume that the force exerted by the wind has only one non-zero
component along the z axis:

pϑ = 0 pφ = 0 pz = p∞ sinφ cosϑ (21)

where p∞ = 100 bar, the system of PDEs (20) simplifies and admits the following analytical solution
due to Zingoni [35]:

Nθφ =
p∞a

3

(
cosφ

sin3 φ

)[
(3− cos2 φ) cosφ− 2

]
cos θ

Nφ =
p∞a

3

(
1

sin3 φ

)[
(3− cos2 φ) cosφ− 2

]
sin θ

Nθ = −p∞a

3

(
1

sin3 φ

)
(
[
(3− cos2 φ) cosφ− 2

]
cosφ+ 3 sin4 φ) cos θ

(22)

which we use here to validate the numerical methodology. For the FEM solution we have considered an
hemispherical dome, 1 mm thick, made of Kevlar, which is characterized by a value of Young’s modulus
E = 70 GPa and Poisson’s ratio ν = 0.35. Figure 2 compares the analytical and numerical solutions in
the final configuration. Figure 2a shows the displacement and Fig. 2b the three dimensionless forces, as
a function of the angle φ. Nθφ has been plot for an angle θ equal to 90◦ whereas the other two forces at
θ = 0◦. The agreement between the analytical and numerical solutions is very good.
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(a) Displacements (b) Membrane forces

Figure 2: Comparison between the analytical and FEM solutions.

2.2 Fluid model
As far as the fluid model is concerned, we consider the numerical approximation of solutions of the steady
limit of the Euler equations reading:

∂tU+∇ · F = 0 in Ω ⊂ Rd (23)

with conserved variables and fluxes given by:

U =

 ρ
ρE
ρu

 , F =

 ρu
ρHu

ρuu+ pI

 (24)

having denoted by ρ the mass density, by u the velocity, by p the pressure, and with E = e + u · u/2
the specific total energy, e being the specific internal energy. Finally, the total specific enthalpy is
H = h + u · u/2, with h = e + p/ρ the specific enthalpy. For simplicity in this paper we work with the
classical perfect gas equation of state:

p = (γ − 1)ρe (25)

γ being the adiabatic index.
In all applications involving high-speed flows, solutions of (23) are only piecewise continuous. In

d space dimensions, discontinuities are represented by d − 1 manifolds governed by the well known
Rankine-Hugoniot jump conditions reading:

[[F · n]] = w[[U]] (26)

having denoted by n the local normal vector to the shock, by [[·]] the corresponding jump of a quantity
across the discontinuity, and with w the normal component of the shock speed.

Even if ignoring viscous effects precludes the possibility of computing the heat flux on the thermal
shield, it has no effect on the FSI algorithm, which is the main focus of the present paper, and is expected
to play only a minor role on the computed drag coefficient.

2.2.1 CFD model

Concerning the eulfs in-house solver used in this paper, it is based on a Residual Distribution (RD)
method evolving in pseudo-time approximations of the values of the flow variables in the mesh nodes. To
be more specific, Roe’s parameter vector, Z =

√
ρ (1, H,u)

t, is chosen as the set of dependent variables
which vary linearly and continuously in space among the vertices of a tetrahedral mesh that fills the
computational domain. The method has several appealing characteristics, including the possibility of
defining genuine multidimensional upwind strategies for Eulerian flows. By combining ideas from both
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Table 1: Supersonic compressible source flow: characteristics of the three grid levels used

grid level grid-points tetrahedra mesh spacing h
1 10,386 48,880 1.199 10−1

2 68,485 366,442 6.130 10−2

3 496,161 2,868,290 3.087 10−2

the stabilized finite element and finite volume methods, RD schemes allow to achieve second order of
accuracy and monotonicity preservation with a compact stencil of distance-1 neighbors. Second order of
accuracy in smooth flows will be demonstrated in § 2.2.2. The interested reader can refer to [36, 37] and
references therein for an in-depth review of this family of methods, as well as to [26, 27] for some specific
choices of the implementation used in the eulfs code.

When RD schemes are used to discretize the conservation-law-form (23) of the governing PDEs, the
method is shock-capturing. It is however also possible to explicitly keep track of the motion of the
discontinuities in the flow-fields and use the eulfs solver to discretize the governing PDEs in the smooth
region of the flowfield bounded by the fitted discontinuities. This latter approach is what we refer to as
“shock-fitting”. One remarkable advantage of S-F over S-C is the capability of the former to preserve the
design order of the spatial discretization scheme also downstream of a shock. In contrast, the order-of-
accuracy of a S-C discretization degrades to first in the entire shock-downstream region. This is discussed
in [19] for the 2D case and will be addressed in § 3.1 for the 3D case.

2.2.2 Verification case

In this section we verify that the spatial discretization scheme available in the eulfs CFD code recovers
the design (second) order-of-accuracy in regions of smooth (shockless) flow. We do so by using an
analytical solution of the Euler equations describing a compressible, supersonic source flow in 3D. Indeed,
by assuming that the only non-zero component of the fluid velocity is in the radial direction, it is easy to
show that the Euler equations, written using spherical coordinates, become identical to the Q1D Euler
equations describing variable-area flows, provided that the area varies quadratically with the distance
from the origin of the reference frame. This allows us to use the so-called area rule:

f (M) =
1

M

[
2

γ + 1

(
1 +

γ − 1

2
M2

)] γ+1
2(γ−1)

=

(
r

r∗

)2

to compute the radial distribution of the Mach number.
The computational domain consists in a spherical annulus of inner and outer radii respectively equal

to ri = 1, ro = 1.5. It has been discretized using three tetrahedral meshes of decreasing mesh spacing,
h, whose characteristics are given in Tab. 1.

The flow is fully supersonic with M (ri) = 2 all along the inner radius which implies that r∗ =
ri/

√
f(2) = 0.7698 and M (ro) = 2.8854.

Given a pair of solutions available on two grid-levels of mesh spacing h and rh, both a local (i.e.
pointwise) and a global measure (in the Lp-norm) of the observed order-of-accuracy can be respectively
calculated as follows:

ñ =
log (1/R)

log (r)
(27a)

ñ =
log (Lp (ϵrh) /Lp (ϵh))

log (r)
(27b)

where the grid convergence ratio [38, 39, 40, 41] is defined as:

R = ϵh (x) /ϵrh (x) (28)

and can only be computed within the grid-points of the coarser grid level rh, provided that the grids are
nested.

In Eqs. (27b) and (28) ϵh is the discretization error, i.e. the difference between the value computed
on grid level h and the analytical value; x in Eq. (28) is the location of a grid-point shared by the two
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nested grid levels.
Table 2 shows the L2-norm of the discretization error measured globally using Eq. (27b) for each

component of the parameter vector and all three grid levels. It can be seen that the measured order ñ
does indeed recover design order.

Table 2: Supersonic compressible source flow: L2-norm of the discretization error and global order
estimate

√
ρ

√
ρH

√
ρu

√
ρv

√
ρw

level L2 ñ L2 ñ L2 ñ L2 ñ L2 ñ
1 0.2907E-02 - 0.3034E-02 - 0.1629E-02 - 0.1618E-02 - 0.1617E-02 -
2 0.8068E-03 1.91 0.8064E-03 1.98 0.4232E-03 2.01 0.4245E-03 1.99 0.4226E-03 2.00
3 0.2111E-03 1.95 0.2075E-03 1.98 0.1091E-03 1.98 0.1092E-03 1.98 0.1090E-03 1.98

2.3 Loosely coupled S-F/FSI algorithm
In the proposed FSI algorithm, the structural and CFD models resp. described in § 2.1 and § 2.2 are
loosely coupled in the sense that CFD simulations are performed while keeping the structure still and
structural simulation use a spatially-variable, but time-independent loading due to the differential effect
of the aerodynamic and inflation pressure acting on the outer, resp. inner side of the HIAD. Only a few
iterations are required until the shape of the HIAD settles to a steady configuration and so does the
aerodynamic loading exerted on its outer side by the incoming hypersonic stream. The loose coupling
between the structural and fluid models is justified by the fact that we are only interested in the steady
configuration corresponding to a given inflation pressure.

To illustrate the algorithmic ingredient of the proposed S-F/FSI technique, we consider the hypersonic
flow past an HIAD; this is characterized by the formation of a standing bow shock and the deformation
of the membrane under the action of the aerodynamic and inflation pressures. To initialize the S-F/FSI
simulation, we run a shock-capturing calculation (using the eulfs code) of the flow past the HIAD,
treated as a rigid body. We do so not only to obtain an initial solution, but also an initial shock-
shape; details concerning the creation of the initial shock-surface can be found in [21]. We then create a
tetrahedral mesh that surrounds both the bow shock and the HIAD; it will hereafter be referred to as
the “background” mesh and for the current example it fills the hemispherical volume shown in the left
frame of Fig. 3. The bow-shock and the inflatable wall are geometrically modelled using surfaces of zero
thickness; those shown in Fig. 3, resp. coloured in blue and green, are the initial shock-shape and the
shape of the HIAD when filled at the design inflation pressure.

The S-F/FSI algorithm can be split into the following four main steps:

1. Step 1: generation of the computational mesh
The first step consists in inserting the surface meshes of both the bow shock and the HIAD inside
the background tetrahedral grid, as shown in Fig. 3. To do so, all tetrahedral cells of the background
mesh that are crossed by either the bow-shock or the HIAD are removed and cavities are carved
around those surfaces inside the background mesh. The tetgen mesh-generator is then used to fill
these cavities using a Delaunay tetrahedralization which is constrained to be conformal with the
surface triangulations of both the bow-shock and the HIAD. Moreover, all tetrahedral cells that
fill the volume facing the inner side of the HIAD are also removed. This is because, as mentioned
earlier, as long as we are simulating steady flows, we can prescribe a spatially uniform inflation
pressure on the inner side of the HIAD and avoid simulating the inflation process. Cell removal
and local re-meshing as described above leads to what we call the “computational” mesh which
differs from the “background” mesh only in the neighbourhood of the bow-shock and the surface of
the HIAD and because the “computational” mesh has no tetrahedra attached to the inner side of
the HIAD.

2. Step 2: Computation of the flow solution using the CFD solver
The UnDiFi-3D S-F algorithm is used to compute the CFD solution while the shape of the HIAD
is held fixed. This is an iterative process even when dealing with steady flows, because the “compu-
tational” mesh changes between subsequent iterations due to the Lagrangean motion of the shock
surface, which is computed by enforcing the Rankine-Hugoniot jump relations between the up-
stream and downstream sides of the discontinuity. The eulfs code is used to solve the governing
PDEs in the (smooth) regions of the flow-field bounded by the surfaces of discontinuity. When
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Figure 3: Step 1 of S-F/FSI algoritm: generation of the computational mesh

Figure 4: Step 2 of FSI algoritm: CFD solution

a steady solution exists, the shock speed asymptotically vanishes, the fitted shock surface(s) no
longer move and the “computational” mesh no longer changes. The iterative process is illustrated
in Fig. 4: the left frame shows the initial and the steady-state flow-fields whereas the right frame
shows the initial and steady shape of the bow shock. Observe that the shape of the HIAD remains
unchanged. The interested reader can find full details of the algorithm in [20, 21].

3. Step 3: Computation of the deformation of the HIAD by means of the structural solver.
As already mentioned in § 2.1.2, the structural displacement/deformation of the HIAD is computed
using the MSC Nastran [33] commercial software package that uses the structural model described
in § 2.1. As skematically shown in Fig. 5, the input data are the constant inflation pressure,
pinf , acting on the inner side of the HIAD, shown using red vectors, and the spatially variable
aerodynamic pressure load computed by the eulfs code on the outer side, shown using black
vectors. Since we only deal with steady problems, the inertial effects of the HIAD are ignored
in the structural simulation and, therefore, its displacement/deformation, shown in Fig. 6, only
depends on the differential pressure acting on its two sides and on the elasticity of the membrane.
This simplifies the structural model and allows to compute the inflation and deflation behavior of
the HIAD as a sequence of quasi-stationary solutions.
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Figure 5: Step 3 of S-F/FSI algoritm: SOL 400 is used to
compute the structural displacements Figure 6: Deformation of the membrane

due to the differential effect of the external
and inflation pressure loads

Figure 7: Coupling between the structural and CFD meshes

One algorithmic aspect which is worth underlying, see Fig.7, is that the mesh of the HIAD, except
for the rigid nose, is made of quadrilateral elements, see § 2.1.2, whereas the eulfs CFD solver
works with tetrahedral volume elements and surface triangulations. We have chosen CQUAD4
quadrilateral elements for the structural discretization because, according to the MSC software user-
guide [42], they are less stiff and more accurate than their triangular counterpart, particularly for
membrane strain. Therefore, when a new (deformed) shield shape is inserted into the background
mesh, as we do in Step 4, the quadrilateral surface mesh of the HIAD must be converted into
a triangular one. As shown in Fig. 7, this is easily accomplished by splitting each quadrilateral
cell into two triangles while preserving the same geometrical location of the grid-points defining
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the shield in the two (quadrilateral and triangular) surface meshes. This is important to avoid
interpolation when the pressure force computed by the CFD code has to be transferred to the
structural solver.

4. Step 4: Displacement of the deformable shield and interpolation
The updated shape of the inflatable shield is computed using the nodal displacement supplied by
the structural solver in Step 3. Due to the motion of the inflatable shield, some of the grid-points
of the background mesh that had been removed in Step 1 might be reintroduced at a subsequent
S-F/FSI iteration. This is explained by reference to Fig. 8. Fig. 8(a) shows the initial shape of the
HIAD (drawn in green) laid on top of the background tetrahedralization: the grid-points marked
in red are removed in Step 1, because they fall inside the volume occupied by the initial shield
shape. At a subsequent S-F/FSI iteration the shield has moved to a new location in space and has
a different shape: this is shown in green in Fig. 8(b), where the initial shield shape is also drawn
in grey. Some of the grid-points of the background mesh that had been removed during the first
iteration (marked in red in Fig. 8(c)) remain “silent”, because they fall inside the updated location of
the HIAD. However, the grid-points marked in blue in Fig. 8(c) will be part of the “computational”
mesh at the next S-F/FSI iteration. Therefore, it is necessary to ensure that all grid-points of the
background mesh store valid flow variables at all S-F/FSI iterations. This is accomplished using
interpolation from the current “computational” mesh (which keeps changing between subsequent
S-F/FSI iterations unless steady-state has been reached) and the fixed “background” mesh. Note,
however, that interpolation is limited to those grid-points of the background mesh that had been
removed in Step 1, which is small fraction of the total number of grid-points of the background
mesh.

Figure 8: a) Nodes removed in Step-1 at iteration n; b) Grid-points of the background mesh that fall
outside the shield in Step-4 of iteration n; c) Grid-points (marked in red) of the “background” mesh that
fall inside the updated shield shape and those (marked in blue) which will be part of the “computational”
mesh at Step-1 of iteration n+1

3 Hypersonic FSI simulations
Three different FSI test-cases involving inviscid high-speed flows will be presented and discussed: for
each configuration, we provide details on both the structural modelling and CFD solution, highlighting
the advantages offered by the S-F technique. Furthermore, computed results for the first test-case, see
§ 3.1, will be analyzed to evaluate the grid convergence properties of the technique.

3.1 Test-case 1: inflatable shield
The first test-case consists in the hypersonic, M∞ = 24, flow past an HIAD whose design shape has the
same geometry of the shield used in the Mars Pathfinder mission [43]. This is shown in Fig. 9(c), where
its geometrical features are indicated.
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Flight conditions, listed in Tab. 3, are compatible with an aerocapture mission on Mars, which is one
of the viable applications for HIADs, see [9]. In Tab. 3 ρ∞ and p∞ respectively denote the atmospheric

Mach ρ∞ p∞ γ R pst T 0
∞

24 9.74 · 10−5 kg/m3 3.23 Pa 1.33 191 J/kgK 2307 Pa 16710.96 K

Table 3: Atmospheric conditions encountered during an aerocapture mission on Mars

density and pressure at 50 km of altitude, γ is the specific heat ratio and R the specific gas constant of
carbon dioxide, the primary component of the Martian atmosphere, pst is the static pressure measured
in the stagnation point, i.e. the stagnation pressure, and T 0

∞ is total temperature, which is constant
throughout the flow-field for an inviscid, steady flow. Figures 9(a) and 9(b) respectively show the three-

Figure 9: a) 3D domain; b) Boundary conditions of the domain in YZ plane; c) Initial geometry of the
shield

dimensional domain (an hemisphere of radius equal to 3.2 m) and the prescribed boundary conditions.
Figure 9(c) shows the design shape of the shield which is characterized by a rigid nose, marked in red and
by an inflatable part, marked in green. The initial bow shock position is extracted from the S-C solution
shown in Fig. 10(c). A parabola passing through the three points circled in Fig. 10(b) is generated first
and then revolved around the Y -axis to create the initial shock-surface shown in Fig. 10(c).

Figure 10: a) S-C solution in Y Z plane; b) undeformed shield and parabola approximating the bow
shock in the Y Z plane; c) initial shock-surface.
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3.1.1 Computational grids

For this test-case, two nested background tetrahedral grids have been generated in order to also evaluate
the grid-convergence properties of the discretization. The finest background grid is obtained by splitting
each cell of the coarsest one into eight tetrahedra; the coarse-grid surface triangulations of both the
inflatable shield and the bow-shock are similarly split into four nested triangular elements, as shown in
Fig. 11. Table 4 reports the number of grid-points and cells of the volume and surface meshes for both
grid-levels.

Figure 11: a) and b) coarse surface triangulations; c) each triangular element of the coarser mesh is split
into four nested triangles.

Grid Background HIAD Shock
level grid-points tetrahedra grid-points triangles grid-points triangles

1 11020 60285 2400 4770 2053 4032
2 88158 482280 9600 19080 8212 16128

Table 4: Number of grid-points for both grid-levels

3.1.2 Structural model

The structural model is specific to the configuration under analysis and is crucial for understanding how
the structure deforms. In the present test-case, both the rigid nose and the deformable surface of the
HIAD are 1 mm thick and made of Kapton [44], which is assumed to be an isotropic elastic material with
Young’s Modulus E = 2.6 GPa, Poisson’s ratio ν = 0.34 and density ρm = 1420 kg/m3. The following
constraints have been prescribed to simulate the behavior of the inflatable shield:

• the grid-points that belong to the nose of the shield, marked in red in Fig. 12, are constrained to
move only in the flow direction by the same quantity, i.e. the Y -axis of Fig. 12; by doing so, the
nose behaves as a rigid part.

• The grid-points located on the outer crown (the shoulder) of the inflatable structure, marked in
blue in Fig. 12, can only move in the XZ-plane, i.e. the flow-normal direction;

• the rotational degrees of freedom of the structural model have been constrained in order to enhance
the convergence of the structural simulations and to overcome buckling problems, as suggested
in [45, 46].

The constraints applied to the rigid nose and the outer crown allow to simulate the typical inflation and
deflation characteristics of these structures.

The results to be presented in the following paragraph have been obtained using an inflation pressure
pinf = 3462 Pa, which corresponds to 1.5 times the stagnation pressure reported in Tab. 3.
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Figure 12: Structural model of the inflatable shield

3.1.3 Results

The purpose of the simple test-case is twofold: illustrating the iterative convergence properties of the
S-F/FSI algorithm and demonstrating that fitting (rather than capturing) shock-waves allows to preserve
the design order of the scheme in the entire shock-downstream region.

As far as iterative convergence is concerned, Fig. 13 plots the average1 shock-speed (normalized with
respect to its maximum value) versus the CFD iterations counter. The vertical bars shown in the same
figure denote the maximum normalized displacement of the deformable structure obtained at each FSI
iteration. During the first 1200 iterations the shield shape is kept fixed and the shock-speed is seen to
decrease until steady-state is reached. Here we are at the end of Step 2, as described in § 2. In Step 3
the MSC Nastran structural solver is used to compute the new shape of the HIAD under the differential
effect of the constant inflation pressure and aerodynamic pressure computed by the S-F solver in Step 1.
Upon completion of Step 4, the shape of the impermeable surface of the shield has changed and a new

Figure 13: Mean shock velocity and maximum shield displacement plotted against the CFD iterations
counter.

CFD solution must be computed. This is accomplished during the next 600 CFD iterations, see Fig. 13:
the average shock-speed is seen to rapidly increase at first, so as to modify the location and shape of the
bow-shock, and then gradually decrease until a steady-state solution is again reached. After the third FSI

1the average is taken over all grid-points of the shock-surface triangulation
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iteration, the displacement of the membrane has become so small that it no longer affects the flow-field.
Therefore, already two or three FSI iterations suffice to obtain a reasonable iterative convergence. For
all subsequent test-cases three FSI iterations will be used.

Figure 14(a) shows the pressure field in the Y Z symmetry plane obtained at the end of the iterative
procedure described by Fig. 13. Figure 14(b) allows to compare the final (marked in red) and initial
(marked in black) shape of the inflatable shield. The effect of the prescribed constraints is noticeable
for both the rigid nose, which moves upstream because the inflation pressure is larger than stagnation
pressure, and the outer crown, which moves towards the Y -axis. Figure 14(c) allows to compare the
initial and converged shock stand-off distance in the Y Z symmetry plane.

Figure 14: a) Hypersonic flow past an inflatable shield: pressure field in the Y Z symmetry plane; b)
deformation of the inflatable shield in the Y Z-plane; c) differences in the bow-shock stand-off distance
between the initial and steady-state position. The black solid line marks the initial shape, the red dashed
line the one at steady-state.

The advantages offered by fitting the bow-shock are evident when comparing Fig. 14(a) with the S-C
calculation of Fig. 10(a), both computed on grids of nearly identical mesh spacing. In particular, the
pressure field inside the shock layer2 computed by S-F, see Fig. 14(a), is free from the severe disturbances
that are seen in Fig. 10(a). This is a consequence of the unphysical thickness and meandering shape of
the captured shock, which could only be remedied by using anisotropic mesh adaptation.

Figure 15 compares the wall pressure distribution computed on the two grid levels, which reveals
good circumferential symmetry, even on the coarse grid and despite the use of a fully unstructured
tetrahedralization. The capability of the S-F approach to supply high-quality solution even on coarse
meshes implies substantial savings in computational cost.

One possibility to quantitatively asses the quality of a numerical solution when strong shocks are
present consists in comparing the measured and design order-of-accuracy of the spatial discretization in
regions of smooth-flow. S-C discretizations are known to degrade to first order-of-accuracy downstream
of a captured shock, see [47], whereas S-F preserves design order also downstream of a fitted shock [19].

Total temperature is used to compute the measured order globally, because total temperature is
constant throughout the whole flow-field. A local measure of the order-of-accuracy can be computed at
stagnation point, because the bow shock is a normal shock on the stagnation streamline and the flow
is brougth to rest isentropically behind the bow shock along the stagnation streamline; the stagnation
pressure can therefore be analytically computed.

The results are reported in Table 5 and show that the measured order is indeed close to design
order, n = 2, for both the global and local convergence analysis. This implies that both the coarse and
the fine-grid solutions are in the asymptotic range of convergence, i.e. the terms in the discretization
error of order higher than design order are negligible. Moreover, it is worth emphasizing that the total
temperature error on the coarsest mesh is less that 0.1% of the freestream total temperature value and

2in the present context the shock-layer is the region bounded upstream by the bow-shock and downstream by the shield
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Figure 15: Wall pressure distribution on the coarse (left) and fine (right) grid levels

Grid level L1(T
0
∞ − T 0

i )/T
0
∞ Computed phst pst − phst

1 5.718e-04 2304.53 Pa 2.92 Pa
2 1.608e-04 2306.60 Pa 0.85 Pa
ñ 1.83 1.78

Table 5: Grid-convergence analyses: global based on total temperature; local based on stagnation pres-
sure; the analytically computed stagnation pressure, pst is given in Tab. 3.

the stagnation pressore discretization error is about 3 Pa which amounts to 0.1% of the exact stagnation
pressure. These error estimates can be regarded as highly reliable because the numerical solutions are
in asymptotic convergence.

3.2 Test-case 2: complete capsule configuration
In this second test-case we consider a more realistc geometry that includes a closed inflatable shield and
a rigid afterbody.

The spacecraft shown in Figure 16 has the typical shape used for the orbital insertion of SmallSats
using an aerocapture maneuver [48]. Figure 17, where the inflatable part of the structure is painted in
green and the rigid one in blue, shows the shape of the shield when inflated to the design differential
pressure of pinf = 20 kPa.

To model an initially loaded configuration in MSC Nastran, it is necessary to compute and then
impose the initial stress state that balances the internal inflation pressure of the shield. Once the
internal loads are balanced, the interaction with the external fluid dynamics field can be evaluated.

Figure 16: Geometry of the capsule

Figure 17: Front and back point of view

The flow conditions used for this test-case, see Tab. 6, are compatible with a single point of the
trajectory during an aerocapture maneuver on Mars; the symbols have already been introduced by
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reference to Tab. 3.

M∞ ρ∞ p∞ γ R pst T 0
∞

24 2.60 · 10−5 kg/m3 0.73 Pa 1.33 191 J/kgK 526.40 Pa 12248.22 K

Table 6: Atmospheric conditions compatible with an aerocapture manouver on Mars.

Figure 18(a) shows the computational domain; the prescribed boundary conditions are given in
Fig. 18(b).

Figure 18: a) Computational domain; b) prescribed boundary conditions.

The number of grid-points and cells of the background tetrahedral mesh and the two surface trian-
gulations of the shock and the HIAD are reported in Tab. 7.

Background Shield Shock
grid-points tetrahedra grid-points triangles grid-points triangles

21957 128428 2961 5918 3832 7486

Table 7: Number of grid points and cells of the volumetric and surface meshes

The structural model uses the same material properties and simulation settings of the test-case
examined in § 3.1, except for the initial stress field and the following nodal constraints:

• the grid-points that belong to the rigid nose and the afterbody have all degrees of freedom con-
strained, i.e. they are fixed in space;

• the grid-points of the inflatable part are free to translate in any direction, but the rotational degrees
of freedom are blocked, as in the previous test-case.

Simulations have been run for three different values of the inflation pressure, two lower and one equal
to the design inflation pressure, pinf = 20 kPa. The pressure field in the Y Z symmetry plane obtained for
the three different values of the inflation pressure is shown in Fig. 19 and the corresponding shapes of the
bow shock and the HIAD in Fig.20. The comparison among the three frames of Fig. 20 clearly shows that
by changing the inflation pressure, the shape and, to a lesser extent, the cross-sectional area of the shield
are also affected. Both the cross-sectional area, A, and the shield-shape via the drag coefficient, CD,
affect the ballistic coefficient β = m/CDA, m being the mass of the vehicle. The percentage variations
of the ballistic coefficient, with respect to the case at 20 kPa, are reported in Tab. 8.

Table 9 gives the coordinates of three points in the Y Z-plane picked up along the bow shock for
the three different values of the inflation pressure. The point at z = 0 is the intersection between the
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Figure 19: Pressure field in the Y Z plane corresponding to three different inflation pressures, pinf = 4,
12, 20 kPa.

pinf Ballistic coefficient kg/m2 percentage variation
20 kPa 15.66 -
12 kPa 17.74 +13.28%
4 kPa 21.21 +35.45%

Table 8: Percentage variations of the ballistic coefficient

stagnation streamline and the bow shock, see Fig. 19b), whereas the other two are farther away from the
Y axis, see Fig. 19a). In all cases the displacement of the bow shock is remarkable.

z(m) y at 4 kPa (m) y at 12 kPa (m) y at 20 kPa (m)
0 0.081 0.145 0.194
1 -0.355 -0.271 -0.188
2 -1.437 -1.351 -1.269

Table 9: Final shock positions for three different inflation pressures, pinf = 4, 12, 20 kPa.

3.3 Test-case 3: EFESTO configuration
This last test-case reproduces the EFESTO [49] shield, developed by the European Space Agency (ESA)
for Mars reentry maneuvers. The EFESTO shield, which is displayed in Fig. 21 along with its geometrical
features, is made of an inflated toroid connected to the rigid nose and rigid afterbody by two membranes.
The two membranes are connected to the rigid structure and to the inflatable toroid using the three
junctions that have been highlighted in Fig. 22. The presence of the junctions poses a minor challenge
to our technique due to differences between the structural and CFD grids. This is because step 1 of the
algorithm, see § 2, removes all grid-points of the background mesh that fall inside the inflatable structure
where a spatially uniform pressure is prescribed. Therefore, as shown in Fig. 23, the toroidal structure
is visible in the structural grid, but part of it is missing in the CFD mesh. This implies that there is
not any longer a one-to-one correspondance between the grid-points of the surface meshes of the HIAD
in the structural and CFD models. Apart from this, there are no major changes in the FSI coupling
procedure compared to the previous test-cases. Freestream conditions are reported in Tab. 10 whereas
the computational domain and prescribed boundary conditions are shown in Fig. 24(a) and Fig. 24(b),
respectively.

Table 11 gives information about the volumetric and surface meshes used in the CFD model. The
structural model uses the same material properties of the test-case examined in § 3.1, except for the
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Figure 20: Shock shape and structural deformation for three differents inflation pressures, pinf = 4, 12,
20 kPa.

Figure 21: EFESTO heat shield configuration and struc-
tural mesh

Figure 22: EFESTO structural junctions

M∞ ρ∞ p∞ γ R pst T 0
∞

25 1.98 · 10−5 kg/m3 0.65 Pa 1.33 191 J/kgK 254.39 Pa 18017.02 K

Table 10: Sample atmospheric conditions for Mars.

initial stress field and the fact that the translational degrees of freedom have been left unconstrained,
while the rotational ones are kept fixed for the same reasons outlined in § 3.1. The only new feature to
be modeled are the junctions: junction elements must have nodes where the translation is the same for
all the different structural components that meet at the junction, see Fig. 22. This is made possible in
MSC Nastran, which allows to impose identical translation in the connected mesh nodes of the junctions.
Since we lack information regarding the material type and the inflation pressure of the toroid, we use
the same material as in § 3.2 and the shape shown in Fig. 21 as the design shape corresponding to pinf
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Figure 23: Differences between the structural and CFD models.

Figure 24: a) Orthogonal parallelepiped domain; b) Boundary conditions

Background-mesh HIAD Shock
grid-points tetrahedra grid-points triangles grid-points triangles

35671 209505 5621 11438 7530 14883

Table 11: Features of the background tetrahedral mesh and surface triangulations of the inflatable shield
and bow shock

= 20 kPa inflation pressure.
The shape of the bow shock and that of the HIAD in the Y Z-plane are shown in Fig. 25 for both

the fully inflated and partly deflated configurations; the latter is obtained for an inflation pressure equal
to pinf = 10 kPa. Since the deformation of the HIAD is limited, the CFD solution corresponding to the
fully inflated configuration is omitted, whereas the pressure field in the Y Z symmetry plane obtained
when deflating the HIAD at pinf = 10 kPa is shown in Fig. 26. Table 12 shows the coordinates of three
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different points along the intersection between the bow shock the Y Z-plane. The rightmost columns
correspond to the two different values of the inflation pressure.

Figure 25: Structural deformation of the EFESTO
heat-shield: fully inflated and partly deflated config-
urations.

Figure 26: Pressure field around
the EFESTO heat-shield in the Y Z
symmetry-plane when inflated at pinf =
10 kPa

z(m) y at 10 kPa (m) y at 20 kPa (m)
0 0.355 0.505
3 -0.125 0.034
6 -1.46 -1.385

Table 12: Final shock positions for two different inflation pressures, pinf = 10, 20 kPa.

4 Conclusion and Future Work
A novel numerical technique for computing the Fluid-Structure interaction between a geometrically com-
plex inflatable structure and an high-speed flow has been presented and discussed. The methodology
originates from shock-fitting methods that explicitly identify and track the motion of gas-dynamic discon-
tinuities using the Rankine-Hugoniot jump relations. Fitted shocks are modelled as internal boundaries
of negligible thickness that bound regions of the flow-field where a smooth solution to the governing
PDEs exists. A similar approach is used for the inflatable structure, which is modeled as a non-linear
membrane using a commercial structural software. Using the three test-cases included in this paper, we
show that the proposed approach takes advantage of one of the key features of shock-fitting, i.e. high
quality solutions even on coarse meshes. In particular, local and global grid-convergence analyses reveal
a measured order-of-convergence which is very close to design order and small discretization errors.

The only additional requirement for extending the technique to viscous flows is the capability to
deform the boundary layer mesh to adapt to the deforming shape of the HIAD while retaining its
topological integrity. Further developments include the modeling of non-isotropic material behaviour.
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