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Abstract: Developing high-order numerical schemes for compressible flow simulations is challeng-
ing, particularly when it comes to resolving high-wavenumber waves and capturing strong shock
waves simultaneously. Recently, a high-order compact gas-kinetic scheme (GKS) has been devel-
oped based on a time-accurate evolution model. This approach integrates both numerical accuracy
and physical consistency through the direct modeling of gas evolution in a discretized space. The
compact GKS has proven to be exceptionally robust and is capable of employing a large explicit
time step, significantly larger than those used in many conventional compact methods. The con-
struction of the compact GKS is characterized by several key components: 1. High-order compact
spatial reconstruction with only adjacent cells. This involves updating cell-averaged flow variables
and their gradients using high-order time-accurate gas evolution model. A nonlinear limiter is
designed in the high-order time derivatives of the flux function. 2. Flow variable evolution. This
accounts for possible discontinuities at the cell interface to update reliable cell-averaged gradients.
These unique features underpin the robustness and accuracy of the compact GKS. In summary,
the high-order compact GKS relies solely on the high-order evolution model, distinguishing it from
compact schemes based on the first-order Riemann solver.

Keywords: High-Order Compact Scheme, Direct Numerical Modeling, Gas-Kinetic Scheme,
Compressible Flow Simulations.

1 Introduction
The development of high-order compact schemes for compressible flow simulations has gained significant
attention in recent decades, leading to a wide array of methods, including discontinuous Galerkin (DG)
methods [1, 2, 3], correction procedure via reconstruction (CPR) method [4, 5], compact finite difference
schemes [6] and compact finite volume schemes [7, 8]. However, a clear and unifying principle for
constructing such schemes has not been defined. Existing high-order compact schemes often encounter
difficulties and exhibit suboptimal performance, particularly in simulations involving shock waves. The
design of intricate trouble cell detection algorithms and nonlinear limiters has become commonplace in
the pursuit of robust high-order compact schemes.

Constructing high-order compact schemes has traditionally been challenged by the difficulty in defin-
ing physically consistent evolution equations for degrees of freedom within a cell, especially for discon-
tinuous solutions like strong shock waves. This study introduces a novel framework for constructing
compact schemes, emphasizing the use of time-accurate dynamic evolution models. Employing a time-
dependent solver, such as the gas distribution function from the GKS used here, allows for capturing the
time-dependent evolution within a time step from a piecewise polynomial initial condition. This approach
naturally couples space and time, reflecting spatial inhomogeneity and unsteady dynamic effects in the
evolution solution. Projecting this solution yields not only cell averages but also crucial higher-order
spatial information, such as averages of derivatives, for constructing high-order compact schemes.

In the current framework for compact schemes, cell averages and their gradients of flow variables
are updated using fluxes and flow variables obtained from the time-accurate evolution model at cell
interfaces. Two key components are crucial for the accuracy and robustness of these updates. High-
order time evolution model with the nonlinear limiter imposed on the high-order time derivatives of
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the flux function. This approach mitigates oscillations caused by the high-order discretization in time,
particularly in the presence of shock waves crossing cell interfaces within a time step. Independent
evolution of flow variables on both sides of a cell interface: This component accounts for the potential
presence and propagation of discontinuities within a cell during a time step. This ensures robustness
and accuracy of updating cell-averaged gradients even in the presence of strong shock waves.

Under this new framework for constructing compact schemes, a series of high-order compact GKS
are constructed on both structured and unstructured meshes through the design of high-order compact
spatial reconstructions. In each cell, the cell-averaged flow variables and their gradients are provided to
assist the compact reconstruction. The stencil of the compact spatial reconstruction only involves the
nearest neighboring cells of the reconstruction cell, maintaining the consistency between the numerical
and physical domains of dependence. To enhance the linear stability of the scheme, a least-squares
method is generally employed for reconstruction, where the reconstructed polynomial is constrained by
the cell-averaged gradients in a least-squares sense [9]. To handle discontinuities, adaptive nonlinear
reconstruction, such as weighted essentially non-oscillatory (WENO) reconstruction [10, 11, 12, 9], is
necessary. The nonlinear reconstruction employed in the present compact scheme is a newly proposed
hybrid essentially non-oscillatory reconstruction method. However, as this is not the primary focus of
this study, it will not be elaborated here.

The paper is structured as follows: Section 2 presents the framework of high-order compact GKS.
Section 3 showcases the performance of the proposed compact scheme through a series of challenging
numerical test cases. Finally, Section 4 concludes the paper.

2 High-Order Compact Gas-Kinetic Scheme

2.1 Solutions Update
The key to compact schemes lies in updating additional variables inside each mesh cell beyond just the
cell averages of conservative variables, such as the derivatives or their equivalents. Unlike traditional
methods that only compute fluxes of flow variables at cell interfaces, the proposed compact scheme
directly evolves the flow variables at the interface, which is used to update the cell-averaged gradients,
establishing a unique feature for the current high-order compact methods.

The update for cell averages is given by

Wn+1
j = Wn

j +

∫ tn+1

tn
Lj(t)dt, (1)

where Wj is the cell-averaged flow variable defined as

Wj ≡
1∣∣Ωj

∣∣ ∫
Ωj

W(x)dV.

Lj(t) represents the net flux for cell j, whose definition and numerical discretization (Gaussian quadra-
ture) are provided.

Lj(t) = − 1∣∣Ωj

∣∣ ∫
∂Ωj

F · ndS = − 1∣∣Ωj

∣∣ l0∑
l=1

( q∑
k=1

ωkF(xk) · nl

)∣∣Γl

∣∣,
where

∣∣Γl

∣∣ is the face area of the cell, l0 is the number of cell faces, nl is the unit outer normal vector,
and q and ωk are the number of quadrature points and weight of the Gaussian quadrature rule.

Leveraging the modeled flow variables at cell interfaces, the update for cell-averaged gradients, de-
termined via Gauss’s theorem, is given by

∇Wn+1
j ≡ 1∣∣Ωj

∣∣ ∫
Ωj

∇W(x, tn+1)dV =
1∣∣Ωj

∣∣ ∫
∂Ωj

W(x, tn+1)ndS. (2)

Denoting the rightmost term in Eq.(2) as M, its spatial discretization via numerical integration is given
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as

Mn+1
j =

1∣∣Ωj

∣∣ l0∑
l=1

(
|Γl|nl

q∑
k=1

ωkWn+1(xk)
)
,

where Wn+1(xk) is the value at the inner surface of Ωj , which may be different from the value at the
other side of the surface.

This study focuses on the construction of compact scheme with the numerical modeling of flow
variables and fluxes. Details regarding linear spatial reconstruction can be found in the previous work
[12, 9] and are omitted here for brevity.

2.2 Modeling the Flow Variables at Cell Interfaces
The distinct feature of the current compact method is the direct modeling of the flow variables at the
cell interface. The evolution model for W(x, t) at the cell interface is given by

Wl(x, t) = (1− e−∆t/τ0)We(x, t) + e−∆t/τ0Wl
0(x, t),

Wr(x, t) = (1− e−∆t/τ0)We(x, t) + e−∆t/τ0Wr
0(x, t).

(3)

We is obtained by taking moments of the gas distribution function of GKS at the cell interface. Similarly,
Wl

0 and Wr
0 are obtained by taking moments of the gas distribution functions, which depend solely on

the initial reconstructions on the left and right sides, respectively. Details regarding the gas distribution
function of the GKS, as well as the determination of flow variable and its time derivative from the gas
distribution function can be found in [9, 13].

j + 1/2j − 1/2

∇W
n+1

j

W(x, tn)

Figure 1: Schematic of flow variable evolution at the interface.

Fig.1 presents a schematic illustration of the direct numerical modeling for the flow variables at the
cell interface, showcasing how the modeled interface values determine the cell-averaged gradients. The
discontinuous nature of the evolution solution at the interface inherently captures the potential presence
and propagation of a shock discontinuity across the interface within a single time step. The solutions of
flow variables on both sides of the interface may become discontinuous in the general case. The weighting
function e−∆t/τ0 is constructed from a physical relaxation model, while in the smooth flow region under
∆t ≫ τ0, a continuous flow variable at the cell interface is recovered. The relaxation time τ0 is defined
as

τ0 = C
∣∣pl − pr
pl + pr

∣∣∆t,

where pl and pr are the pressures at both sides of the cell interface, and C is a constant coefficient with
a value C = 5 in all test cases in this study. The same modeling of relaxation time in case of numerical
shock wave is firstly proposed in GKS [13].
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2.3 Time Discretization and Nonlinear Limiting in Time
This section presents the explicit time-marching method. By applying nonlinear limiting to the high-
order terms of the numerical flux, a nonlinear 2-stage 4th-order (S2O4) method is constructed.

W
n+1/2
j =Wn

j +
∆t

2
Lj(W

n) +
∆t2

8
Lj,t(W

n),

Wn+1
j =Wn +∆tLj(W

n) +
∆t2

2
Lj,t(W

n)

− ∆t2

3
L̃j,t(W

n) +
∆t2

3
L̃j,t(W

n+1/2),

(4)

where in the second stage from tn to tn+1 a nonlinear limiter for the higher-order time derivatives of the
flux function is introduced [14]. The nonlinearly limited operator L̃j is defined as

L̃j(W) = − 1∣∣Ωj

∣∣ l0∑
l=1

ωt
l

( q∑
k=1

ωkF(xk) · nl

)∣∣Γl

∣∣,
where ωt

l is a nonlinear weight for the lth interface of the cell and ωt
l ∈ [0, 1]. The specific definition of

ωt
l can be found in [14]. The numerical flux and its time derivative in Lj and Lj,t are determined from

the gas distribution function of GKS. A comprehensive presentation can be found in the previous work
[9, 13].

Corresponding to the two-stage update in Eq.(4), the cell-averaged gradients are also updated in two
stages.

∇Wn+1/2
j = Mn

j +
1

2
∆tMn

j,t,

∇Wn+1
j = Mn

j +∆tMn+1/2
j,t .

(5)

3 Numerical Examples

3.1 Advection of Entropy Wave in One Dimension
The test case involves the advection of a 1-D entropy wave in a stationary mean flow. The computational
domain takes [-800, 1000] with free flow boundary conditions applied. The initial condition is

(ρ, U, p) = (1 + 0.5e−ln2x2/1.52 , 1, 1).

This test is similar to the one presented in [15], where the linear advection equation is solved directly
using high-order finite difference and DG schemes with a very small CFL number (CFL< 0.05). The
computational time is t = 400.

For comparison, the result from a 6th-order DG-p5 scheme [15] using a cell size of 5, ensuring
comparable degrees of freedom with the finite volume method, are presented in Fig. 2. This DG-p5
scheme requires updating six independent evolution equations in each cell and employs a CFL number of
1/30, achieving 4th-order accuracy through a 4-stage time marching method. In contrast, the compact
GKS updates only one gas distribution function evolution equation at the cell interface to update both
cell-averaged values and slopes, achieving 4th-order accuracy with a CFL number of 0.5 using a 2-stage
time marching method. This difference highlights the efficiency of the compact GKS, even for smooth
flows. Furthermore, the use of a coarse mesh to resolve the high-wavenumber entropy waves leads to
noticeable numerical oscillations in the DG-p5 result, while the 6th-order compact GKS result remains
oscillation-free.

3.2 Viscous Shock Tube Flow
The viscous shock tube problem, characterized by complex shock wave and boundary layer interac-
tion, demands numerical methods with both robustness and accuracy. This study investigates this
phenomenon within a unit square cavity, employing a symmetrical boundary condition at the top and
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Figure 2: Advection of a 1-D entropy wave: the results are obtained at t = 400 by the 6th-order compact
GKS and DG-p5 schemes after a long period of wave propagation.

non-slip adiabatic conditions on the remaining walls. The initial condition is

(ρ, U, V, p) =

{
(120, 0, 0, 120/γ), 0 ≤ x < 0.5,

(1.2, 0, 0, 1.2/γ), 0.5 ≤ x ≤ 1.

The fluid viscosity is set at µ = 0.005, resulting in a Reynolds number of Re = 200. The Prandtl number
in the current computation is set to be Pr = 1. The specific heat ratio γ is 1.4. Initially, a shock wave,
followed by a contact discontinuity, propagates towards the right wall, forming a thin boundary layer
along the lower wall. This interaction ultimately leads to a lambda-shaped shock pattern after reflection
from the right wall. The computational time is t = 1.

The left figure of Fig. 3 presents a local view of the triangular mesh with a cell size of 1/400, and
the right figure of Fig. 3 shows the density contours at the final time, t = 1. The 4th-order compact
GKS is adopted and it successfully captures both the vortex structures and the lambda shock with no
discernible numerical oscillations near the shock front. The left figure of Fig. 4 illustrates the mesh
convergence of the 4th-order compact GKS. As the mesh is refined, the density distribution along the
lower wall obtained with the compact GKS approaches the reference solution, which is obtained using a
non-compact high-order GKS on a very fine mesh [16]. The right figure of Fig. 4 compares the solution of
the 4th-order compact GKS with the results obtained by the 3rd-order CPR method [17], both utilizing
the gas distribution function of GKS for flux calculations. Notably, the 4th-order compact GKS achieves
superior accuracy even on a coarser mesh compared to the 3rd-order CPR method. Moreover, the
4th-order compact GKS does not require any troubled-cell detection or non-linear limiting procedures.

Figure 3: Viscous shock tube flow. Local computational mesh with cell size h = 1/400 and the density
contours.
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Figure 4: Viscous shock tube flow. The density distribution along the lower wall. The left figure shows
results obtained using the 4th-order compact GKS on meshes with varying cell sizes. The right figure
compares the 4th-order compact GKS and the 3rd-order CPR scheme, both utilizing the gas distribution
function of GKS for flux calculations.

3.3 3-D Implosion Problem
The 3-D Noh problem [18], an implosion test modeling gas compression with a constant radial velocity
towards a spherical center, is simulated on a computational domain of [0, 0.3]3. The initial density and
pressure are ρ = 1 and p = 1× 10−4, and the velocity is (U, V,W ) = (−x,−y,−z)/

√
x2 + y2 + z2. The

specific heat ratio is γ = 5/3. Inviscid wall boundary conditions are applied at x = 0, y = 0, and z = 0,
while supersonic inflow boundary conditions, using the initial pressure, velocity, and analytical density
solution, are imposed on the remaining boundaries. The analytical solution of density is given as

ρ =

{
64, r < t/3,

(1 + t/r)2, r > t/3.

The final computational output time is t = 0.6. The mesh consists of tetrahedral cells with an average
side length of h = 0.01.

Fig. 5 displays the computational mesh and 3-D density contours. Fig. 6 presents density profiles
along lines connecting the origin to (0.3, 0.15, 0.15), (0.15, 0.3, 0.15), (0.15, 0.15, 0.3), and (0.3, 0.3, 0.3) at
a final time of t = 0.6. A large CFL number of CFL= 0.5 is used in the current computation without
any additional limiting. The compact GKS accurately captures the strong shock wave, achieving a post-
shock density profile comparable to that of a hybrid 5th- and 6th-order WENO scheme on a structured
mesh with a five-times smaller mesh cell size [18]. Furthermore, simulations of this test case using other
compact methods are scarcely reported in the literature.

4 Conclusion
This study presents a novel framework for constructing high-order compact schemes. Within the current
framework, based on the time-accurate gas distribution function of the GKS, both the numerical fluxes
and the flow variables at the cell interface are numerically modeled. These time-dependent solutions
are employed to update the cell-averaged flow variables and their gradients. Two key ingredients are
introduced to ensure both the robustness and high-order accuracy of the updating solutions. The evo-
lution model accounts for the possibility of a shock discontinuity is located on or passes through a cell
interface within a single time step. This is achieved by evaluating flow variables on both sides of the
interface, enabling reliable updates of cell-averaged gradients when a shock wave appears and propagates
at the cell interface. A nonlinear limiting procedure, analogous to spatial WENO schemes, is applied to
the high-order time derivative of the flux function within the multi-stage multi-derivative time-stepping
method. This mitigates the possible spurious oscillations as a shock traverses a cell interface during a
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Figure 5: 3-D Implosion Problem: the tetrahedral mesh (left) and density contours (right) by 4th-order
compact GKS of Noh problem at t = 0.6. The average side length of cells of the tetrahedral mesh is
h = 0.01.
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Figure 6: 3-D Implosion Problem: the density distribution along lines by 4th-order compact GKS of Noh
problem at t = 0.6. The average side length of cells of the tetrahedral mesh is h = 0.01.

time step. A series of high-order compact GKS schemes have been constructed on both structured and
unstructured meshes through high-order compact spatial reconstructions. The superior robustness and
accuracy of these compact schemes are demonstrated through a series of challenging numerical test cases.
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