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Abstract: In this paper, we present a third-order hyperbolic Navier-Stokes solver for two-
dimensional unsteady simulations on adaptive space-time tetrahedral grids. The developed third-
order hyperbolic Navier-Stokes solver is highly efficient: (1) no second derivatives are required,
(2) it only requires a single numerical flux per edge, (3) third-order accuracy is achieved in both
solution variables and their gradients on irregular grids, (4) third-order accuracy is achieved on
linear tetrahedral grids (high-order curved elements are not required), (5) convergence acceleration
is achieved by eliminating second-order operators despite the increase in the number of variables
and equations. These advantages are demonstrated for space-time computations with tetrahedral
grids generated by anisotropic grid adaptation.
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1 Introduction

Towards efficient, accurate, and automated computational fluid dynamics (CFD) simulations,
we have recently been focusing on the development of space-time solvers [1, 2, 3], where unsteady
governing equations are solved in a larger space with the physical time treated as an additional coordinate
[4, 5, 6, 7]. A larger discrete problem arising from the space-time formulation allows us to exploit
an ever-increasing parallelism, breaking the latency barrier, which limits the degree of parallelism for
conventional solvers wth an explicit/implicit time-stepping scheme. It can be especially efficient when
combined with anisotropic grid adaptation with tetrahedral grids as demonstrated in Ref. [6], for example,
and in our previous papers [1, 2, 3]. However, it is well known that accuracy of gradients is severely
degraded on such highly-skewed irregular tetrahedral grids. To address the issue of inaccurate gradients
on adaptive tetrahedral grids, and to further improve efficiency, we developed a second-order accurate
space-time hyperbolic Navier-Stokes (HNS) solver [3] and demonstrated superior gradient accuracy and
faster convergence for two-dimensional unsteady viscous flows. In this paper, we extend the space-time
HNS solver to third-order accuracy.

To achieve third-order accuracy, we employ the third-order edge-based method [8], which is a highly
efficient discretization method in that no second derivatives are required and only a single numerical flux
is required per edge. Moreover, it can achieve third-order accuracy without a high-order curved grid even
for problems involving curved boundaries [9, 10]. By applying the third-order edge-based method to the
space-time HNS formulation [3], we achieve third-order accuracy not only in the solution variables but
also in their gradients on arbitrary tetrahedral grids. Moreover, iterative convergence acceleration can
be expected due to the elimination of numerical stiffness associated with the discretization of second-
derivative operators [11]. These features are highly desirable especially in computations on adaptive
tetrahedral grids, where many existing CFD methods fail to produce accurate gradient quantities such
as viscous stresses and heat fluxes [12].
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2 Unsteady Compressible Navier-Stokes Equations

Consider the unsteady compressible Navier-Stokes (NS) equations:

∂tρ+ div(ρv) = 0, (1)

∂t(ρv) + div(ρv⊗v) = −grad p+ div τ , (2)

∂t(ρE) + div(ρvH) = div (τv)− divq, (3)

where t is the physical time,⊗denotes the dyadic product, ρ is the density, v is the velocity vector, p is
the pressure, E is the specific total energy, and H = E + p/ρ is the specific total enthalpy. The viscous
stress tensor τ and the heat flux q are given, under Stokes’ hypothesis, by

τ = −2

3
µ(divv)I+ µ

(
gradv + (gradv)t

)
, q = − µ

Pr(γ − 1)
gradT, (4)

where I is the identity matrix, T is the temperature, γ is the ratio of specific heats (γ = 1.4 for air),
Pr is the Prandtl number, µ is the viscosity defined by Sutherland’s law, and the superscript t denotes
the transpose. All the quantities are assumed to have been nondimensionalized by their free-stream
values except that the velocity and the pressure are scaled by the free-stream speed of sound and the
free-stream dynamic pressure, respectively (see Ref.[13]). Thus, the viscosity is given by the following
form of Sutherland’s law:

µ =
M∞

Re∞

1 + C/T̃∞

T + C/T̃∞

T
3

2 , (5)

where T̃∞ is the dimensional free stream temperature, and C = 110.5 [K] is the Sutherland constant.
The ratio of the free stream Mach number, M∞, to the free stream Reynolds number per grid unit, Re∞,
arises from the nondimensionalization. The system is closed by the nondimensionalized equation of state
for ideal gases:

γp = ρT. (6)

As in the previous work [3], we will first reformulate the viscous terms as a hyperbolic system and then
discretize it by an upwind discretization method. In the next section, we briefly describe the hyperbolic
formulation.

3 A Hyperbolic Navier-Stokes System

There exist five possible hyperbolic formulations for the viscous terms: HNS8 [12], HNS14 [14], HNS17
[11], HNS20 [11], and HNS20G [15]. HNS8 involves only the temperature derivatives as extra unknowns
and is an economical choice if one is interested only in getting accurate heat fluxes [12]. In this work,
as in the previous paper, we employ HNS20G, which was first introduced in Ref.[15] to simplify the
development of high-order reconstructed discontinuous Galerkin methods. In HNS20G, we reformulate
an HNS system by adding extra variables r, g, h corresponding to the gradients of the primitive variables,
which are called the gradient variables:

∂τρ+ ∂tρ+ div(ρv) = div (νrr) , (7)

∂τ (ρv) + ∂t(ρv) + div(ρv⊗v) = −grad p+ div (µvτ̃ ) , (8)

∂τ (ρE) + ∂t(ρE) + div(ρvH) = div (µvτ̃v) + div

(
µh

γ(γ − 1)
h

)
, (9)

Tv ∂τg = gradv − g, (10)

Th ∂τh = gradT − h, , (11)

Tr ∂τr = grad ρ− r, (12)
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where τ is a pseudotime variable, and τ̃ = − 1
2 tr(g)I+

3
4 (g + gt),

Tr =
L2
r

νr
, Tv =

ρL2
v

µv

, Th =
ρL2

h

µh

, µv =
4µ

3
, µh =

γµ

Pr
, νr = 10−12, (13)

and the length scales may be defined as Lr = Lv = Lh = 1/(2π) or, as in Refs.[15, 16],

Lr = Ld =
1

2π
,

Lv =
Ld√
Rev∞Ld

, Rev∞Ld
=

U∞Ld

νv∞
,

Lh =
Ld√
Reh∞Ld

, Reh∞Ld
=

U∞Ld

νh∞
,

(14)

where U∞ is the free-stream flow speed and the subscript ∞ refers to the free-stream state. The latter
is more suitable for high-Reynolds-number flows.

The HNS20G system is equivalent to the original NS system as soon as the pseudotime derivatives are
dropped, and we will do so after the discretization. Then, the gradient variables r, g and h correspond
to the density, temperature, and velocity gradients:

r = grad ρ, g = gradv, h = gradT. (15)

The viscous part of HNS20G is hyperbolic in the pseudotime, and therefore can be discretized by an
upwind method similarly to the inviscid part. Once the viscous part is discretized, we will drop the
pseudotime terms and arrive at a consistent discretization of the original NS system in a first-order
form. The HNS method is a way of deriving a superior discretization for the original NS system via a
hyperbolic formulation.

4 Hyperbolicity and Upwind Fluxes

Consider the vector form of the HNS20G system in two dimensions:

P−1 ∂u

∂τ
+

∂f time
t

∂t
+

∂f invx

∂x
+

∂f invy

∂y
+

∂fvisx

∂x
+

∂fvisy

∂y
+

∂fahdx

∂x
+

∂fahdy

∂y
= s, (16)

where τ is a pseudotime variable, P−1 = diag(1, 1, 1, 1, Tr, Tr, Tv, Tv, Tv, Tv, Th, Th),

u =




ρ

ρu

ρv

ρE

gux

guy

gvx

gvy

hx

hy

rx

ry




, f time
t =




ρ

ρu

ρv

ρE

0

0

0

0

0

0

0

0




, f invx =




ρu

ρu2 + p

ρuv

ρuH

0

0

0

0

0

0

0

0




, f invy =




ρv

ρuv

ρv2 + p

ρvH

0

0

0

0

0

0

0

0




, (17)
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fvisx =




0

−µv τ̃xx

−µv τ̃xy

−µv τ̃xxu− µv τ̃xyv − µh

γ(γ−1)hx

−u

0

−v

0

−T

0

−ρ

0




, fvisy =




0

−µv τ̃yx

−µv τ̃yy

−µv τ̃yxu− µv τ̃yyv − µh

γ(γ−1)hy

0

−u

0

−v

0

−T

0

−ρ




, (18)

fahdx =




−νrrx

0

0

0

0

0

0

0

0

0

−ρ

0




, fahdy =




−νrry

0

0

0

0

0

0

0

0

0

0

−ρ




, s =




s1(x, y, t)

s2(x, y, t)

s3(x, y, t)

s4(x, y, t)

−gux

−guy

−gvx

−gvy

−hx

−hy

−rx

−ry




, (19)

where s1, s2, s3, s4 are forcing terms used here only for verification studies, and fahdx and fahdy are the
fluxes for the artificial hyperbolic diffusion system introduced to obtain accurate density gradients [11].

If we focus on the inviscid terms,

P−1 ∂u

∂τ
+

∂f invx

∂x
+

∂f invy

∂y
= 0, (20)

this system is known to be hyperbolic in τ , and an upwind flux (or a Riemann solver) in an arbitrary
direction ˆ̂nxy in the (x, y)-space can be constructed as

Φ
inv(ˆ̂nxy) =

1

2

[
f inv(wL) + f inv(wR)

]
− 1

2
P−1

∣∣∣∣P
∂f inv

∂u

∣∣∣∣ (uR − uL) , (21)

where f inv = (f invx , f invy ) · ˆ̂nxy, ˆ̂nxy is a unit vector, uL and uR are left and right states in the conser
vative variables, wL and wR are left right states in the primitive variables,

w = (ρ, u, v, p, gux, guy, gvx, gvy, hx, hy, rx, ry)
t, (22)

and the dissipation matrix is evaluated at the Roe averages [17]. Note that the local preconditioning
matrix P has no impact on the inviscid terms, and therefore, we actually have

Φ
inv =

1

2

[
f inv(wL) + f inv(wR)

]
− 1

2

∣∣∣∣
∂f inv

∂u

∣∣∣∣ (uR − uL) . (23)

The Roe flux is just one example; any other numerical flux can be employed.
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Similarly, if we focus on the physical time derivative term,

P−1 ∂u

∂τ
+

∂f time
t

∂t
= 0, (24)

we find that this system is also hyperbolic in τ and P has no impact on this system. Therefore, we can
construct an upwind flux in an arbitrary direction ˆ̂nt in time, simply as

Φ
time(ˆ̂nt) =

1

2
[ũL + ũR] ˆ̂nt −

1

2
|ˆ̂nt| (ũR − ũL) , (25)

where ˆ̂nt is -1 or 1, and ũ = (ρ, ρu, ρv, ρE, 0, 0, 0, 0, 0, 0, 0, 0).
Next, we focus on the viscous terms,

P−1 ∂u

∂τ
+

∂fvisx

∂x
+

∂fvisy

∂y
= 0, (26)

which is also hyperbolic in τ , and a upwind flux in an arbitrary direction ˆ̂nxy in the (x, y)-space can be
constructed as

Φ
vis
jk (ˆ̂nxy) =

1

2

[
fvis(wL) + fvis(wR)

]
− 1

2
P−1

{∣∣∣∣P
∂fvis

∂u

∣∣∣∣ (uR − uL) +∆Φ
AHD

}
, (27)

where fvis = (fvisx , fvisy ) · ˆ̂nxy, and ∆Φ
AHD is the artificial hyperbolic dissipation to introduce strong

coupling among velocities and their gradients [3, 11]. The analytical expression for the dissipation term
can be found in Ref. [3].

Finally, we focus on the artificial hyperbolic diffusion part [11]:

P−1 ∂u

∂τ
+

∂fahdx

∂x
+

∂fahdy

∂y
= 0, (28)

which is also hyperbolic in τ , and an upwind flux can be constructed as

Φ
ahd(ˆ̂nxy) =

1

2

[
fahd(wL) + fahd(wR)

]
− 1

2
P−1

∣∣∣∣P
∂fahd

∂u

∣∣∣∣ (uR − uL) , (29)

where fahd = (fahdx , fahdy ) · ˆ̂nxy, and

∣∣∣∣P
∂fahd

∂u

∣∣∣∣ (uR − uL) =

(
νr

Lr

∆ρ, 0, 0, 0, 0, 0, 0, 0, 0, 0,
νr

Lr

∆rnn̂x,
νr

Lr

∆rnn̂y

)t

, (30)

∆ρ = ρR − ρL, and ∆rn = (rx, ry) · ˆ̂nxy.
Therefore, all the terms in the HNS20G system are hyperbolic in τ and upwind fluxes can be con-

structed for all of them. We are now ready to discuss the third-order discretization.

5 A Third-Order Space-Time Hyperbolic Navier-Stokes Solver

5.1 Third-Order Accurate Discretization

We consider a tetrahedral grid in the (x, y, t)-space, and discretize the HNS20G system by the third-
order edge-based discretization method [8]:

P−1
j

duj

dτ
+Resj = 0, (31)

Resj =
∑

k∈{kj}

[
Φjk|njk|−

1

2
(aLsj + bL∇sj · (xk − xj) + aRsk)Vjk

]
, (32)

where {kj} is a set of neighbor nodes of j, xk−xj is the edge vector, |njk| is the magnitude of the directed
area vector njk = (nx, ny, nt), which is the sum of the directed-areas corresponding to the dual-triangular
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faces associated with all tetrahedral elements sharing the edge [j, k] (see Figure 1), Vjk = (xk−xj)·njk/6,
aL = 13/5, bL = 3/5, and aR = −3/5, which correspond to an economical formula derived for third-order
accuracy in Ref. [8], and Φjk is the sum of the upwind fluxes constructed for the inviscid, viscous, and
time fluxes:

Φjk =
[
Φ

inv
jk (ˆ̂nxy) +Φ

vis
jk (ˆ̂nxy)

]√
n̂2
x + n̂2

y +Φ
time
jk (ˆ̂nt)|n̂t|, (33)

where n̂jk = njk/|njk| = (n̂x, n̂y, n̂t)
t, and

ˆ̂nxy =
(n̂x, n̂y)

t

√
n̂2
x + n̂2

y

, ˆ̂nt =
n̂t

|n̂t|
. (34)

For third-order accuracy, we must perform the solution reconstruction,

wL = κ
wj +wk

2
+ (1− κ)

[
wj +

1

2
∇wLSQ

j · (xk − xj)

]
, (35)

wR = κ
wj +wk

2
+ (1− κ)

[
wk − 1

2
∇wLSQ

k · (xk − xj)

]
, (36)

with κ = 0 (third-order accuracy is lost with κ %= 0 as demonstrated in Ref. [11]), and we must compute

the solution gradients ∇wLSQ
j and ∇wLSQ

k by a quadratic least-squares method. In this study, we
employed the two-step method proposed in Ref. [18], which involves neighbors of the edge-connected
neighbors but can be implemented without accessing them directly. Once the solution reconstruction
is done, we compute the conservative variables uL and uR algebraically from the primitive variables:
uL(wL) and uR(wR). For third-order accuracy, we must also perform the flux extrapolation:

Φ
inv
jk (ˆ̂nxy) =

1

2

[
f invL + f invR

]
− 1

2

∣∣∣∣
∂f invn

∂u

∣∣∣∣ (uR − uL) , (37)

Φ
vis
jk (ˆ̂nxy) =

1

2

[
fvisL + fvisR

]
− 1

2
P−1

{∣∣∣∣P
∂fvisn

∂u

∣∣∣∣ (uR − uL) +∆Φ
AHD

}
, (38)

where

f invL = f invj +
1

2

(
∂f inv

∂w

)

j

∇wLSQ
j · (xk − xj), (39)

f invR = f invk − 1

2

(
∂f inv

∂w

)

k

∇wLSQ
k · (xk − xj), (40)

fvisL = fvisj +
1

2

(
∂fvis

∂w

)

j

∇wLSQ
j · (xk − xj), (41)

fvisR = fvisk − 1

2

(
∂fvis

∂w

)

k

∇wLSQ
k · (xk − xj), (42)

where the chain rule has been used to avoid computing the flux gradients. Note that the time flux Φ
time
jk

and the artificial hyperbolic diffusion flux are linear in the solution variables, and therefore, we employ
the fluxes given in Equations (25) and (29), which are equivalent to the flux extrapolation.

The residual is closed at boundaries by using an accuracy-preserving boundary flux quadrature for-
mula derived in Ref. [9] for third-order accuracy. It is emphasized that third-order accuracy is achieved
over a curved boundary without using a high-order curved grid and the grid must be purely tetrahe-
dral with triangulated boundaries in order to achieve third-order accuracy. See Refs. [9, 10]. Boundary
conditions are implemented in a weak manner through the right state in a numerical flux at boundary
nodes.
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5.2 Nonlinear Solver

To obtain a space-time solution, we drop the peudotime terms and solve the global system of the
residual equations:

Res(U) = 0, (43)

where U denotes a global vector of unknowns and Res is a global vector of residuals, whose j-th system
is given by Equation (32), by a Jacobian-Free Newton-Krylov (JFNK) solver:

Um+1 = Um +∆U, (44)

where m is the iteration counter and ∆U is a correction computed by the generalized conjugate residual
(GCR) method (a Krylov solver). Following the algorithm presented in Ref.[11, 19], we set x0 = 0,
r0 = −Res(Um), p0 = Ã−1r0, and perform for i = 0, 1, 2, · · · , iGCR

max

αi =
(Api)

T ri
(Api)T (Api)

, xi+1 = xi + αipi, ri+1 = ri − αiApi, , (45)

where iGCR
max is a user-defined integer, and A = ∂Res/∂U is the true Jacobian, but the computation

and storage are avoided by computing the matrix-vector product, e.g., Api, by the Fréchet derivative
approximation:

Api =
Res(Um + εpi)−Res(Um)

ε
, (46)

where

ε = max(1, |Um|)
√
10−16. (47)

If the residual ri+1 is sufficiently small, i.e.,
√

rTi+1ri+1/
√
rT0 r0 < µGCR, where µGCR is a user-defined

tolerance (e.g., µGCR = 0.1), then stop and obtain the correction as ∆U = xi+1. If the residual is not
sufficiently small, compute pi+1 = Ã−1ri+1, perform the orthogonalization for k = 0, 1, 2, · · · , i:

βi =
(Api)

T (Apk)

(Apk)T (Apk)
, pi+1 = pi+1 + βkpk, Api+1 = Api+1 − βkApk, (48)

and go back to the step (45).
The symbol Ã−1 denotes a variable-preconditioner based on a multi-color Gauss-Seidel relaxation,

which approximately inverts an approximate Jacobian Ã = ∂Res

∂U
, where Res is a lower-order residual

with zero LSQ gradients. Note that it corresponds to the exact derivative of a first-order scheme for
the HNS schemes but of a zeroth-order scheme for conventional viscous schemes [20, 21, 22]. Therefore,
superior convergence is expected especially for highly-skewed grids. The linear relaxation is performed
with the tolerance µGS of 50% residual reduction (i.e., µGS = 0.5), or for a specified maximum number
iGS
max of relaxations (e.g., iGS

max = 10). In this study, we do not add any psuedotime term to any of the
Jacobians; in a typical nonlinear solver, this corresponds to setting the CFL number to infinity.

6 Results

6.1 Accuracy Verification

To verify third-order accuracy, we solve the residual system for a series of four irregular tetrahedral
grids (sections of the coarsest one is shown in Figure 2 in the space-time domain) by the second-order
HNS scheme, HNS(2nd), developed in Ref. [3], the third-order HNS scheme, HNS(3rd), developed in this
work, and a conventional NS scheme, Alpha4/3, directly discretizing the original NS system [2].

Figures 3a and 3b show error convergence results for the density and the x-derivative of the density.
Results are similar for other variables, and therefore not shown. For the density, as can be seen, Alpha4/3
and HNS(2nd) achieve second-order accuracy while HNS(3rd) achieves third-order accuracy as expected.
On the other hand, for the x-derivative of the density, HNS(2nd) and HNS(3rd) achieve second- and
third-order accuracy, respectively, as expected, whereas Alpha4/3 gives only first-order accuracy in
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the gradients, which is one-order-lower than the solution accuracy as typical in conventional schemes.
Improved gradient accuracy can be seen clearly in the contour plots shown for the coarsest grid in Figure
4. Clearly, the HNS schemes produce more accurate gradients and HNS(3rd) produces the most accurate
gradients.

Figure 5 shows that the solver converged faster not only in the number of iterations but also in
CPU time for HNS(2nd) and HNS(3rd) than for Alpha4/3. For this test case, we set the JFNK solver
parameters as iGCR

max = 2, µGCR = 0.5, iGS
max = 10, and µGS = 0.5. The solver is taken to be converged

when the nonlinear residuals are reduced by five orders of magnitude. Here, we observe that the improved
condition number (by the elimination of second-derivative operators) leads to acceleration in terms of
the number of iterations. In this case, iGS

max = 10 is not sufficient to meet the tolerance µGS = 0.5 for
Alpha4/3 while it is sufficient for the HNS schemes; and the GCR linear residual is only reduced by 15%
(i.e., µGCR = 0.5 is not met with iGCR

max = 2) whereas the tolerance µGCR = 0.5 is always met for the
HNS schemes. As a result of fewer numbers of iterations, the solver converged faster in CPU time for
the HNS schemes despite the extra computational cost (due to 8 additional equations) required in each
iteration. This is a known advantage of the HNS method as demonstrated in previsou studies [11, 14].

6.2 A Viscous Flow over Circular Cylinder at Re∞ = 150

Next, we consider a viscous flow over a circular cylinder centered at the origin at Re∞ = 150 and
M∞ = 0.15. The outer boundary is defined by the semi-circle of radius 10 centered at the origin,
straight farfield boundaries located at the distance 10 from the x-axis, and a straight outflow boundary
at x = 15; and the two-dimensional domain is extended in the z direction from z = 0 to z = 150 for
computing an unsteady viscous flow from time 0 to time 150. The grid is an adaptive tetrahedral grid
with 304,370 nodes and 1,703,679 tetrahedra generated in the previous study [3] by the refine package
(https://github.com/nasa/refine) developed at NASA Langley Research Center. The grid and a section
at y = 0 are shown in Figures 6a and 6b, respectively. As can be seen, the grid is anisotropically adapted
to capture vorticies generated from the cylinder and convected towards the outflow boundary. This grid
is far more efficient than a time-slab space-time grid generated by extruding a two-dimensional grid, such
as the top boundary in Figure 6a, in the time direction. Observe, in particular, the coarse-grid region
ahead of the cylinder, where the flow is nearly uniform and high resolution is not necessary, in contrast
to a time-slab space-time grid, where the grid spacing in time will be uniformly fine including such a
constant-flow region. For this test case, we set the JFNK solver parameters as iGCR

max = 25, µGCR = 0.5,
iGS
max = 150, and µGS = 0.1. The solver is taken to be converged when the nonlinear residuals are reduced
by eight orders of magnitude. As before, we compare three schemes: Alpha4/3 [2], HNS(2nd) [3], and
HNS(3rd) developed in this work.

Figures 7, 8, 9, and 10 show grids and Mach contours for four sections taken from z = 10, 50, 130, and
149, respectively. As can be seen, a typical vortex shedding is observed towards the final time z = 149,
and the grid is adapted for each solution. Note that these grids are sections of the three-dimensional
grid adapted for solutions in the space-time domain. Overall, the numerical solutions look similar for
the three schemes. The vortices look stronger in the third-order accurate solution; see Figure 10, for
example.

Figures 11a, 11b, 11c, and 11d show a grid at z = 149 and vorticity contours computed by the
LSQ method from the numerical solution for Alpha4/3, and those obtained by the gradient variables for
the HNS schemes, respectively. Note that the vorticity in the HNS cases is obtained directly from the
gradient variables: guy − gvx. As can be seen, the HNS vorticity contours are smoother than the LSQ
vorticity contours as expected, and HNS(3rd) produced smother contours than HNS(2nd). Improvements
are more significant in regions of high anisotropy, for example, near the surface, as can be observed in
the zoomed-in plots as shown in Figure 12. In Figure 13, the vorticity contours are compared over the
circular cylinder surface. It can be clearly seen that the HNS vorticity contours are significantly smoother
than the LSQ vorticity contours, and HNS(3rd) gives smother contours than HNS(2nd).

Figure 14 shows iterative convergence results. First, we see from Figure 14a that the solver converged
for nearly the same number of iterations for Alpha4/3, HNS(2nd), and HNS(3rd). However, in terms of
CPU time, the solver converged faster for HNS(2nd) and HNS(3rd) than for Alpha4/3. As well known,
a linearized equation of the HNS residuals has a reduced condition number by a factor of O(h), where
h denotes a representative mesh spacing, compared with a conventional residual. This leads to a speed-
up in the linear relaxation scheme in the preconditioner, and consequently to a reduction in the GCR
projections (Krylov vectors). These are shown in Figures 14c and 14d. Especially, near the end of the
iteration, Alpha4/3 required significantly more linear relaxations and GCR projections. As a result, the
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solver converged faster in CPU time for the HNS schemes despite the additional cost (associated with 8
extra variables and equations) per iteration. Therefore, the HNS solvers can produce significantly more
accurate and smoother gradients on adaptive grids faster in CPU time than a conventional solver.

7 Concluding Remarks

In this paper, we developed a third-order hyperbolic Navier-Stokes solver for two-dimensional un-
steady simulations on adaptive space-time tetrahedral grids. Numerical results are presented to demon-
strate that the third-order HNS solver is more efficient than a conventional Navier-Stokes solver and
is capable of producing highly accurate gradients on adaptive tetrahedral grids. In particular, we have
shown that the third-order HNS solver can produce more accurate solutions and gradients that the
second-order HNS solver at little additional cost.

In this work, we focused on the HNS formulation with spatial gradients only. It is possible and may
be interesting to include the temporal derivatives of the solutions as additional unknowns. It will allow
us to construct more efficient variants of the HNS schemes, Scheme II and Scheme IQ [10]. In the future
work, we plan to apply the third-order HNS solver to compute an unsteady flow over a pitching airfoil
as an example of simulating an unsteady flow with a moving body by a single nonlinear solve in a static
space-time grid (nothing is moving in the space-time domain).
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(a) Dual face contributions to the directed-area vector
from an adjacent tetrahedral element to the edge.
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(b) Total dual face at the edge contributing to the
directed-area vector.

Figure 1: Dual face contributions at the edge [j, k]. A numerical flux is evaluated at the midpoint of the
edge [j, k]. In (a), the centroid of the tetrahedral element is denoted by c, and the centroids of the two
adjacent triangles are denoted by cL and cR.
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Figure 2: Coarsest grid in accuracy verification.
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Figure 3: Accuracy verification results: error convergence.
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Figure 4: Accuracy verification results: gradient contours.
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Figure 5: Accuracy verification results: iterative convergence.
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Figure 6: Grid for the second cylinder test case.
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Figure 7: Section plots for z = 10 in the cylinder test case.
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(a) Grid at z = 50. (b) Alpha4/3.

(c) HNS(2nd). (d) HNS(3rd).

Figure 8: Section plots for z = 50 in the cylinder test case.

(a) Grid at z = 130. (b) Alpha4/3.

(c) HNS(2nd). (d) HNS(3rd).

Figure 9: Section plots for z = 130 in the cylinder test case.
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(a) Grid at z = 149. (b) Alpha4/3.

(c) HNS(2nd). (d) HNS(3rd).

Figure 10: Section plots for z = 149 in the cylinder test case.
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Figure 11: Grids and vorticity contours at z = 149 for the second cylinder test case.
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Figure 12: Grids and vorticity contours at z = 149 for the cylinder test case (zoomed-in views).
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Figure 13: Grid and vorticity contours over the circular cylinder surface.
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Figure 14: Residual convergence results for the cylinder test case.
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