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1 Introduction
When we solve hyperbolic conservation laws, the difficulty lies in twofold: discontinuities may emergy in
finite time even when the initial condition is sufficiently smooth, plus discontinuous solutions are usually
accompanied by sophisticated structures with multi-scales. Therefore, high-order numerical schemes with
excellent shock-capturing and multi-resolution properties are preferred for solving such problems. The
essentially non-oscillatory (ENO) schemes [1] and weighted ENO (WENO) schemes [2, 3] are cutting-edge
high-order shock-capturing schemes and achieve great success in practice.

In this study, we construct an efficient class of very high-order (up to 17th-order) essentially non-
oscillatory schemes with multi-resolution (ENO-MR) for solving hyperbolic conservation laws. The
candidate stencils for constructing ENO-MR schemes range from first-order one-point stencil increasingly
up to the designed very high-order stencil. The proposed ENO-MR schemes adopt a very simple and
efficient strategy that only requires the computation of the highest-order derivatives of a part of candidate
stencils. Besides simplicity and high efficiency, ENO-MR schemes are completely parameter-free and
essentially scale-invariant. Theoretical analysis and numerical computations show that ENO-MR schemes
achieve designed high-order convergence in smooth regions which may contain high-order critical points
(local extrema) and retain ENO property for strong shocks. In addition, ENO-MR schemes could capture
complex flow structures very well.

2 Finite difference ENO-MR schemes

2.1 A semi-discretized conservative finite difference scheme
We consider the one-dimensional scalar conservation law,

∂u

∂t
+
∂f(u)

∂x
= 0, t ∈ [0,∞), (1)

in the spatial domain [xL, xR] that is discretized into uniform intervals by xj = xL + (j − 1)h (j =
1 to N + 1), where h = (xR − xL)/N . Then we can construct a semi-discretized conservative finite
difference scheme as

duj(t)

dt
= L(uj(t)) = −

f̂j+1/2 − f̂j−1/2

h
, (2)

where the numerical flux f̂j±1/2 is an approximation of the function H(x) at xj±1/2, which is implicitly
defined as f(u(x)) = 1

h

∫ x+h/2

x−h/2
H(ξ)dξ [4]. This approach can be straightforwardly extended to multi-

dimensional cases in a dimension-by-dimension manner.
To take account of the upwind mechanism which can improve the robustness of the scheme, we split

the flux into two parts as

f±(u) =
1

2
(f(u)± αu), (3)

where α = max
∣∣∣df(u)du

∣∣∣ and the maximum is taken over all mesh points on one axis-aligned line.

2.2 Very high-order ENO reconstructions with multi-resolution
Define a stencil Sj+n

j−m as a set of successive intervals including Ij , i.e.,S
j+n
j−m := {Ij−m, ..., Ij , ..., Ij+n}

(m ≥ 0, n ≥ 0). For a (2r−1)-point scheme, there are r2 stencils in total that can be used to reconstruct
fj+1/2. However, we only choose linearly stable stencils as candidates to guarantee stability.

The ENO-MR reconstruction procedure is as follows:
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Step 1. We define a baseline smoothness indicator as

IS0 = MIN (ISL, ISR) , (4a)

with
ISL = MAX (|fj − fj−1| , |fj − 2fj−1 + fj−2|) , (4b)

ISR = MAX (|fj − fj+1| , |fj − 2fj+1 + fj+2|) . (4c)

Step 2. We define smoothness indicators for Sj+n
j−m as

ISj+n
j−m =

∣∣∣∣∣dm+nP j+n
j−m(x)

dxm+n

∣∣∣∣∣hm+n, (5)

where P j+n
j−m(x) is the polynomial reconstructed on Sj+n

j−m.

Step 3. We compare the smoothness indicators of candidate stencils in sequence from high-order to low-
order with the baseline smoothness indicator.

Step 3.1. If any ISj+n
j−m (m ≥ 1 and n ≥ 1) is smaller than the baseline IS0, we directly use the

reconstructed flux on Sj+n
j−m.

Step 3.2. If all ISj+n
j−m (m ≥ 1 and n ≥ 1) are larger than the baseline IS0, we use the minmod function

to select a low-order stencil from {Sj+1
j , Sj

j−1, S
j
j}.

Fig. 1 shows density contours of the 2D Riemann problem at t = 1 calculated by 5th-, 9th-, and
17th-order ENO-MR schemes with 801× 801 mesh points.

(a) ENO-MR5 (b) ENO-MR9 (c) ENO-MR17

Figure 1: Density contours of the 2D Riemann problem at t = 1 calculated by ENO-MR schemes with
801× 801 mesh points.

References
[1] Ami Harten, Bjorn Engquist, Stanley Osher, and Sukumar R Chakravarthy. Uniformly high order

accurate essentially non-oscillatory schemes, III. Journal of Computational Physics, 71(2):231–303,
1987.

[2] Xu-Dong Liu, Stanley Osher, and Tony Chan. Weighted essentially non-oscillatory schemes. Journal
of computational physics, 115(1):200–212, 1994.

[3] Guang-Shan Jiang and Chi-Wang Shu. Efficient implementation of weighted ENO schemes. Journal
of Computational Physics, 126(1):202–228, 1996.

[4] Chi-Wang Shu and Stanley Osher. Efficient implementation of essentially non-oscillatory shock-
capturing schemes. Journal of Computational Physics, 77:439–471, 1988.

2


