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Abstract: A commonly encountered issue in the numerical simulation of challenging compressible
flow problems is the failure to preserve positivity of density or pressure. A positivity-preserving
algorithm for finite volume methods using dual-time stepping is developed in this paper, towards
robust numerical simulations of compressible flows. In the positivity-preserving algorithm, admis-
sible cell-averages are obtained by controlling physical and pseudo time step sizes which results in
limited solution changes. To overcome the difficulty of unknown solution changes in time step lim-
iting, we propose to use explicit time discretizations to obtain efficient estimations of future states.
The allowable time step sizes are determined by limiting the relative solution changes to ensure
positivity of updated solutions. Given positive cell-averages, admissible reconstruction polynomi-
als can be obtained by applying a positivity-preserving scaling limiter. The positivity-preserving
algorithm is applied to a high-order variational finite volume method with an explicit first stage
singly diagonally implicit Runge-Kutta (ESDIRK) time integration. Numerical results for a series
of benchmark test cases demonstrate the robustness and high resolution of the positivity-preserving
implicit high-order finite volume method.
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1 Introduction
Computational fluid dynamics (CFD) simulation has been an efficient tool for investigation of flow
problems, due to the fast development of computer hardware as well as numerical methods, such as
finite difference (FD), finite volume (FV), finite element (FE) and spectral methods. Second-order
FV method on unstructured grids [1] is widely used in commercial and open-source CFD codes, thus
being the workhorse of engineering flow simulations. Over recent decades, various high-order methods on
unstructured grids have been developed, such as the high-order FV [2, 3, 4], discontinuous Galerkin (DG)
[5, 6], hybrid FV/DG [7, 8, 9], residual distribution (RD) [10] and flux reconstruction (FR) [11, 12, 13].
Such methods, compared with their second-order counterparts, have higher-order accuracy and lower
dissipation/dispersion, while maintaining the capability of handling complex geometries. However, CFD
solvers suffers from the deterioration of robustness when applied to challenging flow problems, even
on high-quality computational meshes. A commonly encountered robustness issue in compressible flow
simulation is the failure to preserve positivity of the density or pressure, which leads to nonphysical
solutions or numerical instabilities.

Tremendous efforts have been made on developing positivity-preserving algorithms to improve robust-
ness of numerical methods, especially high-order numerical methods, for compressible flow simulations.
For the numerical methods based on explicit time integration, popular positivity-preserving algorithms
can be categorized into two types [14]. The first type is the positivity-preserving scaling limiter [15, 16],
which compresses the solution polynomials to obtain positive density and pressure distributions, while
being accuracy-preserving. It is proved that, by using the scaling limiter, a monotone numerical flux and
a certain CFL condition, the FV and DG methods with strong stability preserving (SSP) Runge-Kutta
time discretizations are positivity-preserving [16]. This approach has also been extended to FD methods
[17, 18]. The second type is the positivity-preserving flux limiter [19, 20, 21], which seeks a convex
combination of the first-order monotone flux with the high-order flux that can achieve the positivity-
preserving property under certain conditions. Compared with the scaling limiter, the advantage of the
flux limiter is the easy application to high-order FD methods solving conservation laws and high-order
schemes solving convection-diffusion problems [14]. However, the accuracy-preserving property of the
flux limiters are often demonstrated by extensive numerical results [22], as it is difficult to be proved for
general cases.
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Explicit time stepping methods suffer from the CFL constraint that restricts the time step sizes. For
problems with very small allowable time step sizes, such as the high Reynolds number flows with large
aspect ratio grids in the boundary layer region, implicit time stepping methods are much more efficient.
Although most of the effort has been made for increasing accuracy of the time discretization and for
increasing the efficiency of the nonlinear solver, only a few works exist in the literature concerning the
positivity-preserving property of implicit methods [23], as it is difficult to verify if an implicit numerical
scheme is positivity-preserving, even for a low-order one [24]. This difficulty comes from the fact that, in
implicit time stepping, the solutions are updated by solving a system of nonlinear equations iteratively.
Parent [25] developed a positivity-preserving dual-time stepping scheme for FV methods on structured
grids solving Euler equations based on a Cauchy-Kowalevski procedure. Lian et al. [26] proposed a
solution-limited time stepping scheme to enhance the reliability in steady-state compressible flow simu-
lations. Qin et al. [23] developed an implicit high-order positivity-preserving DG method for steady-state
compressible Euler equations. Recently, Huang et al. [24] proposed a positivity-preserving algorithm
based on an iterative flux correction procedure, for finite volume methods simulating compressible flows
on unstructured grids with a second-order backward difference (BDF2) dual-time stepping.

In this paper, we develop a positivity-preserving algorithm for finite volume methods on unstructured
grids with an implicit dual-time stepping, towards robust and efficient simulations of unsteady compress-
ible flows. In the positivity-preserving algorithm, admissible cell-averages are obtained by controlling
physical and pseudo time step sizes which results in limited solution changes. To overcome the difficulty
of unknown solution changes in time step limiting, we propose to use explicit time discretizations to
obtain efficient estimations of future states. The allowable time step sizes are determined by limiting
the relative solution changes to ensure positivity of updated solutions. Given positive cell-averages, ad-
missible reconstruction polynomials can be obtained by applying a positivity-preserving scaling limiter
[16]. The positivity-preserving algorithm is applied to a high-order variational finite volume method [4]
with an explicit first stage singly diagonally implicit Runge-Kutta (ESDIRK) time integration [27], and
verified using a series of benchmark test cases. Numerical results demonstrate the robustness and high
resolution of the positivity-preserving implicit high-order finite volume method.

The remainder of this paper is organized as follows. Section 2 presents the high-order finite volume
method on unstructured grids using implicit time stepping. Section 3 presents the positivity-preserving
algorithm for implicit finite volume methods. Numerical results are given in Section 4 and concluding
remarks are given in Section 5.

2 Implicit Finite Volume Method

2.1 Governing Equations
The Navier-Stokes equations governing unsteady compressible viscous flows can be expressed as

∂U

∂t
+∇ · (F− Fv) = 0, (1)

where U is the conservative variable vector, F is the inviscid flux tensor and Fv is the viscous flux tensor
defined by

U =

 ρ
ρu
ρE

 , F =

 ρu
ρu⊗ u+ pI
(ρE + p)u

 , Fv =

 0
τ

τ · u+ κ∇T

 . (2)

Here ρ is the density, u is the velocity, p is the pressure and T is the temperature of the fluid. I is the
identity tensor. E is the total energy defined as

E =
1

γ − 1

p

ρ
+

1

2
u · u, (3)

where γ is the ratio of specific heat. The shear stress tensor τ is defined as

τ = µ

[
∇u+ (∇u)

T − 2

3
(∇ · u) I

]
, (4)

with µ being the dynamic viscosity. The heat conductivity is computed by κ = Cpµ/Pr, where Cp is the
specific heat at constant pressure and Pr is the Prandtl number. Equation (1) is closed by an equation
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of state
p = ρRT, (5)

where R = (γ − 1)Cp/γ. Neglecting viscous effects, i.e., µ = 0, the Navier-Stokes equations reduce to
the Euler equations governing unsteady compressible inviscid flows.

2.2 High-order Finite Volume Spatial Discretization
This subsection presents the general framework of high-order cell-centered finite volume method on
unstructured grids for compressible flows. The computational domain Ω is partitioned into N non-
overlapping control volumes, i.e., Ω = ∪N

i=1Ωi. By integrating the governing equation (1) over control
volume Ωi, a semi-discrete finite volume scheme is obtained as

dUi

dt
= − 1

Ωi

∮
∂Ωi

(F− Fv) · n dA, (6)

where Ωi is the volume of Ωi, ∂Ωi is the boundary of Ωi and n is the outward unit normal of ∂Ωi, as
shown in Figure 1. The cell-average defined by

Ui (t) =
1

Ωi

∫
Ωi

U (x, t) dV, (7)

is the degree of freedom (DOF) of the finite volume method on cell Ωi. The flux integral in (6) is
computed by using a Gauss quadrature

∮
∂Ωi

(F− Fv) · n dA ≈
∑

f∈∂Ωi

Ng∑
g=1

wg [F (U (xf,g, t))− Fv (U (xf,g, t) ,∇U (xf,g, t))] · nf Af , (8)

where nf and Af are the outward unit normal and area of element interface f , respectively. Ng is the
number of quadrature points. xf,g and wg are the position and weight of the g-th quadrature point on
f , respectively.

Ωi

n

Figure 1: A triangular element.

Given known cell-averages, a reconstruction is performed to obtain an approximate solution distribu-
tion on the computational domain Ω, to compute the states at quadrature points on element interfaces.
Specifically, the solution on each control volume is approximated by a polynomial, i.e.,

Ui(x, t) = Ui (t) +

Nb(k)∑
l=1

Ul
i (t)φi,l(x), ∀ x ∈ Ωi, i = 1, · · · , N, (9)

where k is the degree of the polynomial, {φi,l(x)} are the polynomial basis functions and Nb(k) is the
number of basis functions. The basis coefficients {Ul

i} are determined by using a reconstruction scheme,
such as the variational reconstruction [4] that will be presented in Section 2.3.

Ωi

nf
Ωj

f

UL

UR

Figure 2: Riemann problem on cell interface.
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Flux schemes based on solutions of Riemann problems are used to compute the numerical flux at
the quadrature points in (8), since the piece-wise polynomial distribution is discontinuous across cell
interfaces, as shown in Figure 2. The numerical flux is computed as

[F (U (xf,g, t))− Fv (U (xf,g, t) ,∇U (xf,g, t))] · nf = F̃ (UL,UR,nf )− F̃v (UL,∇UL,UR,∇UR,nf ) ,
(10)

where F̃ and F̃v are the schemes used to compute the inviscid and viscous numerical fluxes, respectively,
with the left and right states defined by{

UL = Ui (xf,g, t) , ∇UL = ∇Ui (xf,g, t) ,

UR = Uj (xf,g, t) , ∇UR = ∇Uj (xf,g, t) .
(11)

In this work, F̃ is the local Lax-Friedrichs scheme and F̃v is the viscous flux scheme by Wang et al. [4].
The semi-discrete finite volume scheme (6) can be rewritten in an ordinary differential equation

(ODE) form
dUi

dt
= Ri

(
t, {Uj}j∈Si

)
, (12)

where can be integrated in time to update the cell-average in a step-by-step manner. The time integration
method used in this work will be presented in Section 2.4.

2.3 Variational Reconstruction
This subsection presents a variational reconstruction scheme [4] that can achieve arbitrary high-order
accuracy on a compact stencil involving only the current cell and its face-neighboring cells. The compact
reconstruction stencil Si = {i, j1, j2, j3} of a triangular element i is shown in Figure 3. In general, the
conservative variables are reconstructed separately, allowing an implementation of solution reconstruction
in a variable-by-variable manner. For the sake of presentation, the two-dimensional case is considered to
illustrate the variational reconstruction procedure.

Ωi

Ωj1Ωj2

Ωj3

Figure 3: Compact reconstruction stencil.

On control volume Ωi, a conservative variable u ∈ U is approximated as

ui (x) = ui +

Nb(k)∑
l=1

ul
iφi,l (x) , (13)

where {φi,l} are the basis functions, {ul
i} are the unknown basis coefficients and Nb(k) is the number of

basis functions. For a two-dimensional case, Nb(k) = (k+2)(k+1)/2− 1. In (13), the time t is omitted
as it remains a constant during the reconstruction procedure. In this work, the basis functions with the
zero-mean property

1

Ωi

∫
Ωi

φi,l (x) dV = 0, (14)

are used to make the reconstruction polynomial (13) automatically satisfy the conservation condition

1

Ωi

∫
Ωi

ui (x) dV = ui. (15)
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The zero-mean basis functions are defined by

φi,l =

(
x− xi

∆xi

)pl
(
y − yi
∆yi

)ql

−
(
x− xi

∆xi

)pl
(
y − yi
∆yi

)ql

, (16)

with (
x− xi

∆xi

)pl
(
y − yi
∆yi

)ql

=
1

Ωi

∫
Ωi

(
x− xi

∆xi

)pl
(
y − yi
∆yi

)ql

dV, (17)

where (xi, yi) and (∆xi,∆yi) are the barycenter and characteristic length scales of cell i, respectively,
and (pl, ql) are the powers of the basis functions organized in ascending order of pl + ql. For instance,
the powers of the cubic (k = 3) reconstruction polynomial are

{(pl, ql)}9l=1 = {(1, 0) , (0, 1) , (2, 0) , (1, 1) , (0, 2) , (3, 0) , (2, 1) , (1, 2) , (0, 3)} . (18)

The characteristic length scales are used to non-dimensionalize the basis functions, to avoid a growth
of the condition number of the reconstruction matrix during grid refinement [28, 29]. In this work, the
length scales are set as ∆xi = ∆yi = maxx∈Ωi

{∥x− xi∥2}.
The objective of a reconstruction is to determine the unknown basis coefficients ul

i, l = 1, · · · ,Nb (k),
i = 1, · · · , N , given the cell-averages uj , j = 1, · · · , N . In the variational reconstruction [4], the linear
equation system to determine the unknown basis coefficients is derived by minimizing a cost function
using the variational method. Different cost function results in different reconstruction schemes. The
cost function is defined as

I =

Nf∑
f=1

If , (19)

where If is an interfacial jump integration (IJI) on cell interface f and Nf is the total number of cell
interfaces on the computational domain. In this work, the IJI is defined as

If = ωG
f

k∑
p+q=0

∫
f

[
ωD
f (p, q)

(
∂p+quL

∂xp∂yq
− ∂p+quR

∂xp∂yq

)]2
dA (20)

where L and R are the two cells sharing interface f , ωG
f is the geometric weight and ωD

f is the derivative
weight. The IJI measures the jumps of the reconstruction polynomial and its spatial derivatives on cell
interface. The derivative weights of the cubic variational reconstruction are

ωD
f (0, 0) = ωD(0),

ωD
f (1, 0) = ωD

f (0, 1) = ωD(1),

ωD
f (2, 0) = ωD

f (0, 2) = ωD(2), ωD
f (1, 1) =

√
2 ωD(2),

ωD
f (3, 0) = ωD

f (0, 3) = ωD(3), ωD
f (1, 2) = ωD

f (2, 1) =
√
3 ωD(3),

(21)

with

ωD(0) = 1, ωD(1) = dLR, ωD(2) =
(dLR)

2

2
, ωD(3) =

(dLR)
3

6
, (22)

where dLR = ∥xL − xR∥2 is the distance between the barycenters of cell L and R. As only nearly uniform
and isotropic meshes are used in the numerical simulations in this paper, the geometric weights ωG

f are all
set as 1. The unknown basis coefficients are determined by minimizing the cost function (19), resulting
in a “smoothest” piece-wise polynomial distribution which has the smallest jumps measured by the IJIs
on cell interfaces. Linear reconstruction equations can be derived by using the variational method, i.e.,

∂I

∂ul
i

= 0, l = 1, · · · ,Nb(k), i = 1, · · ·N. (23)

By substituting (13) into (20), (19) and (23), a linear equation system is obtained as following

Aiui =
∑

j∈Si,j ̸=i

Bj
iuj + bi, i = 1, · · · , N, (24)
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where the elements of matrices Ai, B
j
i ∈ RNb(k)×Nb(k) and vectors ui, uj , bi ∈ RNb(k) are

Ai[m,n] =
∑

j∈Si,j ̸=i

ωG
f

∫
Ωi∩Ωj

k∑
p+q=0

(
ωD
f (p, q)

)2 ∂p+qφi,m

∂xp∂yq
∂p+qφi,n

∂xp∂yq
dA,

Bj
i [m,n] = ωG

f

∫
Ωi∩Ωj

k∑
p+q=0

(
ωD
f (p, q)

)2 ∂p+qφi,m

∂xp∂yq
∂p+qφj,n

∂xp∂yq
dA,

bi[m] =
∑

j∈Si,j ̸=i

ωG
f

(
ωD
f (0, 0)

)2 ∫
Ωi∩Ωj

φi,m (uj − ui) dA,

ui[m] = um
i ,

uj [m] = um
j .

(25)

It is observed from (24) that the variational reconstruction is implicit, as the unknown coefficients of
the face-neighboring cells are required to determine the unknown coefficients of the current cell. By
assembling the linear equations (24) of all cells, we obtain a global linear equation system

Au = b, (26)

where
A = D− L−U, D = {Ai} , L =

{
Bj

i , j < i
}
, U =

{
Bj

i , j > i
}
,

u = {ui} , b = {bi} .
(27)

It is proved in [4] that the large and sparse reconstruction matrix A is symmetric and positive definite,
which guarantees the existence and uniqueness of the solution of the linear equation system (26). This
is a significant advantage of the variational reconstruction over other existing high-order reconstructions
on unstructured grids. The linear equation system (26) is solved iteratively using the block Gauss-Seidel
method, of which the convergence is proved in [4]. Each block Gauss-Seidel iteration is compact as it
only relies on the information of the current and face-neighboring cells.

In the reconstructions of solutions involving discontinuities, a WBAP limiter [30, 31] is used to sup-
press spurious oscillations. The limiting process on the element i in Figure 3 is presented for illustration.
The limited reconstruction polynomial

ũi (x) = ui +

Nb(k)∑
l=1

ũl
iφi,l (x) (28)

is a nonlinear weighted average of the reconstruction polynomial ui (x) and three additional candidate
polynomials uj→i (x) , j = j1, j2, j3 obtained through a secondary reconstruction [32]. The limited coef-
ficients ũl

i is computed by
ũl
i = L

(
ul
i, u

l
j1→i, u

l
j2→i, u

l
j3→i

)
, (29)

with a limiting function

L(a0, a1, ..., aJ) = a0 ·W
(
1,

a1
a0

, ...,
aJ
a0

)
, W =

n+
∑J

m=1 1/θ
p−1
m

n+
∑J

m=1 1/θ
p
m

, (30)

where n = 10 and p = 4. The limiting is performed in a successive manner in characteristic space [31].

2.4 Implicit Time Marching
As mentioned in the previous subsection, the linear equation system of the variational reconstruction is
solved iteratively. The reconstruction will be very expensive if the iteration needs to reach convergence at
each single time step. A reconstruction and implicit dual-time stepping coupled iteration procedure has
been proposed in [33] to address this computational efficiency issue. In the coupled iteration procedure,
the reconstruction iteration is performed only once at each pseudo time step. The coupling between the
reconstruction and the time integration makes these two procedures achieve convergence synchronously.
By using the coupled iteration, the implicit nature of the variational reconstruction does not result in
additional cost, thus ensuring the high computational efficiency of the variational finite volume method.
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In this work, the time integration scheme for unsteady flow simulation is the six-stage, fourth-order
explicit first stage singly diagonal implicit Runge-Kutta (ESDIRK4) [27]. By using this method, (12) is
integrated in time as

U
n,1

i = U
n

i , (31a)

U
n,s

i = U
n

i +∆tn
s∑

q=1

asqR
n,q
i , s = 2, · · · , 6, (31b)

U
n+1

i = U
n,6

i , (31c)

where
Rn,q

i = Ri

(
tn + cq∆tn,

{
Un,q

j

}
j∈Si

)
, (32)

with ∆tn = tn+1 − tn being the time step size, which is in general a user-specified constant. The
Runge-Kutta coefficients asq and cq of ESDIRK4 can be found in [27].

The implicit and nonlinear equation (31b) is solved iteratively using a dual-time stepping technique,
in which a pseudo-time variable τ is introduced. The pseudo-time integration scheme for (31b) is

U
n,s,m+1

i −U
n,s,m

i

∆τi
+

U
n,s,m+1

i −U
n

i

∆tn
=

s−1∑
q=1

asqR
n,q
i + assR

n,s,m+1
i , (33)

where m is the index for pseudo-time step, and

Rn,s,m+1
i = Ri

(
tn + cs∆tn,

{
Un,s,m+1

j

}
j∈Si

)
. (34)

By using the linear approximation

Rn,s,m+1
i ≈ Rn,s,m

i +
∑
j∈Si

∂Ri

∂Uj

(
U

n,s,m+1

j −U
n,s,m

j

)
, (35)

we obtain a linear equation system to update the cell-average in pseudo-time direction as following(
I

∆τi
+

I

∆tn
− ass

∂Ri

∂Ui

)
∆U

n,s,m

i − ass
∑

j∈Si,j ̸=i

∂Ri

∂Uj

∆U
n,s,m

j = R̃n,s,m
i , (36)

where

∆U
n,s,m

i = U
n,s,m+1

i −U
n,s,m

i , R̃n,s,m
i =

s−1∑
q=1

asqR
n,q
i + assR

n,s,m
i − U

n,s,m

i −U
n

i

∆tn
. (37)

The linear equation system (36) is solved by using the matrix-free LU-SGS approach [34]. The solution
is advanced in pseudo-time until U

n,s,m+1

i converges to U
n,s

i , forming an inner iteration at the s-th stage
of ESDIRK4. The convergence criterion of the inner iteration is that the L1 norm of the pseudo-time
derivative decreases by a certain number of orders of magnitude.

The local pseudo-time step size is computed by

∆τi =
CFLτΩi∑
f∈∂Ωi

Afλf
(38)

where λf is the spectral radius estimated on cell interface f and CFLτ is the CFL number used to control
the convergence speed of inner iteration.

3 Positivity-Preserving Algorithm
In compressible flow simulations, density and pressure need to be preserved positive, to avoid nonphysical
solutions or numerical instabilities. Therefore, a positivity-preserving property is desired for numerical
methods, especially high-order numerical methods, to perform robust simulations of compressible flows.

7



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

The set of admissible states is defined by

G =

U =

 ρ
ρu
ρE

∣∣∣∣∣∣ρ > 0 and p = (γ − 1)

(
ρE − 1

2
ρu · u

)
> 0

 . (39)

The density ρ is a linear function of U, and satisfies

ρ (wU1 + (1− w)U2) = wρ (U1) + (1− w)ρ (U2) , 0 ≤ w ≤ 1. (40)

The pressure p is a concave function of U if ρ (U) ≥ 0, and satisfies Jensen’s inequality

p (wU1 + (1− w)U2) ≥ wp (U1) + (1− w)p (U2) , 0 ≤ w ≤ 1, if ρ (U1) ≥ 0, ρ (U2) ≥ 0. (41)

A positivity-preserving numerical scheme satisfies that Un+1 ∈ G, if Un ∈ G. In a finite volume method,
the numerical solution at tn+1 is

Un+1
i (x) = U

n+1

i +

Nb(k)∑
l=1

Un+1,l
i φi,l(x), i = 1, · · · , N. (42)

An implicit finite volume solution Un+1 ∈ G can be obtained through the following two steps:

(1) Given Un ∈ G, obtain U
n+1 ∈ G by using a proper implicit time-stepping scheme;

(2) Given U
n+1 ∈ G, obtain Un+1 ∈ G by using a proper limiting algorithm.

The second step can be accomplished by using the scaling limiter of Zhang et al. [16]. Therefore, the key
of developing a positivity-preserving implicit finite volume method is to design an implicit time-stepping
scheme that leads to admissible updated cell-averages.

In this paper, we propose a positivity-preserving algorithm for finite volume methods with implicit
dual-time discretizations. In this algorithm, the physical and pseudo time step sizes are controlled by
limiting the solution changes, to obtain admissible cell-averages at the next physical and pseudo time
steps, respectively. The details of the proposed positivity-preserving algorithm will be presented in the
following subsections.

3.1 Physical Time Step Limiting
In an unsteady flow simulation using implicit time marching, the physical time step size is usually set
as a user-specified constant, i.e., ∆tn = ∆tmax, based on a prior estimation of the time scale of the
problem. For challenging problems, there are transient states with very low density or pressure, making
it difficult for the numerical method to preserve positivity using the original time step size ∆tmax. The
positivity-preserving difficulty may be overcome by reducing the time step size temporarily. Therefore,
we propose to control the physical time step size dynamically based on a positivity-preserving principle

ρ
(
U

n+1

i

)
> 0, p

(
U

n+1

i

)
> 0, (43)

for all cells i = 1, · · · , N . However, the solution U
n+1

i is unknown at the beginning of the time step.
To overcome this difficulty, we propose an solution estimation based on a forward Euler time stepping,
which is given by

U
n+1

i ≈ U
n

i +∆tnRn
i . (44)

A time step size ∆tnpp satisfying the positivity-preserving principle (43) can be determined by limiting
the solution changes as follows

ρ
(
U

n

i +∆tnppR
n
i

)
≥ (1− ηt)ρ

(
U

n

i

)
> 0,

p
(
U

n

i +∆tnppR
n
i

)
≥ (1− ηt)p

(
U

n

i

)
> 0,

(45)

for all cells i = 1, · · · , N , where ηt ∈ (0, 1) is the parameter used to control the relative solution changes.
It is noted that the forward Euler scheme is first-order accurate, and thus the error of the estimation in

8



 ICCFD12

Twelfth International Conference on
Computational Fluid Dynamics (ICCFD12),
Kobe, Japan, July 14-19, 2024

(44) is O(∆t2). As the allowable solution changes in (45) are ηtρ
(
U

n

i

)
∼ O(1) and ηtp

(
U

n

i

)
∼ O(1),

the positivity of U
n+1

i can be preserved, provided that ηt is not overly large.
The allowable time step size for cell i can be determined in two steps according to (45). First, we

assume an allowable time step size αt,i,ρ∆tmax, with αt,i,ρ ∈ (0, 1], to preserve positivity of density.
According to (40) and (45), we have

ρ
(
U

n

i + αt,i,ρ∆tmaxR
n
i

)
= (1− αt,i,ρ) ρ

(
U

n

i

)
+ αt,i,ρρ

(
U

n

i +∆tmaxR
n
i

)
≥ (1− ηt)ρ

(
U

n

i

)
, (46)

and thus obtain

αt,i,ρ =


1, if ρ

(
U

n

i +∆tmaxR
n
i

)
≥ ρ

(
U

n

i

)
,

min

1,
−ηtρ

(
U

n

i

)
ρ
(
U

n

i +∆tmaxRn
i

)
− ρ

(
U

n

i

)
 , else.

(47)

Second, we assume an allowable time step size αt,i,pαt,i,ρ∆tmax, with αt,i,p ∈ (0, 1], to preserve positivity
of pressure. According to (41) and (45), we have

p
(
U

n

i + αt,i,pαt,i,ρ∆tmaxR
n
i

)
≥ (1− αt,i,p) p

(
U

n

i

)
+ αt,i,pp

(
U

n

i + αt,i,ρ∆tmaxR
n
i

)
≥ (1− ηt)p

(
U

n

i

)
,

(48)
and thus obtain a sufficient condition

αt,i,p =


1, if p

(
U

n

i + αt,i,ρ∆tmaxR
n
i

)
≥ p

(
U

n

i

)
,

min

1,
−ηtp

(
U

n

i

)
p
(
U

n

i + αt,i,ρ∆tmaxRn
i

)
− p

(
U

n

i

)
 , else.

(49)
The global time step size is computed by

∆tn = αt∆tmax (50)

where
αt = min

i
(αt,i,ραt,i,p). (51)

It can be observed from the above equations that ∆tn ≤ ∆tmax, as 0 < αt ≤ 1.

3.2 Pseudo Time Step Limiting
The physical time step limiting strategy described in the previous subsection is used to obtain a solution
U

n+1

i ∈ G, which is the converged solution of the last stage of ESDIRK4 (31). However, intermediate
solutions with negative density or pressure might be encountered during the inner iteration at each stage.
Therefore, we propose to limit the solution changes by controlling the pseudo-time step sizes during the
inner iteration process, similar to the limiting strategy in physical time direction in Section 3.1.

For the m-th inner iteration at the s-stage of ESDIRK4, we have the following positivity-preserving
requirement

ρ
(
U

n,s,m+1

i

)
> 0, p

(
U

n,s,m+1

i

)
> 0, (52)

for all cells i = 1, · · · , N . However, U
n,sm+1

i is unknown at the beginning of the pseudo-time step. Based
on an explicit dual-time discretization of (31b) given by

U
n,s,m+1

i −U
n,s,m

i

∆τi
+

U
n,s,m

i −U
n

i

∆tn
≈

s−1∑
q=1

asqR
n,q
i + assR

n,s,m
i , (53)

we obtain an solution estimation

U
n,s,m+1

i ≈ U
n,s,m

i +∆τiR̃
n,s,m
i , (54)
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with R̃n,s,m
i defined in (37). A pseudo-time step size ∆τi,pp satisfying the positivity-preserving principle

(52) can be determined by limiting the solution changes as follows

ρ
(
U

n,s,m

i +∆τi,ppR̃
n,s,m
i

)
≥ (1− ητ )ρ

(
U

n,s.m

i

)
> 0,

p
(
U

n,s,m

i +∆τi,ppR̃
n,s,m
i

)
≥ (1− ητ )p

(
U

n,s,m

i

)
> 0,

(55)

where ητ ∈ (0, 1) is the parameter used to control the relative solution changes.
The allowable pseudo-time step size for cell i can be determined according to (55) using the same

two-step procedure in Section 3.1. The allowable time step size is ∆τi,pp = ατ,i,pατ,i,ρ∆τi, where

ατ,i,ρ =


1, if ρ

(
U

n,s,m

i +∆τiR̃
n,s,m
i

)
≥ ρ

(
U

n,s,m

i

)
,

min

1,
−ητρ

(
U

n,s,m

i

)
ρ
(
U

n,s,m

i +∆τiR̃
n,s,m
i

)
− ρ

(
U

n,s,m

i

)
 , else,

(56)
and

ατ,i,p =


1, if p

(
U

n,s,m

i + ατ,i,ρ∆τiR̃
n,s,m
i

)
≥ p

(
U

n,s,m

i

)
,

min

1,
−ητp

(
U

n,s,m

i

)
p
(
U

n,s,m

i + ατ,i,ρ∆τiR̃
n,s,m
i

)
− p

(
U

n,s,m

i

)
 , else.

(57)
It is noted that U

n,s,m+1

i is obtained by performing one LU-SGS iteration for (36), thus being not the
converged solution of the linear equation system. Therefore, there is not theoretical result for the error
of estimation in (54), and thus not guarantee for the positivity of the solution U

n,s,m+1

i . To address this
issue, an increment correction will be introduced in the next subsection.

3.3 Increment Correction
As pointed out in the previous subsection, although the physical and pseudo time steps are limited,
the intermediate results may have negative density or pressure before the convergence of the LU-SGS
iteration. Therefore, a pseudo-time increment correction is designed to ensure the positivity of the
updated solutions. The increment correction is based on the following conditions

ρ
(
U

n,s,m

i + α∆,i∆U
n,s,m

i

)
≥ (1− η∆)ρ

(
U

n,s,m

i

)
,

p
(
U

n,s,m

i + α∆,i∆U
n,s,m

i

)
≥ (1− η∆)p

(
U

n,s,m

i

)
,

(58)

where η∆ ∈ (0, 1) is a relaxation parameter to control the relative solution changes. By using the same
two-step approach used in physical/pseudo time step limiting, the relaxation parameter is computed by

α∆,i = α∆,i,ρα∆,i,p, (59)

where

α∆,i,ρ =


1, if ρ

(
U

n,s,m

i +∆U
n,s,m

i

)
≥ ρ

(
U

n,s,m

i

)
,

min

1,
−η∆ρ

(
U

n,s,m

i

)
ρ
(
U

n,s,m

i +∆U
n,s,m

i

)
− ρ

(
U

n,s,m

i

)
 , else,

(60)
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and

α∆,i,p =


1, if p

(
U

n,s,m

i + α∆,i,ρ∆U
n,s,m

i

)
≥ p

(
U

n,s,m

i

)
,

min

1,
−η∆p

(
U

n,s,m

i

)
p
(
U

n,s,m

i + α∆,i,ρ∆U
n,s,m

i

)
− p

(
U

n,s,m

i

)
 , else.

(61)
A solution U

n,s,m+1

i ∈ G is then computed by

U
n,s,m+1

i = U
n,s,m

i + α∆,i∆U
n,s,m

i . (62)

The positivity-preserving algorithm developed in this paper is based on the scaling limiter [16],
physical time step limiting, pseudo time step limiting and pseudo time increment correction. The scaling
limiter is accuracy-preserving [16]. It is known that reducing physical time step sizes does not affect the
order of accuracy of the time integration. Furthermore, reducing pseudo time step sizes and increments at
intermediate steps do not affect the accuracy of the converged solutions of the inner iterations. Therefore,
the proposed positivity-preserving approach is accuracy-preserving. Furthermore, it is noted that the
proposed positivity-preserving algorithm is applicable to general finite volume methods with implicit
dual-time stepping, not limited to finite volume methods with high-order variational reconstruction or
high-order ESDIRK time discretization.

4 Numerical Results
The proposed positivity-preserving algorithm is verified using a series of benchmark test cases. The
numerical scheme used is the fourth-order accurate implicit finite volume method based on a cubic vari-
ational reconstruction and an ESDIRK4 time integration. In the simulations, the relaxation parameters
are set as ηt = 0.8, ητ = 0.5 and η∆ = 0.9, unless otherwise specified. The convergence criterion for
inner iteration is that the L1 norm of the pseudo time derivative decreases by three orders of magnitude.

4.1 Double Rarefaction
The one-dimensional double rarefaction problem [35] is a Riemann problem with the following initial
conditions

(ρ, u, p) =

{
(1,−2, 0.1), x < 0.5,

(1, 2, 0.1), else.
(63)

The flow is inviscid and the ratio of specific heat is γ = 1.4. In this problem, a vacuum lies in in the
middle, adjacent to the ends of two rarefaction waves. The computational domain is [0, 1]. We perform a
numerical simulation on a uniform mesh with grid size ∆x = 1/400, up to t = 0.1 using a user-specified
time step size ∆tmax = 5 × 10−3. In each inner iteration, the CFL number for local pseudo time step
CFLτ is initiated as 0.1 and increased gradually up to its maximum 10 at the tenth iteration. The
numerical results are shown in Figure 4. It is observed from Figure 4 that, the numerical solution is
essentially oscillation-free and agrees well with the reference solution.
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Figure 4: Results of the double rarefaction problem at t = 0.1.
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4.2 Sedov Blast Wave
The Sedov blast problem [17, 36] is a popular case to test positivity-preserving properties of numerical
schemes. The governing equations are the Euler equations and the ratio of specific heat is γ = 1.4. The
computational domain is [0, 1.1] × [0, 1.1], partitioned into rectangular cells with grid size ∆x = ∆y =
1.1/160. The initial conditions are

(ρ, u, v, p) =


(1, 0, 0, 4× 10−9), if x > ∆x or y > ∆y,

(1, 0, 0,
(γ − 1) ε0

∆x∆y
), else,

(64)

where ε0 is the total amount of release energy. By choosing ε0 = 2.44816× 105, the solution consists of
a diverging infinite strength shock wave whose front is located at radius r = 1 at t = 10−3, with a peak
density reaching 6. All boundaries are slip walls. Two simulations are performed up to t = 10−3, using
1026 time steps with ∆tmax = 10−6 and 297 time steps with ∆tmax = 10−5, respectively.

(a) ∆tmax = 10−6 (b) ∆tmax = 10−5

Figure 5: Density contours of the Sedov blast wave problem.

The computed density contours at t = 10−3 are shown in Figure 5. It is observed that the numerical
solutions are essentially oscillation-free. To check the solutions in a more intuitive way, we plot both the
analytical and numerical density distributions along the y = x line in Figure 6. It is shown in Figure 6
that, both numerical solutions agree well with the analytic solution, and the one with the smaller time
step size has higher resolution.

4.3 Mach 2000 Jet
The Mach 2000 jet problem [16] is a challenging case as it has extremely strong discontinuities. Following
the practice of [24], the current paper studies two cases with Re = ∞ and Re = 100 to demonstrate the
capability of the proposed positivity-preserving algorithm to deal with inviscid and viscous compressible
flows, respectively. The governing equations are the Navier-Stokes equations with γ = 5/3. The compu-
tational domain is [0, 1] × [−0.25, 0.25]. Far-field boundary conditions are imposed on the upper, lower
and right boundaries. The following inflow conditions are imposed on the left boundary:

(ρ, u, v, p) =

{
(5, 800, 0, 0, 4127), if − 0.05 ≤ y ≤ 0.05,
(0.5, 0, 0, 0.4127), else. (65)

The initial conditions are (ρ, u, v, p) = (0.5, 0, 0, 0.4127). The numerical simulations are performed on
a uniform rectangular mesh with 800 × 800 cells, up to t = 10−3 using a user-specified time step size
∆tmax = 1× 10−6. The relaxation parameters are ηt = 0.6, ητ = 0.5, η∆ = 0.9. In each inner iteration,
the CFL number for local pseudo time step CFLτ is initiated as 0.1 and increased gradually up to its
maximum 2 at the tenth iteration.
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Figure 6: Density distributions of the Sedov blast wave problem along the diagonal line.

The computed density and pressure contours at t = 10−3 in logarithmic scales are shown in Figure
7, 8, 9 and 10. It is observed from these figures that the numerical results are essentially non-oscillatory,
and small-scale structures are smeared out in the Re = 100 case due to the viscous effect.

Figure 7: log10(ρ) of Re = ∞ Mach 2000 jet, 40 contour lines from -1.5 to 1.5.

4.4 Shock Diffraction
The shock diffraction problem [16], in which a shock passes a backward facing corner, is used to test
the positivity-preserving capability of the proposed algorithm. The governing equations are the Euler
equations with γ = 1.4. The computational domain is the union of [0, 1]× [6, 11] and [1, 13]× [0, 11]. The
initial condition is a Mach number 5.09 shock located at x = 0.5, moving into undisturbed air ahead of
the shock at a state (ρ, u, v, p) = (1.4, 0, 0, 1). Inflow and slip solid wall boundary conditions are imposed
on the left side x = 0, 6 ≤ y ≤ 11 and other boundaries, respectively. The simulation is performed on
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Figure 8: log10(ρ) of Re = 100 Mach 2000 jet, 40 contour lines from -1.5 to 1.5.

Figure 9: log10(p) of Re = ∞ Mach 2000 jet, 40 contour lines from -1.4 to 5.3.
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Figure 10: log10(p) of Re = 100 Mach 2000 jet, 40 contour lines from -1.4 to 5.3.

a rectangular mesh with grid size ∆x = ∆y = 1/80, up to t = 2.3 using a user-specified time step size
∆tmax = 1× 10−3. The CFL number for pseudo-time step is CFLτ = 1.

The computed density and pressure contours in logarithmic scales at t = 2.3 are shown in Figure 11.
It is observed from Figure 11 that, the numerical solutions are essentially oscillation-free and small-scale
shock structures are well resolved.

4.5 Shock Reflection and Diffraction Around a Wedge
The shock reflection and diffraction problem [37] is similar to the shock diffraction problem, with the
corner replaced by a wedge. The computational domain is [0, 3] × [0, 2] with a 30◦ wedge placed at
x ∈ [0.2, 1.2], while the tip of the wedge is at (x, y) = (1.2, 1/

√
3). Initially, there is a Mach 10 shock

at x = 0.2 moving into undisturbed air at a state (ρ, u, v, p) = (1.4, 0, 0, 1). The x = 0 boundary on
the left matches the downstream state of the shock, and all other boundaries are inviscid walls. Before
the diffraction of the shock, the development of the shock structure is identical with that in the Mach
10 double Mach reflection problem [38]. Similar to the Mach 2000 jet example, Re = ∞ and Re = 100
cases are investigated. A triangular mesh with grid size h = 1/160, shown in Figure 12, is used in
the simulations. The simulations are performed up to t = 0.245 using a user-specified time step size
∆tmax = 2× 10−4. In each inner iteration, the CFL number for local pseudo time step CFLτ is initiated
as 0.01 and increased gradually up to its maximum 1 at the tenth iteration.

The computed density and pressure contours are shown in Figure 13 and 14. It is observed that
the numerical solutions are essentially non-oscillatory. The Kelvin-Helmholtz instability induced in the
shear layer is well resolved in Figure 13 for the Re = ∞ case. While in Figure 14 for the Re = 100 case,
the small-scale flow structures around the shear layer and the wedge are smeared due to the existence of
physical viscosity.

5 Conclusions
This paper presents a positivity-preserving algorithm for finite volume methods using dual-time stepping
for compressible flow simulations. In the positivity-preserving algorithm, admissible cell-averages are ob-
tained by limiting solution changes, which is accomplished by controlling physical and pseudo time step
sizes. To overcome the difficulty of unknown solution changes, we propose to use explicit time discretiza-
tions to obtain efficient estimations of future states. The allowable time step sizes are determined by
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(a) log10(ρ), 40 contour lines from -0.8 to 0.8 (b) log10(p), 40 contour lines from -0.6 to 1.6

Figure 11: Density and pressure contours of the shock diffraction problem.

Figure 12: Mesh used in the shock reflection and diffraction problem.
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(a) ρ, 60 contour lines from 0 to 22 (b) log10(p), 60 contour lines from -1.7 to 2.7

Figure 13: Density and pressure contours for the shock reflection and diffraction problem, Re = ∞.

(a) ρ, 60 contour lines from 0 to 22 (b) log10(p), 60 contour lines from -1.7 to 2.7

Figure 14: Density and pressure contours for the shock reflection and diffraction problem, Re = 100.
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limiting the relative solution changes. Given positive cell-averages, admissible reconstruction polynomials
can be obtained by applying a positivity-preserving scaling limiter. The proposed positivity-preserving
algorithm is accuracy-preserving. Numerical results for a series of benchmark test cases demonstrate the
robustness and high resolution of the positivity-preserving implicit high-order finite volume method.
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