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Context and Motivations

RN
Context

® Numerical simulation of 3D hypersonic flows still a challenging task which requires a
subtle balance between robustness and accuracy

® On going work with Ph.D students: Agnes Chan [2019-2022] & Vincent Delmas [2023-2026]
B Co-supervisors: R. Loubére (CNRS/Institut de Mathématiques de Bordeaux) and PHM

Motivations

B Design robust and accurate cell-centered Finite Volume (FV) methods for solving multiD
Euler & Navier-Stokes equations on unstructured grids

B Robustness cornerstone: Entropy stable and positivity preserving approximate Riemann
solvers (RS) [G. Gallice, Numer. Math., 2002]

B Construction of multiD FV methods based on node-centered approximate RS extending the
previous works devoted to

B | agrangian gas dynamics [R. Loubére, PHM, B. Rebourcet, HNMHP, 2016]
B FEulerian gas dynamics [Z. Shen et al., J. Comp. Phys, 2014]

E Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024
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The compressible Euler equations

Governing equations Thermodynamic closure
@ +V-FU)=0 B Specific internal energy e = e — %vz
Y
ot , e B Specific entropy n
U= (P, PV, pe) € R™, B (7,1n) — &(7,n) strictly convex
PVt B Complete equation of state
FU)=| pveVv+ply
t t p(r,n) = _oe 0(r,n) = 92 > 0, temperature
,09V —l— pv » 1 87', » 1 an )
Main properties
... OFU)n ., . : , , ,
B Hyperbolicity: U is diagonalizable for all unit vector n with the real eigenvalues
A_ =v-n—a,Ag =v-n(multiplicity d), A, =v-n+ a, where i = _op
3 or
B Entropy inequality
dpn
=) : > 0.
ot +V-(pnv) >0
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Riemann problem in the n direction (n® = 1)

Riemann problem (RP)

oU  OFp

W+ 0Xn =0
if
U0, xp) — U, |. Xn < 0,
U, if xn >0,

where F, =Fn and x, = X - n.

Entropy inequality
0
L —(pn ) = 0.

@ Node-conservative FV for multiD Euler equations - PHM

Simple approximate Riemann solver [Gallice, CRAS, 2002]

Simple Riemann solver

'U/if£</\/,

TifA <€ < Ao,
Urif A\g <& <Ay,
LU if A <&,

WU, U, §) =

where £ =
A;, Ng and A, are the wave speeds.

Local notations

p 2

U: pvl"l and Fn: PVn +p ,
PV PVnVi
pe ane+ PVn

where v = vyn + V;.

Normal flux decomposition

oOT O
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x — t diagram

Intermediate states
Ps

**
U* — PsVn s
S **
PsVt s

Ps es

,fors=1r.
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Intermediate fluxes

0
>*
Fr.=vi .U+ Ps fors=1r
n,s — Yn,s¥Ys 0 ’ — Db
*y gk
PsVn s
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AN

Characterization of the Riemann solver

Computation of U; and F;, ; for s =/ r
B Write the conservation relations across As-waves

(RH/) — /\/(Uf — U/) aF F;,/ — Fn,/ =0,
(RHr) — /\r(Ur - U:) + Fn,r — F;,r =0.

Assume A;, Ao and A, are given parameters
B There are 2d + 6 scalar unknows for 2d + 4 scalar equations
We have multiple choices to close this system of equations!

B We choose to impose v, , = v , = Vi, which is a quite natural choice
B We decide to keep pj # p;, which is rather unusual!
B Refer to Alessia Del Grosso talk [6A-01] Tuesday 4:30 pm for an other choice

We arrive at 2d + 5 scalar unknows for 2d + 4 scalar equations

This allows us to consider v,; as a parameter

E Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024

AN

Replacing Fn s = Vn sUs + Ls and Fp, ¢ = ViU + Lg into (RHs) for s = /, r yields

Characterization of the Riemann solver
Computation of U; and F;,  for s =/ r

(v — /\/)Uf — (Vn’/ —N)U; + LT —L, =0,
(Vn)r - /\r)Ur - (V:'(I - /\r)U? -+ Lr - L); = 0

First components boil down to

pi (Ve — A1) — pi(Vns — \j) = 0, for the A;-wave,
pr(Vnr — Ar) — pr(vy — Ar) =0, for the A,-wave.

Introduction of the mass flux parameters )\, and )\,

A= p; (Ve — A1) = pi(Vng — N),
Ar = —pr(Vnr — Ar) = —pf (Vi — Ar).

E Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024 8
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Characterization of the Riemann solver

Expression of the wave speeds Compatibility conditions
A A
/\l:Vn,l__l :V;_—l ) At —=11) = (Va — Vny) =0,
PI pl )\r(T;-k — Tr) = V; — Vn,r = 0,
A A 1 1
Ar:Vﬁ+—£:Vn,r+—r- whereTs:—andT;:—*.
Pr Pr Ps Ps

Conservation relations (R7,) and (R*H,) turn into

)\/(—l—g)—l-Lf—L/:O,

Py Pl
ur U
r r *
Ar <—* - _) — (L7 —L,)=0.
Pr Pr
@ Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024

Characterization of the Riemann solver

Combining compatibility conditions and conservation relations yield

()\[(7_/* — T[) — (VF: — Vn,[) = 0, (>\r(7';f — Tr) + Vl?: — Vn,r = O,
(v — * —0 A (v — _(r 0
(8/) < I(V: Vn’/) +p/ p/ 9 (Sr) ) r(V: Vn’r) (pr pf) 3
)‘/(Vt’/ - Vt,/) — 07 Af(vt,r - VT,I’) — 07
A€ —e)+ P va — Piva =0, | Ar(er —er) = (PFva — Prvns) = 0.
Comments

B This is a system of 2d + 5 unknowns for 2d + 4 scalar equations, hence the v, parametrization
B |t remains to

Ensure positivity, e.g. 75 > 0, €5 > 0 and entropy stability by adapting A; and A,
Express the Ay wave speed
€] Determine the interface flux to feed the Finite Volume discretization

@ Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024 10
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Positivity and entropy stability conditions

Positivity of intermediate internal energies, <}, and specific volumes 7}

es > 0 and 77 > 0 for s=I,r provided that [Chan et al., CAF 2021]

a  Va—V ar Vi —
A,Zmax(—l,— n "’/),and )\erax<—r,"—n’r).

Tl Tl Tr Tr

Entropy stability

ns > ns provided that [Chan et al., CAF 2021]
a(TanS)

Ag > , fort € (rs,73)and s=1I,r.

Comment: Wave speeds ordering

As >0and 75 >0fors=lr = A <Ag <A

@ Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024

Determination of the Ag-wave speed N
Writing the balance across the A\j-wave

Replacing Fj, s = vpUs + Lg for s =/, r yield
(RHo) —Mo(Ur —Uj) +Fn, —Fqy= (va = Ao)(Ur = Uj) + Ly —LJ.

To simplify the right-hand side, we express the Ap-wave speed as

*

/\0:Vn.

Final expression of the balance across the A\y-wave

0
1
* * * *
(RMo) —No(UF —UD) +Fia, —Fay=Li—Li= (o —p) | 4
Va
This is not a conservation relation since a priori p; # py.
Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024 12
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AR
Interface flux
Left and right-sided interface fluxes [Harten et al., SIAM 1983]

0 +00
Fr = Foy— / (W(U, Uy, &) — U dé, Fi=Fo,+ /O [W(U,, U, €) — U] dé.

Substituting the expression of our simple approximate Riemann solver leads to

Fo = Fny = A7 (U7 = U)) = Ag (U7 = U7) = A-(Ur = Up),
Fo = For = AJ(UF = U)) = Ag (U7 = Uf) = A7 (U, = Up),

where for x € R we define x~ = 3(|x| — x) and x* = 3(|x| + x).

Jump between the right and the left-sided interface fluxes
F. —Fy =Fn,— Fn,— AN(UF —U)) — Ao(U7 —U7) — A(U, — Up).
The (HLL) consistency condition holds true iff F; — F,, = 0.

E Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024 13
AR
Interface flux

Recalling (RH,), (RHo) and (RH,)

(RH;)) —MN(Uf —U)) +Fy —Fn =0,

(RHo) —No(Ur —Uj) +Fr, —Fp = L7 =L = (07 — p7)

S © = O

(RHr) — A(Ur = U7) +Fn,—Fq,=0.

Jump between the left and right-sided interface fluxes

Summing (RH,), (RHo) and (R*H,) leads to 0
= * * * * 1
Fo—Fa=Li—Li=(r—p) |
Va
Conservation holds true in the classical sense if and only if p; — pj = 0.

Node-conservative FV-for multiD"Eulerequations = PHM ICCFDT2°Kobe; July 14-1972024 7
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Interface flux

Jump between the intermediate pressures

Summing the the momentum equation of (S;) and (S;) yields

AV + Arvnr (Pr — pi)
A+ Ar Ar+ N

which is the approximation of normal component of the velocity interface.

pr —pr =+ M) (vp — Vn,lr) where vy, =

Alternative for the parameter v and the interface flux

B Either voh = Va, then the Riemann solver is consistent with (RP) and it induces a classical
face-based conservative Finite Volume scheme characterized by the unique interface flux
Fa =Fn;

B Or vy # Va, then the Riemann solver is not consistent with (RP) and it does not induce a
conservative Finite Volume scheme in the classical sense since Fy # F, .

How to compute v and restore the conservation property when F # F,, ?

E Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024

Subface-based Finite Volume discretization
Assumptions and notations Hexaedral cell
Polyhedral tessellation with cells w,

P(c) set of vertices p of w¢

Faces partition into subfaces

Quadrangular subface: {X,, Xpct,1, Xcf, Xper,2 }
SF(pc) set of subfaces related to p and ¢
Subface partition into triangles Tyer,1 @and Tper 2

Nper: outward unit normal to the subface

Apcfnpcf - |Tpcf,1 |npcf,1 + |Tpcf,2|npcf,2
Subface-based FV discretization

At =
Ug+1 - Ug + T Z Z Apchpcf =0,

_ jwel peP(c) feSF(pc)
Here, F, is the subface flux attached to the subface f and the corner pc.

E Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024 16
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Subface flux approximation
Riemann problem Interface between w,; and wy
( aU + 8anCf

ot OXn,y

where Fn_, = F(U)npr.

U(ancf7 0) = {

Parametrized Riemann solver
W= Wpcf(U Vnpc,af)

:0,

o\

n .
U; if Xnper < 0,
o if Xn, > 0.

\

Subface flux approximation
0
F,DCf F;pcf - ancf c / |: Cf(U Vn of 5) :|

—00

A priori ?pcf + de,« and thus the FV scheme is not conservative!

@ Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024
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Convex combination property N
Expressing U2 in terms of the intermediate states

Recalling the expression of the left-sided flux
Foor = Frec = MUl — Ug) = Ag f(Ur s = Ury) — A (Ug — U7 ).

Substituting it into the FV scheme and rearranging leads to

UZ+1—[ Z D Apcf/\/f}un e Z > Ao (A Aa,f) uj

peP(c) feSF(pc) peP(c) feSF(pc)

Z > A [( /\r_,f) Uz, +Ar_,fug] :

pGP(c) feSF(pc)

—-

U2*! convex combination of the intermediate states if
: |wel

At < min At;, where At, = —.
& ¢ D _peP(c) 2otesF(pe) ApeN ¢

=PHM ICCFD12°Kobe, July 14-192024 18
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Conservation property of the FV scheme
The Finite Volume scheme is conservative iff

Z |WC‘(Ug+1 - Ug) =0 <= Z Z Z Apcfl_:pcf =0,
c

C peP(c) feSF(pc)

= Y > AuFor=0,
P ceC(p) feSF(pc)
where C(p) is the set of cells sharing point p.

The node-based conservation The node-based condition (NBC)
Z Z Apcf?pcf =0, + N
ceC(p) feSF(pc) fesz}_(p) Apf(an, - anf) — 07
2. 2 AporFpr =0, F- left-sided flux w.r.t. n,,
npf p

feSF(p) ceC(f)
SF(p) set of subfaces impinging at p,
C(f) set of cells sharing sufbace f.

F;pf right-sided flux w.r.t. nyy.

@ Node-conservative FV for multiD Euler equations - PHM J ICCFD12 Kobe, July 14-19 2024 19 ‘
Conservation property of the FV scheme N
Grid fragment at point p

:
! v
1 Phd
LT my
I + :
: Xp - _..Tlf%.:‘ﬂ ________
R ) i
-=7 -~ -
1 1 My
1 1 1
/ T feSF(p) |
:
1
[ -
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RN
Conservation property of the FV scheme |

Substituting the expression of F;pf — Fy,,, into (NBC) leads to

0

_ . 1
F;il_pf - anf = ()\[’pf + )\r,pf) (Vnpf — Vnpf’lr> 0

*

We have |SF(p)| scalar unknowns for only d+1 scalar equations!

Closure assumption on the Vs, Parameter

v;pf = Vp - Ny, VI SF(p).

This introduces the nodal velocity v,, which shall be computed from the NBC.

E Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024

YW
Conservation property of the FV scheme

The nodal solver
Substituting the expression of v;;pf in (NBC) turns it into

Z Apt( A1 pr & Ar.pf) (Npr @ Npp)Vp = Z Apt(A1pf + Appf) Vi, Npt,

feSF(p) feSF(p)
T, Al pfVn,lpf T ArpfV,r pf (pr,pf — pr,pf)
Ny — —
g Alpf + Ar,pf Ar,pf + Alpf

B This system admits a unique solution which provides an approximation of the nodal velocity v,
B |t coincides with the one constructed for Lagrangian hydrodynamics [PHM, JCP 2009]

B |t's not a suprise since this Riemann solver has Lagrangian roots [Gallice et al., JCP 2022]

B This allows to compute the intermediate states and fluxes of the Riemann solver

E Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024 22
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Two types of FV scheme

Classical face-based FV Unconventional subface-based FV
B Classical face-based FV method: interface flux computed from the classical approximate

Riemann solver depending on the left and right states on both sides of the interface, hence the
name Two-point scheme

v o

B Unconventional subface-based FV method: subface flux computed from the nodal solver
depending on all the states surrounding the node, hence the name Multipoint scheme

@ Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024 23
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3D extension of odd-even decoupling test [Quirk, IINMF 1994] “V

Test case definition

B Assess the sensitivity of numerical methods to infinitesimal perturbations

® Planar shock wave propagation over a perturbed Cartesian grid

B Computational domain is 2 = {(x, y, z) € [0,800] x [-10,10] x [-10,10]}
B Cartesian grid 800 x 20 x 20

B Perturbation of the centerline y =0and z=10

0
Xo = Xp + o (cos(gb)) ,
sin9)

where & is the amplitude of the pertubation and ¢ the angle defined by ¢ = (X, - €x) 5.

@ Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024 24
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NN
3D extension of odd-even decoupling test [Quirk, IINMF 1994]

L
R

(a) Grid bottom left quadrant. (b) Zoom at the centerline.

Figure 1: Grid fragments for a perturbation of amplitude ay = 0.1.

Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024 25

N
3D extension of odd-even decoupling test [Quirk, IINMF 1994]

Set up
® Mach 6 right-going shock wave
® |nitial state (p%, v, 0% ) = (1,0,1, £
B Rankine-Hugoniot relations provides the inflow state

(v + 1)Ma? 2(Ma® — 1) 2yMa? — (y — 1)
> y Uoo = Ushock =7 53 Poo = )
(v — 1)Ma? + 2 (v + 1)Ma (v+1)

Ushock = May/7, poo =

where Ma denotes the Mach number
B Final time: &g = 50

B Exact solution: 1D shock wave propagating at speed uUshock in the x-direction

Numerical solution should remain uniform regardless the amplitude of the
perturbation

Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024 26
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N .
Test case set up Scattered® plot of density (hex.)
" (x,y,2) €[-1.2,1.2] [ et o
First-order Multi—goint .
B Set up 5 Reference solution
(pO,VOaPO) = (1>0a10_6) 4r
& s
Porigin = ( 1)Pongm 0 Z 3
orlgln é—’
& = 0.851072, energy release. L
B Hexaedral grid: 64x64x64 L
B Point-blast with a self-similar solution
0 L L =, 1 1
B Rinock = 1 at lstopping = 1 0 0.2 04 R’g_-f" 0.8 1 1.2

X
3D extension of odd-even decoupling test [Quirk, IINMF 1994]%

v v Density v Density
R e B —————— B — e ——
(a) 2-point scheme. (b) Modified 2-point scheme. (c) Multi-point scheme.

Figure 2: Density isosurfaces viewed from aside at time t;,, = 50 with a9 = 107°.

Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024

W
Sedov problem [Kamm et al., LANL 2007] N

© Scattered plot: density in all the cells with respect to the cell center radius.
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Sedov oroblem [Kamm et al.. LANL 2007] :SE

o< X

Density
1

Density
l8e0l 04 06 08 1 2 14 16 18 2 238400 18201 04 06 08 1 1

4 18 18 2 23e+00 18601 04 06 08 1 2 14 16 18 2 23ed0

(a) 2-point scheme. (b) Modified 2-point scheme. (c) Multipoint scheme.

Figure 3: Sedov test case on the Cartesian grid made of 64° hexaedras. Density contours
at time t = 1: 15 equally spaced iso surfaces over [0, 2.5]. View of the domain z < 0.

oy
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Blunt body test case [Candler et al., AIAA 2007]

(a) Hexaedral grid. (b) Prismatic grid. (c) Tetrahedral grid.

Figure 4: Blunt-body test case: types of grids used after [Candler, AIAA 2007].

B Mach 12 flow over a cylinder normal to the flow: singularity of the stagnation line!
B Hexaedral grid aligned with the bow shock and also a non aligned grid

Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024 30
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Blunt body test case [Candler et al., AIAA 2007]

{d) Prism grid (Fig. 2(d))

. I ¢
l— O.Oe+ODZ I— D.OeiODZ
(a) US3D code. (b) Two-point. (c) Multipoint.
Figure 5: Blunt-body problem using a prismatic grid: Pressure contours.
Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024
N W
Blunt body test case [Candler et al., AIAA 2007]

— 1.0e+00

8 B lo.a -
06 % 06 %
04 3 04 F
._ 02 é ._ 02 E
l— 0.0e+00%= .— D.De+00§
(a) US3D code. (b) Two-point. (c) Multipoint.
Figure 6: Blunt-body problem using a prismatic grid: Temperature contours.
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ICCFD12



N \C‘q\%
Blunt body test case [Candler et al., AIAA 2007](prismatic grid)

Pwall — Poo
Pressure coefficient C, = ————
2PV
2 T T T T T
Two-point @
FCLAREIN . Modified Two-point

1.8 T ., Multi-point velocity ~ ® ]

. . Reference solution

16 7 ]
. .
O 14F
=
2
Q -
& 1.2
[
]
Py |
2
£ oost

06 [

04 F

0.2

0 0.2 0.4 0.6 0.8 1 1.2
@ Node-conservative FV for multiD Euler equations - PHM Angle © ICCFD12 Kobe, July 14-19 2024

Blunt body test case [Candler et al., AIAA 2007] (prismatlc grld

Density along stagnation line Total enthalpy along stagnation line
10 T T T T T 85 ot °
Modifie dT»\l' p l .
K '_,'____________-__.:_;_;_;_5__“‘;— Refer l!Mlll}l:lpyl
..... i et T b 80 *
8 r T -, ,-b-b'f.#g
7F . . 75 |5 e s e e oo s . _‘_-.-::_-‘:.?::{v; ’,3 v.—,q.---..-m-.-s-.c .5\*
o IE .—“_ e, '\.'-'.:-c-’ =y . '%’,
z Of E
k7] = 70 |
. &
s . 65
3k
60 -
2 X Two-point @
Modified Two-point
______________ Multi-point @
1 | . . Refe I tagnati n(lienclty - = - s5 ) ) ) ) )
-0.8 -0.75 -0.7 -0.65 -0.6 -0.55 -0.5 -0.8 -0.75 -0.7 -0.65 -0.6 -0.55 -0.5
Position x Position x
- v

N.B.: Total enthalpy, H = ¢ + g + %VZ, should be conserved for such a flow
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Blunt body test case [Candler et al., AIAA 2007]

(b) Tet grid (Fig. 2(b))
1

0.9
0.8
0.7
0.6

05

l 0.8 l 0.8
0.6 0.6

Normalized_Pressure
Normalized_Pressure

(@ I I
"V‘Aé% / I _Ir—
(a) US3D code. (b) Two-point. (c) Multipoint.
. Figure 7: Blunt-body problem using a tetrahedral grid: Pressure contours.
Cea Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024
L W
Blunt body test case [Candler et al., AIAA 2007]

0.6 ;;l’ 0.6 ;;l’
04 3 04 F
I’— 0.2 E I— 0.2 E
l— D.Oe+00£ .— D.De+00§
(a) US3D code. (b) Two-point. (c) Multipoint.
Figure 8: Blunt-body problem using a tetrahedral grid: Temperature contours.
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NN
Blunt body test case [Candler et al., AIAA 2007] (tet. grld

Pressure coefficient C, =

Pressure coefficient Cp

1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2
Angle ©

N.B.: Comparison with the modified Newtonian theory [Anderson, AIAA 2006]
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Blunt body test case [Candler et al., AIAA 2007] (tet. g r|d

Density along stagnation line Total enthalpy along stagnation line
10 T T T T T 85 °
Modifie dTw p :
S U Refers l!lwlhl}ll)ll ¢
¢ - e reaes poe el K XX \‘f-:‘-g_—..o 80 I alpy -
8 o -
L . s L N e e U TN I

! g AF e R Tl ".'-‘".' = 75 B e eyt oy bR Tl %
o oL . o e & [ o+
2 = St st - . o
'z ey = 70 ,-:‘.::: '.‘

g . o

4 | . . . 65 -

3k

2 Two-point @ 60

Modified Two-point
e o cn 005 20 0 & Multi-point ~ ®
. | . Refe I tagnation (Iienslty - = - ) ) ) ) )
1 55
-0.8 -0.75 -0.7 -0.65 -0.6 -0.55 -0.5 -0.8 -0.75 -0.7 -0.65 -0.6 -0.55 -0.5
Position x Position x
- v

N.B.: Total enthalpy, H = ¢ + g + %VZ, should be conserved for such a flow
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PRE-X test case [Annaloro et al., ESA Conf. 2017] o

Freestream. ?ondltlons Grid: 6M tetrahedra (Gmsh)
Quantities PRE-X S
Mach 25 7 . %—-'
Altitude (km) 73.6 S s e :
Velocity (ms™) 7205
Density (kgm™) 5.546 10
Temperature (K) 207
Pressure (Pa) 3.11
Wall temperature (K) 1500 ARSI Sl R S e
Angle of attack (°) 40 it D
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PREX test case [Annaloro et al., ESA Conf. 2017] |

cp
0.0e+00 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2.0e+00
| | L

(a) Tracesof y=0and y = 0.3m. (b) Pressure iso-surfaces, multipoint.
Figure 9: Representations of the pressure field.
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PREX test case [Annaloro et al., ESA Conf. 2017]

MISTRAL = MISTRAL = _-'
'P'\ Multi-point ~ * . Multi-point ~ +
1.5 ! k4 1 L5
& 1 \P""MA—'—A—-‘“‘.-A B &
Fi -
: )
\""rm‘-l.——d
05 f asf
;
0 f\“ 0 L : = : : :
0 0.5 1 1.5 2 25 3 35 4 0 0.5 1 1.5 2 2.5 3 35 4
X(m) X(m)
(a) Pressure coefficient along the trace of (b) Pressure coefficient along the trace of
the plane y = 0 on the surface. the plane y = 0.3 on the surface.

Figure 10: Pressure coefficient obtained by the multipoint FV scheme and the MISTRAL
code, which is a multibloc structured Navier-Stokes code (R.Tech).
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Conclusion and perspectives

Conclusion

Subface-based Finite Volume scheme for Euler equations

Subface numerical flux by means of a specific approximate Riemann solver
Positivity preserving method

Conservation node-based condition

Multipoint scheme seems to be less sensitive to nhumerical pathologies that plague
classical two-point schemes

Perspectives

Investigation of the theoretical properties

Low Mach extension — cf. Alessia Del Grosso talk [6A-01] Tuesday 4:30 pm
Entropy conservative flux utilizing Abgrall approach [Abgrall, JCP 2018]

Time implicit discretization — c¢f. Benoit Cossart talk [11D-02] Thursday 2:30 pm

Viscous and heat fluxes discretization for Navier-Stokes extension extending the multipoint flux
approximation introduced in [Jacq, Ph.D. 2014]

o
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Further readings |

@ A. Chan and G. Gallice and R. Loubére and P.-H. Maire

Positivity preserving and entropy consistent approximate Riemann solvers dedicated to the high-order MOOD-based Finite Volume
discretization of Lagrangian and Eulerian gas dynamics
Computers & Fluids, 2021.

@ A. Del Grosso and A. Chan and G. Gallice and R. Loubére and P.-H. Maire

A well-balanced, positive, entropy-stable, and multi-dimensional-aware finite volume scheme for 2D shallow-water equations with unstructured
grids

Journal of Computational Physics, 2024.

G. Gallice and A. Chan and R. Loubére and P.-H. Maire

Entropy stable and positivity preserving Godunov-type schemes for multi-dimensional hyperbolic systems on untructured grid
Journal of Computational Physics, 2022.

G. Gallice

Positive and entropy stable Godunov-type schemes for gas dynamics and MHD equations in Lagrangian or Eulerian coordinates.
Numer. Math., 94:673-713, 2003.

A. Harten and P. Lax and B. van Leer

On upstream differencing and Godunov-type schemes for hyperbolic conservation laws

SIAM Review, 25:35-61, 1983.

P. Jacq

Finite Volume methods on unstructured grids for solving anisotropic heat transfer and compressible Navier-Stokes equations
Ph.D. Thesis, Bordeaux University, 2014

) @ @ & WY

R. Menikoff and B. J. Plohr

The Riemann problem for fluid flow of real materials.

Review of Modern Phgsics, 61:75-130, 1989.
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Hypersonic flows [Anderson, AIAA 2006] 53
Structure of an hypersonic flow in front of blunt body

tan(o—0) 2
tanc T (y+1)MZsin’o

May > 1

Main features of hypersonic flows in continuum regime

B Strong curved shock wave: conversion of kinetic energy into internal energy, vorticity and
entropy gradients

B High temperatures flow: thermochemical processes have to be taken into account
B Thin shock layer: shock close to the body

B Viscous interaction: standard first-order boundary layer theory not valid anymore
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Basic mathematical model for continuum hypersonics

Compressible Navier-Stokes equations Constitutive laws

0

9P L7 (pv) =0,

%t S =2uDg and q = —k V4,
(V) + V- (pv@V)+Vp=V"-§,

ot Dy = %[Vv + (VV)t] — %(V V) I,
0
5P+ V- (pev) + V- (pv) =V (Sv) = V-q. | Equation of state

v

Comments

B This is the basic model knowing that for hypersonic applications a larger number of equations
must be solved!

B Navier-Stokes equations consists of a convective part plus a viscous-heat conducting part
B We focus on the Finite Volume discretization of the convective part: the Euler equations

B Most of the production codes for hypersonic flows rely on FV discretization: NASA (LAURA,
DPLR, US3D), ONERA (CEDRE, ELSA), DLR (TAU)...
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Finite Volume method for inviscid hypersonic flows v
Main difficulties

® Numerical simulation of hypersonic flows is still challenging! [Kitamura, Springer 2020]
B Hypersonic regime exacerbates the eternal trade-off between robustness and accuracy

B Sufficient numerical dissipation to stabilize the strong bow shock and avoid instabilities
B Without degrading the resolution of the boundary layer to capture accurately the heat flux

B Sensitivity of the numerical method to the quality of the computational grid

B Multiblock structured grid: adaptation to the flow but costly for complex geometries
B Unstructured grid: more demanding w.r.t. numerical methods but meshing easier to construct

Quotations from [Candler, JSR 2015]

B The key concern is adding dissipation to prevent aphysical solutions, without adversely
affecting the flow physics.

B The standard textbook flux formulation may work beautifully on standard one-dimensional
(1-D) test problems, but fail miserably when applied to an actual problem. This is especially
true for multidimensional high Mach number flows because it is impossible to design a grid that
will be perfectly aligned with strong shock waves without first computing a solution. Thus, it is
necessary that the flux functions produce physically meaningful solutions on nonideal grids.
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Left and right-sided fluxes in terms of their average
Expression of the left and the right-sided fluxes
Introducing the arithmetic average of the left and the right-sided fluxes

1 1 * * * x
Fr = 5 (For +Fny) = 5 [AI(UF = Up) + [Ao| (U7 = UF) + A (Ur = U)].

We express them in terms of their average and their difference as
0)
0|
i/
0
0

v
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Fi =Fa+ 50+ A) (va = Var)
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ARD test case [Annaloro et al., ESA Conf. 2017]

Grid: 4.8M tetrahedra (Gmsh)
Freestream conditions . ‘@ - :
Quantities ARD PRE-X

Mach 24 25

Altitude (km) 65.83 73.6

Velocity (ms™) 7212.43 7205

Density (kgm™) 1.5869 10* | 5.546 10

Temperature (K) 224.5 207
Pressure (Pa) 10.23 3.11

Wall temperature (K) 1500 1500
Angle of attack (°) 20 40

LS
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ARD test case [Annaloro et al., ESA Conf. 2017]

(a) Two-point. (b) Multipoint.

Figure 11: Pressure iso-surfaces.
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ARD test case [Annaloro et al., ESA Conf 2017]

2k MISTRAL e
Multi-point
Flight data ———

Cp

05

1 1 1
-1.5 -1 -0.5 0 0.5 1 1.5

s/D
P\Nan poo
B Pressure coefficient: C, = ———— along the trace of y = 0
poO oo
® MISTRAL: Navier-Stokes code from R.Tech
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