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Context and Motivations
Context

� Numerical simulation of 3D hypersonic flows still a challenging task which requires a
subtle balance between robustness and accuracy

� On going work with Ph.D students: Agnes Chan [2019-2022] & Vincent Delmas [2023-2026]
� Co-supervisors: R. Loubère (CNRS/Institut de Mathématiques de Bordeaux) and PHM

Motivations
� Design robust and accurate cell-centered Finite Volume (FV) methods for solving multiD

Euler & Navier-Stokes equations on unstructured grids
� Robustness cornerstone: Entropy stable and positivity preserving approximate Riemann

solvers (RS) [G. Gallice, Numer. Math., 2002]
� Construction of multiD FV methods based on node-centered approximate RS extending the

previous works devoted to
� Lagrangian gas dynamics [R. Loubère, PHM, B. Rebourcet, HNMHP, 2016]
� Eulerian gas dynamics [Z. Shen et al., J. Comp. Phys, 2014]
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The compressible Euler equations
Governing equations
∂U
∂t

+∇ · F(U) = 0,

U = (ρ, ρv, ρe)t ∈ Rd+2,

F(U) =




ρvt

ρv ⊗ v + pId
ρevt + pvt


 .

Thermodynamic closure
� Specific internal energy ε = e − 1

2 v2

� Specific entropy η

� (τ, η) 7−→ ε(τ, η) strictly convex
� Complete equation of state

p(τ, η) = − ∂ε

∂τ
, θ(τ, η) =

∂ε

∂η
> 0, temperature

Main properties
� Hyperbolicity:

∂F(U)n
∂U

is diagonalizable for all unit vector n with the real eigenvalues

Λ− = v · n − a,Λ0 = v · n (multiplicity d),Λ+ = v · n + a, where
a2

τ 2 = −∂p
∂τ

� Entropy inequality
∂ρη

∂t
+∇ · (ρηv) ≥ 0.
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Riemann problem in the n direction (n2 = 1)

Riemann problem (RP)

∂U
∂t

+
∂Fn

∂xn
= 0

U(0, xn) =

{
Ul if xn < 0,
Ur if xn ≥ 0,

where Fn = Fn and xn = x · n.

Entropy inequality
∂ρη

∂t
+

∂

∂xn
(ρηv) ≥ 0.

Local notations

U =




ρ
ρvn
ρvt
ρe


 and Fn =




ρvn
ρv2

n + p
ρvnvt

ρvne + pvn


 ,

where v = vnn + vt .

Normal flux decomposition

Fn = vnU + L(U), where L(U) =




0
p
0

pvn
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Simple approximate Riemann solver [Gallice, CRAS, 2002]
Simple Riemann solver

W(Ul ,Ur , ξ) =





Ul if ξ < Λl ,

U⋆
l if Λl ≤ ξ < Λ0,

U⋆
r if Λ0 ≤ ξ < Λr ,

Ur if Λr ≤ ξ,

where ξ = xn
t .

Λl , Λ0 and Λr are the wave speeds.

x − t diagram

xn

t

0

dx
dt = Λ0

dx
dt = Λr

dx
dt = Λl

Ul
Ur

U⋆
rU⋆

l

−∆xl ∆xr

Intermediate states

U⋆
s =




ρ⋆s
ρ⋆sv⋆

n,s
ρ⋆sv⋆

t ,s
ρ⋆se⋆

s


 , for s = l , r .

Intermediate fluxes

F⋆
n,s = v⋆

n,sU⋆
s +




0
p⋆

s
0

p⋆
sv⋆

n,s


 , for s = l , r .
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Characterization of the Riemann solver

Computation of U⋆
s and F⋆

n,s for s = l , r
� Write the conservation relations across Λs-waves

(RHl) − Λl(U⋆
l − Ul) + F⋆

n,l − Fn,l = 0,
(RHr ) − Λr (Ur − U⋆

r ) + Fn,r − F⋆
n,r = 0.

� Assume Λl , Λ0 and Λr are given parameters
� There are 2d + 6 scalar unknows for 2d + 4 scalar equations
� We have multiple choices to close this system of equations!

� We choose to impose v⋆
n,l = v⋆

n,r = v⋆
n , which is a quite natural choice

� We decide to keep p⋆
l 6= p⋆

r , which is rather unusual!
� Refer to Alessia Del Grosso talk [6A-01] Tuesday 4:30 pm for an other choice

� We arrive at 2d + 5 scalar unknows for 2d + 4 scalar equations
� This allows us to consider v⋆

n as a parameter
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Characterization of the Riemann solver
Computation of U⋆

s and F⋆
n,s for s = l , r

Replacing Fn,s = vn,sUs + Ls and F⋆
n,s = v⋆

nU⋆
s + L⋆

s into (RHs) for s = l , r yields

(v⋆
n − Λl)U⋆

l − (vn,l − Λl)Ul + L⋆
l − Ll = 0,

(vn,r − Λr )Ur − (v⋆
n − Λr )U⋆

r + Lr − L⋆
r = 0.

First components boil down to

ρ⋆l (v
⋆
n − Λl)− ρl(vn,l − Λl) = 0, for the Λl -wave,

ρr (vn,r − Λr )− ρ⋆r (v
⋆
n − Λr ) = 0, for the Λr -wave.

Introduction of the mass flux parameters λl and λr

λl = ρ⋆l (v
⋆
n − Λl) = ρl(vn,l − Λl),

λr = −ρr (vn,r − Λr ) = −ρ⋆r (v
⋆
n − Λr ).
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Characterization of the Riemann solver

Expression of the wave speeds

Λl = vn,l −
λl

ρl
= v⋆

n − λl

ρ⋆l
,

Λr = v⋆
n +

λr

ρ⋆r
= vn,r +

λr

ρr
.

Compatibility conditions

λl(τ
⋆
l − τl)− (v⋆

n − vn,l) = 0,
λr (τ

⋆
r − τr ) + v⋆

n − vn,r = 0,

where τs =
1
ρs

and τ⋆s =
1
ρ⋆s

.

Conservation relations (RHl) and (RHr ) turn into

λl

(
U⋆

l
ρ⋆l

− Ul

ρl

)
+ L⋆

l − Ll = 0,

λr

(
U⋆

r
ρ⋆r

− Ur

ρr

)
− (L⋆

r − Lr ) = 0.
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Characterization of the Riemann solver

Combining compatibility conditions and conservation relations yield

(Sl)





λl(τ
⋆
l − τl)− (v⋆

n − vn,l) = 0,
λl(v⋆

n − vn,l) + p⋆
l − pl = 0,

λl(v⋆
t ,l − vt ,l) = 0,

λl(e⋆
l − el) + p⋆

l v⋆
n − plvn,l = 0,

(Sr )





λr (τ
⋆
r − τr ) + v⋆

n − vn,r = 0,
λr (v⋆

n − vn,r )− (p⋆
r − pr ) = 0,

λr (v⋆
t ,r − vt ,r ) = 0,

λr (e⋆
r − er )− (p⋆

r v⋆
n − pr vn,r ) = 0.

Comments
� This is a system of 2d + 5 unknowns for 2d + 4 scalar equations, hence the v⋆

n parametrization
� It remains to

1 Ensure positivity, e.g. τ⋆s > 0, ε⋆s > 0 and entropy stability by adapting λl and λr

2 Express the Λ0 wave speed
3 Determine the interface flux to feed the Finite Volume discretization
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Positivity and entropy stability conditions
Positivity of intermediate internal energies, ε⋆s, and specific volumes τ ⋆s

ε⋆s > 0 and τ⋆s > 0 for s=l,r provided that [Chan et al., CAF 2021]

λl ≥ max

(
al

τl
,−v⋆

n − vn,l

τl

)
, and λr ≥ max

(
ar

τr
,
v⋆

n − vn,r

τr

)
.

Entropy stability

η⋆s ≥ ηs provided that [Chan et al., CAF 2021]

λs ≥ a(τ, ηs)

τ
, for τ ∈ (τs, τ

⋆
s ) and s = l , r .

Comment: Wave speeds ordering

λs > 0 and τ⋆s > 0 for s=l,r =⇒ Λl ≤ Λ0 ≤ Λr .
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Determination of the Λ0-wave speed
Writing the balance across the Λ0-wave
Replacing F⋆

n,s = v⋆
nU⋆

s + L⋆
s for s = l , r yield

(RH0) − Λ0(U⋆
r − U⋆

l ) + F⋆
n,r − F⋆

n,l = (v⋆
n − Λ0)(U⋆

r − U⋆
l ) + L⋆

r − L⋆
l .

To simplify the right-hand side, we express the Λ0-wave speed as

Λ0 = v⋆
n .

Final expression of the balance across the Λ0-wave

(RH0) − Λ0(U⋆
r − U⋆

l ) + F⋆
n,r − F⋆

n,l = L⋆
r − L⋆

l = (p⋆
r − p⋆

l )




0
1
0
v⋆

n


 .

This is not a conservation relation since a priori p⋆
r 6= p⋆

l .
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Interface flux
Left and right-sided interface fluxes [Harten et al., SIAM 1983]

F−
n = Fn,l −

∫ 0

−∞
[W(Ul ,Ur , ξ)− Ul ] dξ, F+

n = Fn,r +

∫ +∞

0
[W(Ul ,Ur , ξ)− Ur ] dξ.

Substituting the expression of our simple approximate Riemann solver leads to

F−
n = Fn,l − Λ−

l (U
⋆
l − Ul)− Λ−

0 (U
⋆
r − U⋆

l )− Λ−
r (Ur − U⋆

r ),

F+
n = Fn,r − Λ+

l (U
⋆
l − Ul)− Λ+

0 (U
⋆
r − U⋆

l )− Λ+
r (Ur − U⋆

r ),

where for x ∈ R we define x− = 1
2(|x | − x) and x+ = 1

2(|x |+ x).

Jump between the right and the left-sided interface fluxes

F+
n − F−

n = Fn,r − Fn,l − Λl(U⋆
l − Ul)− Λ0(U⋆

r − U⋆
l )− Λr (Ur − U⋆

r ).

The (HLL) consistency condition holds true iff F+
n − F−

n = 0.
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Interface flux
Recalling (RHl), (RH0) and (RHr )

(RHl) − Λl(U⋆
l − Ul) + F⋆

n,l − Fn,l = 0,

(RH0) − Λ0(U⋆
r − U⋆

l ) + F⋆
n,r − F⋆

n,l = L⋆
r − L⋆

l = (p⋆
r − p⋆

l )




0
1
0
v⋆

n




(RHr ) − Λr (Ur − U⋆
r ) + Fn,r − F⋆

n,r = 0.

Jump between the left and right-sided interface fluxes
Summing (RHl), (RH0) and (RHr ) leads to

F+
n − F−

n = L⋆
r − L⋆

l = (p⋆
r − p⋆

l )




0
1
0
v⋆

n


 .

Conservation holds true in the classical sense if and only if p⋆
r − p⋆

l = 0.
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Interface flux
Jump between the intermediate pressures
Summing the the momentum equation of (Sl) and (Sr ) yields

p⋆
r − p⋆

l = (λl + λr )(v⋆
n − vn,lr ) where vn,lr =

λlvn,l + λr vn,r

λl + λr
− (pr − pl)

λr + λl
,

which is the approximation of normal component of the velocity interface.

Alternative for the parameter v⋆
n and the interface flux

� Either v⋆
n = vn, then the Riemann solver is consistent with (RP) and it induces a classical

face-based conservative Finite Volume scheme characterized by the unique interface flux
F+

n = F−
n ;

� Or v⋆
n 6= vn, then the Riemann solver is not consistent with (RP) and it does not induce a

conservative Finite Volume scheme in the classical sense since F+
n 6= F−

n .

How to compute v⋆
n and restore the conservation property when F+

n 6= F−
n ?
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Subface-based Finite Volume discretization
Assumptions and notations

� Polyhedral tessellation with cells ωc

� P(c) set of vertices p of ωc

� Faces partition into subfaces
� Quadrangular subface: {xp, xpcf ,1, xcf , xpcf ,2}
� SF(pc) set of subfaces related to p and c
� Subface partition into triangles Tpcf ,1 and Tpcf ,2

� npcf : outward unit normal to the subface

Apcf npcf = |Tpcf ,1|npcf ,1 + |Tpcf ,2|npcf ,2

Hexaedral cell

ωc xp
f

xcf

xpcf,2

xpcf,1

Tpcf,2

Tpcf,1

Subface-based FV discretization

Un+1
c − Un

c +
∆t
|ωc |

∑

p∈P(c)

∑

f∈SF(pc)

Apcf Fpcf = 0,

Here, Fpcf is the subface flux attached to the subface f and the corner pc.
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Subface flux approximation
Riemann problem





∂U
∂t

+
∂Fnpcf

∂xnpcf

= 0,

where Fnpcf = F(U)npcf .

U(xnpcf , 0) =

{
Un

c if xnpcf < 0,

Un
d if xnpcf ≥ 0.

Parametrized Riemann solver
W = Wpcf (Un

c ,U
n
d , v

⋆
npcf

, ξ)

Interface between ωc and ωd

xp

ωc

f

ωd

npcf

Subface flux approximation

Fpcf = F−
npcf

= Fn
npcf ,c −

∫ 0

−∞

[
Wpcf (Un

c ,U
n
d , v

⋆
npcf

, ξ)− Un
c

]
dξ.

A priori Fpcf 6= Fpdf and thus the FV scheme is not conservative!
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Convex combination property
Expressing Un+1

c in terms of the intermediate states
Recalling the expression of the left-sided flux

Fpcf = Fn
npcf ,c − Λ−

l,f (U
⋆
l,f − Un

c)− Λ−
0,f (U

⋆
r ,f − U⋆

l,f )− Λ−
r ,f (U

n
d − U⋆

r ,f ).

Substituting it into the FV scheme and rearranging leads to

Un+1
c =

[
1 − ∆t

|ωc |
∑

p∈P(c)

∑

f∈SF(pc)

ApcfΛ
−
l,f

]
Un

c +
∆t
|ωc |

∑

p∈P(c)

∑

f∈SF(pc)

Apcf

(
Λ−

l,f − Λ−
0,f

)
U⋆

l,f

+
∆t
|ωc |

∑

p∈P(c)

∑

f∈SF(pc)

Apcf

[(
Λ−

0,f − Λ−
r ,f

)
U⋆

r ,f + Λ−
r ,f U

n
d

]
.

Un+1
c convex combination of the intermediate states if

∆t ≤ min
c

∆tc , where ∆tc =
|ωc |∑

p∈P(c)
∑

f∈SF(pc) ApcfΛ
−
l,f
.
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Conservation property of the FV scheme
The Finite Volume scheme is conservative iff∑

c

|ωc |(Un+1
c − Un

c) = 0 ⇐⇒
∑

c

∑

p∈P(c)

∑

f∈SF(pc)

Apcf Fpcf = 0,

⇐⇒
∑

p

∑

c∈C(p)

∑

f∈SF(pc)

Apcf Fpcf = 0,

where C(p) is the set of cells sharing point p.

The node-based conservation∑

c∈C(p)

∑

f∈SF(pc)

Apcf Fpcf = 0,

∑

f∈SF(p)

∑

c∈C(f )
Apcf Fpcf = 0,

SF(p) set of subfaces impinging at p,
C(f ) set of cells sharing sufbace f .

The node-based condition (NBC)
∑

f∈SF(p)

Apf (F+
npf

− F−
npf

) = 0,

F−
npf

left-sided flux w.r.t. npf ,

F+
npf

right-sided flux w.r.t. npf .
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Conservation property of the FV scheme
Grid fragment at point p

f ∈ SF(p)

xp

F−
npf

F+
npf

npf

Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024 20
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Conservation property of the FV scheme

Substituting the expression of F+
npf

− F−
npf

into (NBC) leads to

F+
npf

− F−
npf

= (λl,pf + λr ,pf )
(

v⋆
npf

− vnpf ,lr

)



0
1
0

v⋆
npf


 .

We have |SF(p)| scalar unknowns for only d+1 scalar equations!

Closure assumption on the v⋆
npf

parameter

v⋆
npf

= vp · npf , ∀ f ∈ SF(p).

This introduces the nodal velocity vp, which shall be computed from the NBC.
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Conservation property of the FV scheme

The nodal solver
Substituting the expression of v⋆

npf
in (NBC) turns it into

∑

f∈SF(p)

Apf (λl,pf + λr ,pf )(npf ⊗ npf )vp =
∑

f∈SF(p)

Apf (λl,pf + λl,pf )vnpf npf ,

where vnpf =
λl,pf vn,l,pf + λr ,pf vn,r ,pf

λl,pf + λr ,pf
− (pr ,pf − pr ,pf )

λr ,pf + λl,pf

� This system admits a unique solution which provides an approximation of the nodal velocity vp

� It coincides with the one constructed for Lagrangian hydrodynamics [PHM, JCP 2009]
� It’s not a suprise since this Riemann solver has Lagrangian roots [Gallice et al., JCP 2022]
� This allows to compute the intermediate states and fluxes of the Riemann solver
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Two types of FV scheme
Classical face-based FV Unconventional subface-based FV

� Classical face-based FV method: interface flux computed from the classical approximate
Riemann solver depending on the left and right states on both sides of the interface, hence the
name Two-point scheme

� Unconventional subface-based FV method: subface flux computed from the nodal solver
depending on all the states surrounding the node, hence the name Multipoint scheme
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3D extension of odd-even decoupling test [Quirk, IJNMF 1994]

Test case definition
� Assess the sensitivity of numerical methods to infinitesimal perturbations
� Planar shock wave propagation over a perturbed Cartesian grid
� Computational domain is Ω = {(x , y , z) ∈ [0, 800]× [−10, 10]× [−10, 10]}
� Cartesian grid 800 × 20 × 20
� Perturbation of the centerline y = 0 and z = 0

x̃p = xp + a0




0
cos(φ)
sin(φ)


 ,

where a0 is the amplitude of the pertubation and φ the angle defined by φ = (xp · ex)
π
2 .
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3D extension of odd-even decoupling test [Quirk, IJNMF 1994]

(a) Grid bottom left quadrant. (b) Zoom at the centerline.

Figure 1: Grid fragments for a perturbation of amplitude a0 = 0.1.
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3D extension of odd-even decoupling test [Quirk, IJNMF 1994]

Set up
� Mach 6 right-going shock wave
� Initial state (ρ0, v, p0, γ) = (1, 0, 1, 7

5 )

� Rankine-Hugoniot relations provides the inflow state

ushock = Ma
√
γ, ρ∞ =

(γ + 1)Ma2

(γ − 1)Ma2 + 2
, u∞ = ushock

2(Ma2 − 1)
(γ + 1)Ma2 , p∞ =

2γMa2 − (γ − 1)
(γ + 1)

,

where Ma denotes the Mach number
� Final time: tfinal = 50
� Exact solution: 1D shock wave propagating at speed ushock in the x-direction

Numerical solution should remain uniform regardless the amplitude of the
perturbation
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3D extension of odd-even decoupling test [Quirk, IJNMF 1994]

(a) 2-point scheme. (b) Modified 2-point scheme. (c) Multi-point scheme.

Figure 2: Density isosurfaces viewed from aside at time tfinal = 50 with a0 = 10−9.
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Sedov problem [Kamm et al., LANL 2007]

Test case set up
� (x , y , z) ∈ [−1.2, 1.2]3

� Set up

(ρ0, v0, p0) = (1, 0, 10−6)

porigin = (γ − 1)ρorigin
E0

vorigin
,

E0 = 0.851072, energy release.

� Hexaedral grid: 64x64x64
� Point-blast with a self-similar solution
� Rshock = 1 at tstopping = 1

Scattered⋄ plot of density (hex.)

⋄ Scattered plot: density in all the cells with respect to the cell center radius.
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Sedov problem [Kamm et al., LANL 2007]

(a) 2-point scheme. (b) Modified 2-point scheme. (c) Multipoint scheme.

Figure 3: Sedov test case on the Cartesian grid made of 643 hexaedras. Density contours
at time t = 1: 15 equally spaced iso surfaces over [0, 2.5]. View of the domain z < 0.
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Blunt body test case [Candler et al., AIAA 2007]

(a) Hexaedral grid. (b) Prismatic grid. (c) Tetrahedral grid.

Figure 4: Blunt-body test case: types of grids used after [Candler, AIAA 2007].

� Mach 12 flow over a cylinder normal to the flow: singularity of the stagnation line!
� Hexaedral grid aligned with the bow shock and also a non aligned grid
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Blunt body test case [Candler et al., AIAA 2007]

(a) US3D code. (b) Two-point. (c) Multipoint.

Figure 5: Blunt-body problem using a prismatic grid: Pressure contours.
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Blunt body test case [Candler et al., AIAA 2007]

(a) US3D code. (b) Two-point. (c) Multipoint.

Figure 6: Blunt-body problem using a prismatic grid: Temperature contours.
Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024 32



 ICCFD12

Blunt body test case [Candler et al., AIAA 2007](prismatic grid)
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Blunt body test case [Candler et al., AIAA 2007] (prismatic grid)
Density along stagnation line
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N.B.: Total enthalpy, H = ε+ p
ρ + 1

2v2, should be conserved for such a flow
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Blunt body test case [Candler et al., AIAA 2007]

(a) US3D code. (b) Two-point. (c) Multipoint.

Figure 7: Blunt-body problem using a tetrahedral grid: Pressure contours.
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Blunt body test case [Candler et al., AIAA 2007]

(a) US3D code. (b) Two-point. (c) Multipoint.

Figure 8: Blunt-body problem using a tetrahedral grid: Temperature contours.
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Blunt body test case [Candler et al., AIAA 2007] (tet.grid)

Pressure coefficient Cp =
pwall − p∞
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N.B.: Comparison with the modified Newtonian theory [Anderson, AIAA 2006]
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Blunt body test case [Candler et al., AIAA 2007] (tet. grid)
Density along stagnation line
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N.B.: Total enthalpy, H = ε+ p
ρ + 1

2v2, should be conserved for such a flow
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PRE-X test case [Annaloro et al., ESA Conf. 2017]

Freestream conditions
Quantities PRE-X

Mach 25
Altitude (km) 73.6

Velocity (ms-1) 7205
Density (kgm-3) 5.546 10-5

Temperature (K) 207
Pressure (Pa) 3.11

Wall temperature (K) 1500
Angle of attack (o) 40

Grid: 6M tetrahedra (Gmsh)
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PREX test case [Annaloro et al., ESA Conf. 2017]

(a) Traces of y = 0 and y = 0.3 m. (b) Pressure iso-surfaces, multipoint.

Figure 9: Representations of the pressure field.
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PREX test case [Annaloro et al., ESA Conf. 2017]
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(b) Pressure coefficient along the trace of
the plane y = 0.3 on the surface.

Figure 10: Pressure coefficient obtained by the multipoint FV scheme and the MISTRAL
code, which is a multibloc structured Navier-Stokes code (R.Tech).
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Conclusion and perspectives
Conclusion

� Subface-based Finite Volume scheme for Euler equations
� Subface numerical flux by means of a specific approximate Riemann solver
� Positivity preserving method
� Conservation node-based condition
� Multipoint scheme seems to be less sensitive to numerical pathologies that plague

classical two-point schemes

Perspectives
� Investigation of the theoretical properties
� Low Mach extension −→ cf. Alessia Del Grosso talk [6A-01] Tuesday 4:30 pm
� Entropy conservative flux utilizing Abgrall approach [Abgrall, JCP 2018]
� Time implicit discretization −→ cf. Benoit Cossart talk [11D-02] Thursday 2:30 pm
� Viscous and heat fluxes discretization for Navier-Stokes extension extending the multipoint flux

approximation introduced in [Jacq, Ph.D. 2014]
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Hypersonic flows [Anderson, AIAA 2006]
Structure of an hypersonic flow in front of blunt body

BOUNDARY LAYER

SHOCK LAYER 

BOW SHOCK

BODY

Ma > 1sonic line

θ
v∞

v⋆
σ

tan(σ−θ)
tan σ = 2

(γ+1)M 2∞ sin2 σ
+ γ−1

γ+1

Ma < 1Ma∞ ≫ 1

Main features of hypersonic flows in continuum regime
� Strong curved shock wave: conversion of kinetic energy into internal energy, vorticity and

entropy gradients
� High temperatures flow: thermochemical processes have to be taken into account
� Thin shock layer: shock close to the body
� Viscous interaction: standard first-order boundary layer theory not valid anymore
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Basic mathematical model for continuum hypersonics
Compressible Navier-Stokes equations
∂ρ

∂t
+∇ · (ρv) = 0,

∂

∂t
(ρv) +∇ · (ρv ⊗ v) +∇p = ∇ · S,

∂

∂t
(ρe) +∇ · (ρev) +∇ · (pv) = ∇ · (Sv)−∇ · q.

Constitutive laws

S = 2µD0 and q = −κ∇θ,

D0 =
1
2
[∇v + (∇v)t ]− 1

3
(∇ · v) Id,

Equation of state

Comments
� This is the basic model knowing that for hypersonic applications a larger number of equations

must be solved!
� Navier-Stokes equations consists of a convective part plus a viscous-heat conducting part
� We focus on the Finite Volume discretization of the convective part: the Euler equations
� Most of the production codes for hypersonic flows rely on FV discretization: NASA (LAURA,

DPLR, US3D), ONERA (CEDRE, ELSA), DLR (TAU)...
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Finite Volume method for inviscid hypersonic flows
Main difficulties

� Numerical simulation of hypersonic flows is still challenging! [Kitamura, Springer 2020]
� Hypersonic regime exacerbates the eternal trade-off between robustness and accuracy

� Sufficient numerical dissipation to stabilize the strong bow shock and avoid instabilities
� Without degrading the resolution of the boundary layer to capture accurately the heat flux

� Sensitivity of the numerical method to the quality of the computational grid
� Multiblock structured grid: adaptation to the flow but costly for complex geometries
� Unstructured grid: more demanding w.r.t. numerical methods but meshing easier to construct

Quotations from [Candler, JSR 2015]
� The key concern is adding dissipation to prevent aphysical solutions, without adversely

affecting the flow physics.
� The standard textbook flux formulation may work beautifully on standard one-dimensional

(1-D) test problems, but fail miserably when applied to an actual problem. This is especially
true for multidimensional high Mach number flows because it is impossible to design a grid that
will be perfectly aligned with strong shock waves without first computing a solution. Thus, it is
necessary that the flux functions produce physically meaningful solutions on nonideal grids.
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Left and right-sided fluxes in terms of their average
Expression of the left and the right-sided fluxes
Introducing the arithmetic average of the left and the right-sided fluxes

F⋆
n =

1
2
(
Fn,r + Fn,l

)
− 1

2
[|Λl |(U⋆

l − Ul) + |Λ0|(U⋆
r − U⋆

l ) + |Λr |(Ur − U⋆
r )] .

We express them in terms of their average and their difference as

F−
n = F⋆

n − 1
2
(λl + λr )

(
v⋆

n − vn,lr
)



0
1
0
v⋆

n


 ,

F+
n = F⋆

n +
1
2
(λl + λr )

(
v⋆

n − vn,lr
)



0
1
0
v⋆

n


 .

Node-conservative FV for multiD Euler equations - PHM ICCFD12 Kobe, July 14-19 2024 47

ARD test case [Annaloro et al., ESA Conf. 2017]

Freestream conditions
Quantities ARD PRE-X

Mach 24 25
Altitude (km) 65.83 73.6

Velocity (ms-1) 7212.43 7205
Density (kgm-3) 1.5869 10-4 5.546 10-5

Temperature (K) 224.5 207
Pressure (Pa) 10.23 3.11

Wall temperature (K) 1500 1500
Angle of attack (o) 20 40

Grid: 4.8M tetrahedra (Gmsh)
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ARD test case [Annaloro et al., ESA Conf. 2017]

(a) Two-point. (b) Multipoint.

Figure 11: Pressure iso-surfaces.
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ARD test case [Annaloro et al., ESA Conf. 2017]
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� Pressure coefficient: Cp =
pwall − p∞

1
2ρ∞v2∞

along the trace of y = 0

� MISTRAL: Navier-Stokes code from R.Tech
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