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1 Introduction
To construct high-order schemes on unstructured meshes, the discontinuous Galerkin (DG) method [1, 2]
and the flux reconstruction (FR) method [3, 4] are two of the most popular choices in the community of
computational fluid dynamics (CFD). Besides the inherent compactness, these schemes are much easier
to implement p-refinement than their finite difference and finite volume counterparts. However, like
other high-order schemes, numerical oscillations would appear near discontinuities or large gradients
in the solution given by a DG or FR scheme, if no shock fitting or shock capturing mechanism were
incorporated into it.

Various shock capturing techniques, such as limiters [5, 6, 7, 8, 9], filters [10, 11] and artificial
viscosities [12, 13, 14], have been developed for DG and FR schemes in the past two decades. However,
most of these methods are based on orthogonal (modal) expansions, which are less efficient than pure
Lagrange (nodal) expansions. Some of them are even built upon extrapolations, i.e. evaluating an
approximating polynomial outside the element it belongs to, which impairs the compactness of DG and
FR schemes.

In this paper, a novel artificial viscosity based on an energy measure of oscillation and its damping
rate on a DG or FR element is developed. The oscillation energy, which measures the amplitude of
numerical oscillations on a given element, is obtained by evaluating the L2-norm of the difference between
the numerical solutions on the element and its neighbors. The damping rate of this energy on an
element can be derived under the assumptions of linear flux–gradient relation and constant viscosity
distribution. The value of viscosity for suppressing numerical oscillations is obtained by taking the ratio
of the oscillation energy with respect to the product of its damping rate and prescribed time step. Such
element-wise constant viscosity distribution could optionally be reconstructed to be C0 continuous on
element interfaces.

2 Methodology

2.1 Element-wise Polynomial Approximations
To solve the two-dimensional conservation law

∂t u+ ∂~r · ~f = 0, ∂~r · ~f = ∂x f
x + ∂y f

y,

using a DG or FR scheme, one may first introduce a map from the physical coordinates to the parametric
coordinates on each element:

(x, y)︸ ︷︷ ︸
~r

7→ (ξ, η)︸ ︷︷ ︸
~ρ

=⇒
[
∂ξ φ
∂η φ

]
=

[
∂ξ x ∂ξ y
∂η x ∂η y

]
︸ ︷︷ ︸

J

[
∂x φ
∂y φ

]
=

[
∂ξ ~r
∂η ~r

]
· ∂~r φ,

in which J is the Jacobian matrix of the coordinate map. The conservation law in physical coordinates
is then (optionally) transformed into the form in parametric coordinates:

∂t U + ∂~ρ · ~F = 0, ∂~ρ · ~F = ∂ξ F
ξ + ∂η F

η,
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in which
U = u det(J)︸ ︷︷ ︸

J

,

[
F ξ

F η

]
= J

[
∂x ξ ∂y ξ
∂x η ∂y η

]
︸ ︷︷ ︸

J−1

[
fx

fy

]
= J

[
∂~r ξ
∂~r η

]
· ~f.

To obtain an element-wise polynomial approximation of the solution, an orthonormal (modal) expan-
sion or a Lagrange interpolation has to be introduced for u or U ≡ Ju on the jth element:

u(~r, t) ≈ uhj (~r, t) =

{∑N
n=1 ûj,n(t)φj,n(~ρ), Lagrange interpolation,∑M
m=1 ũj,m(t)ψj,m(~r), orthonormal expansion,

in which φj,n is the Lagrange basis associated with the nth node (a.k.a. solution point) on the jth
element, which satisfies the Kronecker delta property

φj,m(~ρj,n) = δmn, ∀(m,n) ∈ {1, . . . , N}2,

while ψj,m is the mth orthonormal basis on the jth element, which satisfies the innerproduct delta
property

〈ψj,m|ψj,n〉 = δmn, ∀(m,n) ∈ {1, . . . ,M}2.

The coefficient ûj,n is the nodal value of the approximate solution, i.e. ûj,n = uhj (~r(~ρn), t), while the
coefficient ũj,m is the projection of the approximate solution on the mth basis, i.e. ũj,m =

〈
uhj
∣∣ψj,m〉

The number of terms N orM in the summations, i.e. the dimension of the polynomial space, depends
on the degree of solution P and the dimension of physical space D. For tensor-product elements, e.g.
quadrangles, hexahedra, the dimension of a Lagrange basis is equal to the product of the number of
solution points in each dimension, which leads to

N(P,D) = (P + 1)D,

For building the orthonormal basis (in physical coordinates), one usually apply the Gram–Schmidt
process to the basis formed by monomials whose degrees are less than or equal to P , which leads to

M(P,D) =

(
P +D

D

)
.

In general, the dimension of a nodal basis is much larger than that of the modal basis with the same
(P,D).

2.2 Semi-discretized Systems from DG and FR
An ordinary differential equation (ODE) system can then be derived from either the DG method or the
FR method.

The DG method requires the conservation law to be satisfied in a weaker sense∫
Ej

φn
∂u

∂t
=

∫
Ej

~f · ∇φn −
∮
∂Ej

~ν · ~f φn, ∀n ∈ {1, . . . , N},

in which the surface integral comes from integration-by-part. The solution u and the flux ~f in the volume
integrals should be replaces by one of the polynomial expansion discussed in the previous section, while
the normal component of the flux in the surface integral should be replaced by a common flux function
f I . This procedure could also be applied to the conservation law in parametric coordinates, which gives∫

Ej
φn
∂Uhj
∂t

=

∫
Ej

~FDj · ∇φn −
∮
∂Ej

F I φn, ∀n ∈ {1, . . . , N},

where Ej represents the standard element defined in the parametric space. The superscript D in ~FDj
emphasizes that the approximated flux are discontinuous on element interfaces. Either of the two weak
forms gives a semi-discretized ordinary differential equation (ODE) system.

The FR method, on the other hand, gives the ODE system by first introducing a (P + 1)-degree cor-
rection function to the discontinuities flux ~FDj , which then becomes C0 continuous on element interfaces.
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For one-dimensional problems, the correction procedure is given by

FRj (ξ) = FDj (ξ) +
[
F I − FDj

]
ξ=−1g−1(ξ) +

[
F I − FDj

]
ξ=+1

g+1(ξ),

where the (P + 1)-degree g’s must satisfy

g+1(+1) = 1, g+1(−1) = 0, g−1(−ξ) = g+1(+ξ), ∀ξ ∈ [−1, 1],

and approximate 0 in some appropriate sense. Possible choices of g are plotted in Figure 1.
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Figure 1: Candidates of the correction function g+1.

The effect of the correction procedure for the linear convection flux f(u) = u is demonstrated in
Figure 2.
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Figure 2: Discontinuous flux v. reconstructed continuous flux.

By forcing the conservation law to be satisfied on all solution points, and replace U and F by Uhj and
FRj :

dÛj,n(t)

dt
+
∂FRj (Uh(ξn, t))

∂ξ
= 0, ∀n ∈ {1, . . . , N} .

For two-dimensional problems, if the element Ej is a quadrangle, the correction procedure could be
applied in a dimension-by-dimension way, which gives

dÛj,m,n
dt

=
∂F ξ,Dj (ξm, ηn)

∂ξ
+
∑
a=±1

[
F I − F ξ,Dj

]
ξ=a,ηn

dga(ξm)

dξ

+
∂F η,Dj (ξm, ηn)

∂η
+
∑
b=±1

[
F I − F η,Dj

]
ξm,η=b

dgb(ηn)

dη
,

2.3 Direct Viscous Fluxes on Element Interfaces
Once an element-wise polynomial approximation is applied to the solution u, the flux f(u,∇u) is generally
discontinuous on the interfaces of adjacent elements. For the convection term in a conservation law, it is
now a common practice to invoke an exact or an approximate Riemann solver [15]. However, methods
for getting the common diffusion flux are still actively been developed.

For solving problems involving diffusion terms, people in the field of DG usually introduce a new
variable ~q ≡ ∇u and transform the second-order partial differential equation (PDE) into a first-order
PDE system. Schemes for getting the common value of ~q on element interfaces are then designed. The
famous Bassi–Rebay (BR) methods [16, 17] and the more general local DG (LDG) method [18] all apply
this indirect procedure. Recently, a method called direct DG (DDG) [19, 20, 21] is becoming more and
more popular, due to the fact that it gives the common value of ∇u directly without introducing the
auxillary variable ~q. The common gradients are obtained by adding the penalty on jumps of value and
second-order derivatives to the averaged gradient:[

∂x u
∂y u

]
∂E

= β0 ∆−1
[
nx u
ny u

]
R−L

+

[
∂x u
∂y u

]
(R+L)/2

+ β1 ∆

[
nx ∂

2
xx u+ ny ∂

2
xy u

nx ∂
2
yx u+ ny ∂

2
yy u

]
R−L

,

in which ∆ is the characteristic length of the element, and the β’s are the penalty weights.
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It is straight forward to apply the DDG method to polynomials given by orthonormal expansions
defined in physical coordinates (i.e. ~r ≡ (x, y)). However, it is more expensive and error-prone to be
applied to solutions using Lagrange interpolation in parametric coordinates (i.e. ~ρ ≡ (ξ, η)). If, the
interpolation is applied to u, the second-order derivatives are[

∂2xx u ∂2xy u
∂2yx u ∂2yy u

]
= J−1

[
∂ξ
∂η

]
︸ ︷︷ ︸∂x

∂y



([
∂ξ u ∂η u

]
J−T

)︸ ︷︷ ︸[
∂x u ∂y u

]

= J−1
[
∂ξ
[
∂ξ u ∂η u

]
∂η
[
∂ξ u ∂η u

]] J−T + J−1
[[
∂ξ u ∂η u

]
∂ξ J

−T[
∂ξ u ∂η u

]
∂η J

−T

]
,

in which the derivatives of the Jacobian matrix

∂J−T

∂ξ
=

(
−J−1 ∂J

∂ξ
J−1

)T
,

∂J−T

∂η
=

(
−J−1 ∂J

∂η
J−1

)T
,

should be precomputed and cached on each flux point. If the interpolation is applied to U ≡ Ju, the
second-order derivatives are more complex:[

∂2xx u ∂2xy u
∂2yx u ∂2yy u

]
= J−1

[
∂ξ
∂η

]
︸ ︷︷ ︸∂x

∂y



([
∂ξ U ∂η U

]
J−T J−1 −

[
∂ξ J ∂η J

]
J−T J−2 U

)︸ ︷︷ ︸[
∂x u ∂y u

]

= J−1
[
∂ξ ∂ξ U ∂ξ ∂η U
∂η ∂ξ U ∂η ∂η U

]
J−T J−1 + · · · ,

∂ξ
([
∂ξ U ∂η U

]
J−T J−1

)
=
[
∂ξ ∂ξ U ∂ξ ∂η U

]
J−T J−1

+
[
∂ξ U ∂η U

](∂J−T
∂ξ

J−1 + J−T
(
∂ξ J

−1)) ,
∂ξ
([
∂ξ J ∂η J

]
J−T J−2 U

)
=
[
∂ξ ∂ξ J ∂ξ ∂η J

]
J−T J−2 U

+
[
∂ξ J ∂η J

](∂J−T
∂ξ

J−2 U + J−T
∂J−2

∂ξ
U + J−T J−2

∂U

∂ξ

)
,

in which, the derivatives of Jacobian determinant

∂J−1

∂ξ
= −J−2 ∂J

∂ξ
,

∂J−2

∂ξ
= −2J−3

∂J

∂ξ
,

∂J

∂ξ
=
∂ det(J)

∂ξ
= det(J) tr

(
J−1

∂J

∂ξ

)
= J tr

(
J−1

∂J

∂ξ

)
,

should also be cached.

2.4 Quasi-linear Artificial Viscosity
In this work, numerical oscillations are suppressed augmenting the original conservation law (system)
with a quasi-linear viscous term. For a one-dimensional scalar problem, the augmented equation becomes

∂u

∂t
+
∂f(u)

∂x
=

∂

∂x

(
ν(u)

∂u

∂x

)
, ν(u) ≥ 0.

Assume the viscosity value is a constant across the entire domain, and recall the fact that the artificial
viscosity model and the numerical scheme for it on element interfaces are both linear, the ODE system

5
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given by the DG or FR scheme can be written into the following form

d

dt
|ûj〉 = (inviscid terms) + ν

(
Dj |ûj〉+ Ej |ûj−1〉+ F j |ûj+1〉

)
,

where |ûj〉 , |ûj−1〉 , |ûj+1〉 are column matrices formed by nodal or modal coefficients on Ej , Ej−1, Ej+1

respectively, and Dj , Ej , F j are constant square matrices given the spatial discretization and the nu-
merical flux on element interfaces. Without loss of generality, we hereforth only consider the nodal
interpolation in which solution points are also Gaussian quadrature points, which is a common practice
in the DG spectral element method (SEM) [22, 9].

One may now define the kinetic energy on Ej to be

Kj ≡
∫
Ej

1

2

(
uhj
)2 ≈ 1

2

N∑
n=1

wj,n ûj,n ûj,n =
1

2

[
ûj,1 · · · ûj,N

]︸ ︷︷ ︸
〈ûj |

wj,1 . . .
wj,N


︸ ︷︷ ︸

W j

 ûj,1...
ûj,N


︸ ︷︷ ︸
|ûj〉

,

where W j is the diagonal matrix form by Gaussian quadrature weights. The dissipation rate of Kj can
easily be derived, which is

dKj

dt
= 〈ûj |W j

d

dt
|ûj〉 = (inviscid terms) + ν 〈ûj |W j Dj |ûj〉+ (inter-cell viscous terms),

The viscosity value on Ej is then determined by ignoring the inviscid terms and inter-cell viscous
terms in the dissipation rate, which leads to

νj =
∆Kj

−Gj τ
⇐=

d

dt
Kj = (inviscid terms) + ν 〈ûj |W j Dj |ûj〉︸ ︷︷ ︸

Gj

+(inter-cell viscous terms),

which means the oscillation energy ∆Kj is dissipated by the viscosity within a prescribed time range τ .
For a one-dimensional system, the previous procedure could be applied to either each conservative

variable or each characteristic variable. For a multi-dimensional problem, one may just apply the pro-
posed procedure to each conservative variable, i.e.

∂

∂t

u1...
uK

+∇ ·

f1
...

fK

 =∇ ·

 ν1∇u1...
νK∇uK

,
2.5 Oscillation Energy
The last question in the current method is how to evaluate ∆Kj , which quantitatively measures the
numerical oscillation on Ej .

In one-dimensional cases, we define the oscillation energy on the jth element to be

∆Kj =

∫ xj

xj−1/2

(
uhj − uhj−1

)2
dx+

∫ xj+1/2

xj

(
uhj − uhj+1

)2
dx ,

which is the square of the L2-norm of difference between the solution on Ej and those on its immediate
neighbors. The integrals are as cheap as weighted summations of nodal values if solution points are also
Gaussian quadrature points. The extrapolations are also cheap, since the coordinate map in this case is
usually linear and therefore trivial.

However, when it is generalized to multi-dimensional cases, extrapolations using nodal expansions in
parametric coordinates are generally expensive, since it incurs solving a non-linear algebraic equation[

x
y

]
query

=

[
xh(ξ, η)
yh(ξ, η)

]
,

for the value of (ξ, η) from the given (x, y) on a neighboring cell. Even worse, the solution of this equation
might not exist, even for a 4-node quadrangular element. Figure 3 demonstrates a case of such failure,
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in which the × sign is the query point while the + signs are the initial and intermediate states of the
iteration for solving the non-linear (x, y)-to-(ξ, η) map.
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Figure 3: A failed case of the (x, y)-to-(ξ, η) map which might occur in extrapolations.

It is an open problem to design an oscillation measure requiring no extrapolations. In current work,
we tried the following surface integral of value jumps∮

∂Ej

(
uhj − uhj′

)2
, j′ ∈ neighbors of Ej ,

which gives reasonable results in ordinary tests. Further tests on more challenging problems are still in
progress.

3 Results
In this section, the effectiveness of the artificial viscosity proposed in the previous section is demonstrated
by some standard test cases. For one-dimensional problems, the computational domain is divided into
100 elements uniformly.

A fifth-order (P = 4) FR scheme using the g2 correction function from [3], which is equivalent to a
DG SEM scheme of the same order of accuracy, is used for spatial discretization. The resulting ODE
system is solved by an explicit three-stage third-order strong stability preserving Runge–Kutta method
[23].

3.1 Shock Tube Problems
Riemann problems, as well as their exact and approximate solvers, play a pivot role in the development
of CFD schemes [15]. Among the infinite number of Riemann problems of the 1D Euler system, the Sod

7
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problem with the initial condition

[
ρ u p

]
t=0

=


[
1 0 1

]
, x < 0,[

0.125 0 0.1
]
, x > 0,

(1)

and the Lax problem in with the initial condition

[
ρ u p

]
t=0

=


[
0.445 0.698 3.528

]
, x < 0,[

0.5 0 0.571
]
, x > 0,

(2)

are two of the most famous ones that are frequently used for testing shock capturing techniques.
Figure 4 and 5 gives the solution (the Actual curves) of these two problems at the moment (t = 0.5

for Sod, t = 0.3 for Lax) and the viscosity distributions for each characteristic variables at all time steps.
The Expect curves in these figures are the exact solutions obtained from analytical procedures.
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Figure 4: Solution and viscosity distribution of the Sod problem.
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Figure 5: Solution and viscosity distribution of the Lax problem.

3.2 The Shu–Osher Problem
The Shu–Osher problem is designed to mimic the interaction of a running shock with a standing isentropic
wave [24].

The computational domain is x ∈ [0, 10] with two no-reflection conditions applied at the left and
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right boundaries. The time range of interest is t ∈ [0, 1.8] with the initial condition set to be

[
ρ u p

]
t=0

=


[
3.857143 2.629369 10.33333

]
, x ∈ [0, 1);[

1 + 0.2 sin(5x) 0 1
]
, x ∈ (1, 10].

(3)

Figure 6 gives the solution (the Actual curve) of this problem at the final (t = 1.8) moment and the
viscosity distribution for each characteristic variables at all time steps. The Expect curve in this figure
is the approximate solution given by the same FR scheme with a p-weighted limiter [9] on a finer mesh
(200 elements).
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Figure 6: Solution and viscosity distribution of the Shu–Osher problem.

4 Conclusions
The standard cases for testing shock capturing methods show that the proposed artificial viscosity is
sufficiently large for suppressing numerical oscillations near physical discontinuities, such as shocks and
contacts, while keeps negligible in other regions for maintaining the high-order accuracy of the DG or
FR solution.
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