[PO-06] Numerical Analysis of the Use of Plasma Actuators to Control Pitching and Heaving Motion of an Airfoil

Dereje Arijamo Dolla¹, Yue-Cheng Chung¹, You-Chen Wang ¹, *Chin-Cheng Wang¹ (1. National Taipei University of Technology)

Keywords: Flapping wing, Plasma based flow control, Large eddy simulation

[PO-06] Numerical Analysis of the Use of Plasma Actuators to Control Pitching and Heaving Motion of an Airfoil **nalysis of the Use of Plasma**
 Col Pitching and Heaving
 Chung, You-Chen Wang, Chin-Cheng Wang*
 Chung, You-Chen Wang, Chin-Cheng Wang*
 Pall Physics Research Group
 Pall Physics Research Group
 July 18, 2024

Dereje Arijamo Dolla, Yue-Cheng Chung, You-Chen Wang, Chin-Cheng Wang*

Computational Physics Research Group Department of Vehicle engineering, National Taipei University of Technology

Contents

CPRG

- Introduction
- Literature review
- Objectives
- Governing equations
- Computational tool
- Problem description
- Verification and validation
- Results and discussion
- Conclusions and future work

Computational Physics Research Group | National Taipei University of Technology Page Page Page Page Page Page Page 18 Jul 2024

● Introduction

-
- stability.
-
-

Dynamic stall

Fig 2. Dynamic stall over an airfoil [2]

Fig 1. Heave-pitch motion of bird [1]

Therefore, this dynamic stall needs to be controlled through plasma actuators to enhance the performance of various aerospace and energy system applications.

al Physics Research Group | National Taipei University of Technology Page 2014 2021 2021 2021 2021 2021 2021 20 [1] Hudson, T., https://en.wikipedia.org/wiki/Bird_flight, retrieved 2024/7/3. [2] White, F.M., Fluid Mechanics, 6th ed., Boston, USA: McGraw-Hill, 2003

18 Jul 2024

● Litrature review

Table 1. Studies on Heave-Pitch Motions at different Reynolds numbers.

っきし computational Taipei University of Technology Page 2021 - 2022 2023 2024 Page 2024 2024 2024 Page

18 Jul 2024

● Objectives

- Analyze the aerodynamic behavior and flow dynamics of a NACA 0012 airfoil under
• Employ large eddy simulation (LES) to capture and understand turbulence effects simultaneous heave and pitch motions.

• Employ large eddy simulation (LES) to capture and understand turbulence effects during the heave and pitch motions of the NACA 0012 airfoil.

• Explore and evaluate the effectivenes during the heave and pitch motions of a NACA 0012 airfoil under

• Employ large eddy simulation (LES) to capture and understand turbulence effects

• Employ large eddy simulation (LES) to capture and understand turbulence Analyze the aerodynamic behavior and flow dynamics of a NACA 0012 airfoil under
simultaneous heave and pitch motions.
Employ large eddy simulation (LES) to capture and understand turbulence effects
during the heave and pit
-
- during the heave and pitch motions of the NACA 0012 airfoil.

 Explore and evaluate the effectiveness of dielectric barrier discharge (D

actuators for active flow control in mitigating dynamic stall of the NACA 0

compu Express that of the NACA 00

actuators for active flow control in mitigating dynamic stall of the NACA 00

actuators for active flow control in mitigating dynamic stall of the NACA 00

computational Physics Research Group

Computational Physics Research Group | National Taipei University of Technology Page 3 and 2021 **Page 3 and 3 and**

● Governing equations

The contiunity and Navier-Stokes equations for incompressible flow

actuates for active flow control in mitigating dynamic stall of the NACA 0012 airfoil.

\nComputational Physics Research Group 1 National Tapel University of Technology

\nThe continuity and Navier-Stokes equations for incompressible flow

\nContinuity equation

\n
$$
\frac{\partial u_i}{\partial x_i} = 0
$$
\nMomentum equation

\n
$$
\frac{\partial u_i}{\partial t} + \overline{u}_i \frac{\partial u_i}{\partial x_j} = -\frac{1}{\rho} \frac{\rho \overline{p}}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j^2} - \frac{\partial \tau_{i,j}}{\partial x_j} + \frac{1}{\rho} F, \qquad \tau_{i,j} = \overline{u_i u_j} - \overline{u_i u_j}
$$
\nwhere, $\overline{u_i}$, \overline{p} are filtered velocity and pressure, V is the kinematic viscosity, F is body force and τ_{ij} is the subgrid-scale stress tensor

\n
$$
f_x = F_x \phi_t^4 \exp\left[-\frac{((-x-x_0)^2 - (y-y_0)^2}{y}\right]^2 - \rho_x (y-y_0)^2\right]
$$
\nwhere \overline{u} and $\overline{u_j}$ are given by the following equations.

 $f_z = F_z \phi_0^4 \exp \left[- \left(\frac{(-x - x_0) - (y - y_0)}{y} \right)^2 - \beta_z (y - y_0)^2 \right]$

$$
\frac{\partial u_i}{\partial t} + \overline{u}_j \frac{\partial u_i}{\partial x_j} = -\frac{1}{\rho} \frac{\rho p}{\partial x_i} + v \frac{\partial^2 u_i}{\partial x_j^2} - \frac{\partial \tau_{ij}}{\partial x_j} + \frac{1}{\rho} F_i \qquad \tau_{ij} = \overline{u_i u_j} - \overline{u_i} \overline{u_j}
$$

18 Jul 2024

Fig 3. (a) AC-plasma actuator on a NACA 0012 (b) plasma body force formulation

[8] S. Mukherjee and S. Roy, 50th AIAA Aerospace Sciences Meeting, AIAA 2012-0702, Nashville, TN, USA, January 12, 2012.

where, F_{x0} and F_{y0} are electrodynamic force, β_x and β_y are functions of the dielectric material. x_0 is midpoint between reference and grounded electrode [8].
 $y = 5ct \left[0.2969 \sqrt{\frac{x}{c}} - 0.1260 \left(\frac{x}{c} \right) - 0.3516 \left(\frac{x}{c} \right)^2 + 0.2843 \left(\frac{x}{c} \right)^3 - 0.1015 \left(\frac{x}{c} \right)^4 \right]$

Computational Physics Research Group | National Taipei University of Technology Page 3 18 Jul 2024

● Computational tool

OpenFOAM and it's structure

- OpenFOAM is a versatile open source CFD toolbox for simulating fluid dynamics and complex physical processes. It's basic structure is shown in figures 4 and 5.
- The pimpleDyMFoam solver is used to simulate the heave and pitch motions of the NACA 0012 airfoil.
- MPI parallelization is employed for efficient computation, reducing simulation time and enhancing scalability.

COMPUTATION Computational Physics Research Group | National Taipei University of Technology Page 4 Page

● Problem description

NACA 0012 airfoil with 2-DOF heave-pitch motions in a constant speed is presented in figure 6.

Numerical parameters

- Turbulence model: LES
- Reynolds number: 135,000
- OpenFOAM solver: PimpleDyMFoam
- Freestream velocity: $U = 11.53$ m/s
- Number of cells: 1.88 million cells
- Center of rotation: 0.25C 0.018m
- Heave amplitude: $1C(0.15m)$

Goal: Analyze the flow behaviour in the heave-pitch motion of NACA 0012 and to control the dynamic stall.

Figure 6. Airfoil in combined heave-pitch motions.

18 Jul 2024

18 Jul 2024

COMPRO Computational Physics Research Group | National Taipei University of Technology Page 4 Pa

● 2-DOF heaving and pitching motions

This elastically mounted airfoil is considered as a linear mass–spring system, and its heaving and pitching motions are governed by the second-order damned oscillator equations [7].

and c_{θ} are zero, F_h and M_{θ} are lift force and moment.

● Computational domain

Figure 8. Dimensional parameters (a) Geometry (b) Fluid domain and (c) boundary conditions.

Computational Physics Research Group | National Taipei University of Technology Page 5 and Page 5 and

18 Jul 2024

● Verification and validation

Table 5. Static NACA 0012 airfoil grid independence test at different angles of attack compared to Khalid et al. [9].

Figure 9. Cl of static NACA0012 airfoil versus AOA with Re=1000.

Grid 3 was chosen for its balanced accuracy and computational efficiency.

Computational Physics Research Group | National Taipei University of Technology Page 6 and 18 Jul 2024 Fe

● Experimental validation

The trend of the present work shown in figure 10 is consistent with Simpson's experimental data, indicating that this computational model of the NACA 0012 heave-pitch motions is suitable as a benchmark.

CPRG

Table 6. Comparative analysis of Cl_{RMS} with experiment.

This study obtained higher RMS lift coefficient of 1.654 compared to Simpson's results of 1.45.

Computational Physics Research Group | National Taipei University of Technology Page 6 and Computational Physics Research Group | National Taipei University of Technology Page 6 and Physics Research Group | National Taipei 18 Jul 2024

● Results and discussion

- Large eddy simulation (LES) model is employed to provide detailed and accurate **Sults and discussion**

Large eddy simulation (LES) model is employed to provide detailed and accurate

predictions of turbulent flows under NACA 0012 heaving-pitch motions.

After grid independence test, Grid 3 was select **Example 18 Amodulus and discussion**

■ Large eddy simulation (LES) model is employed to provide detailed and accurate predictions of turbulent flows under NACA 0012 heaving-pitch motions.

■ After grid independence test, **Sults and discussion**

Large eddy simulation (LES) model is employed to provide detailed and accur

predictions of turbulent flows under NACA 0012 heaving-pitch motions.

After grid independence test, Grid 3 was selected **Example 18 AC DBD** plasma actuator improves the aerodynamic performance of the airfoil and accurate predictions of turbulent flows under NACA 0012 heaving-pitch motions.

■ After grid independence test, Grid 3 was select
-
-
- **Sults and discussion**

Large eddy simulation (LES) model is employed to provide detailed and

predictions of turbulent flows under NACA 0012 heaving-pitch motions.

After grid independence test, Grid 3 was selected ensuri **Example 18 Alternation** (LES) model is employed to provide detailed and accurate predictions of turbulent flows under NACA 0012 heaving-pitch motions.
 After grid independence test, Grid 3 was selected ensuring a balanc **Sults and discussion**

Large eddy simulation (LES) model is employed to provide detailed and accurate

predictions of turbulent flows under NACA 0012 heaving-pitch motions.

After grid independence test, Grid 3 was select

● A comparison of LES, RANS, and plasma actuation

plasma plasma | ment $(\%)$ | **Solution**

Significantly higher Cd values.

Significantly higher Cd values.

Significantly higher Cd values.

Significantly higher Cd values.

Solution in figures 14 and 15.

Without With Improve plasma ment(%)

3.02 3.4

With Improve

● Conclusions and future work

- shows the effect of plasma actuation of the effect of with and
the effect of plasma actuation.

The Effect of plasma actuation of the NACA 0012 airfoil.

LES model captured detailed turbulent structures and was found to b **IES model captured detailed turbulent structures and was found to be betteRANS model.**

Utilized a linear mass-spring system analogy to analyze heave-pitch motions insights into airfoil stability and response characterist
-
- Computational Physical Research Group | National Table University of Technology

Computational Physical Research Group | National Table University of Technology

 LES model captured detailed turbulent structures and was f

- **Conclusions and future work**

 LES model captured detailed turbulent structures and was found to be better than
 RANS model.

 Utilized a linear mass-spring system analogy to analyze heave-pitch motions to gain

insi **nclusions and future work**

LES model captured detailed turbulent structures and was found to be better than

RANS model.

Utilized a linear mass-spring system analogy to analyze heave-pitch motions to gain

insights int **•** LES model captured detailed turbulent structures and was found to be better than RANS model.

• Utilized a linear mass-spring system analogy to analyze heave-pitch motions to gain misjehts into airfoil stability and r
-