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Abstract: Conventional computational fluid dynamics (CFD) simulation based on solving 

partial differential governing equations requires high computation ability and long solving time. 

Besides, CFD modeling demands specialized knowledge, such as numerical methods and mesh 

drawing skills. These are the critical barriers for integrating CFD simulation into the building 

design process to enable the designers to get real-time analysis of indoor environments to 

support decision making. Considering a design space combining different variations, data-

driven surrogate modelling is required to be developed to assist the design phase of building. In 

order to achieve the fast prediction of the indoor environment for the design phase, a CAERes-

NN approach integrating convolutional autoencoder (CAE), Residual networks (ResNet), and 

Predictive neural networks (NN) is employed in this study to do fast reconstruction and 

prediction of the temperature and heat transfer in the room with different inlet positions in a 2-

dimension (2D) space. Besides, unlike previous studies, this study only takes a sparse training 

dataset to reduce the computational effort. Lastly, the comparison between CFD results and 

CAERes-NN predictions is implemented and analyzed in the form of 2D temperature fields, 

box plots of relative errors and correlation figures. The final results prove that the CAERes-NN 

surrogate model is able to predict the temperature of the main area of the room accurately with 

a relative low error of 2% in testing dataset, but the air inlet position prediction is somewhat 

misplaced. Last but not least, the prediction time of CAERes-NN is been shortened to within 

one second per scenario, which is a great improvement on time-consuming problem compared 

with CFD simulation. 

Keywords: Reduced order modeling, Data-driven method, Convolutional neural networks, CFD 

simulation, Indoor heat transfer prediction. 

1     Introduction 

Indoor environment and thermal comfort are both of importance to human daily life as the development 

of indoor living, working and production behaviors. The room temperature is one of the most critical 

indexes for thermal comfort evaluation [1]. The premise of achieving a satisfied indoor environment 

and thermal comfort is the accurate prediction of indoor temperature and appropriate conditioning. CFD 

simulations are prevalently employed to predict and forecast indoor temperature dependent on air flow 

in the past decades [2], including modeling of air flow patterns, temperature and heat transfer inside the 

room [3]. However, the conventional CFD simulation cannot meet the requirement of fast prediction 

and control of indoor temperature, because of the heavy computational efforts demand [4]. Besides, 

establishing a CFD model necessitates specialized knowledge which building engineers and designers 

typically lack, leading to the potential for poorly defined models. Therefore, a key objective in using 

CFD simulations for predicting indoor environments is to develop a system that is design-integrated, 

quick, low-effort, requires, intuitive, minimal specialized knowledge and highly reliable. For this aim, 

some methods are proposed based on the original CFD foundation. For instance, researchers have 

developed advanced algorithms that optimize computational efficiency, such as adaptive mesh 

refinement, which dynamically adjusts the mesh density in areas requiring higher resolution [5]. 

Besides, some simplified numerical schemes are studied, such as coarse-grid [6] and fast fluid dynamics 

(FFD) [4]. Despite a certain compromise in accuracy, the computation speed still needs further 

enhancement.  
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In this regard, various attempts have been conducted to further accelerate the calculation speed based 

on data science and reduced order modeling (ROM) approaches including linear and non-linear 

reduction methods [7]. Several linear projection-based methods have been explored, including proper 

orthogonal decomposition (POD) [8], dynamic mode decomposition (DMD) [9], and the Karhunen-

Loeve expansion. Additionally, methods like principal component analysis (PCA), which transforms 

the data to a set of linearly uncorrelated variables called principal components, and independent 

component analysis (ICA), which separates a multivariate signal into additive, independent non-

Gaussian signals, have been considered. However, the inherent linear nature of these low-rank 

approximations limits their ability to accurately reconstruct airflow distributions with high levels of 

nonlinearity [10]. To address this issue, various nonlinear reduction techniques have been developed to 

predict and reconstruct the indoor environment. Neural networks are employed to reproduce CFD 

simulations of non-isothermal indoor airflow distribution, which concludes that optimal preprocessing 

is crucial for improving the predictive capabilities of neural networks in complex airflow simulations, 

but the large amount of CFD simulation data used as input for neural networks results in a 

computationally intensive training process [11]. A hybrid method combining autoencoder (AE) and 

neural network (NN) is implemented on a 2D room airflow prediction with varying inlet velocities and 

demonstrates rapid and accurate predictions at high inlet velocities, but the temperature profile is not 

studied [10].  

This study predicts the temperature profile and indoor heat transfer performance of a 2D room with 

varying inlet positions using a hybrid approach that combines order reduction with a predictive neural 

network. This method employs a CAE with ResNet and a predictive NN. CAE is able to effectively 

compress input data into a lower-dimensional latent space reducing computational complexity while 

preserving essential temperature patterns [12]. Besides, its convolutional architecture, which adeptly 

captures local features in images or data, CAE can effectively identify and reconstruct local flow 

patterns and thermal boundary layers within indoor environments. Incorporating ResNet into CAE 

allows for direct learning of residuals between inputs and outputs. This integration effectively mitigates 

issues like vanishing gradients and enhances CAE's capability to recognize features more effectively 

[13]. The benchmark employed in this paper is a 2D rectangular room, where the variable is inlet 

position and the output is the indoor temperature distributions and heat transfer behaviors.  

The remainder of this paper is structured as follows: firstly, introduce the engineering constraints and 

research context. Then in the second section, description of the methodologies encompassing CFD 

simulation and surrogate modeling process, which includes a comprehensive elucidation of CAE, 

ResNet, and NN. In the third part, results and discussion will be presented and explained. Last but not 

least, the primary conclusions and future prospects are extracted.  

 

Fig. 1. Workflow 
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2     Methodology 

In this study, the training and testing processes are integrated and shown in Fig. 1. Firstly, a dataset 

composed of training data and testing data is established with different inlet positions as the label. The 

proportion of training data and testing data is 8:5 according to temperature characters. Then, as for the 

training stage which contains two parts, the CAERes training process and the NN training process. 

During the training process, the prepared training datasets are first imported into CAERes, where the 

encoder and decoder are trained simultaneously. Subsequently, the bottleneck representations from the 

well-trained CAERes are transferred into a supervised NN for further training with labels of various 

inlet positions. Once these networks are well-trained, the testing procedure begins by using the NN to 

predict the low-rank latent representations for different air inlet heights. These representations are 

directly fed into the decoder, bypassing the encoder, to reconstruct the original airflow patterns. The 

details of the benchmark case, CFD simulation setup and database establishment are depicted in section 

2.1. The structure and hyperparameters of CAERes and NN are introduced in section 2.2. 

2.1     CFD simulation and database  

Regarding the CFD model settings, a 2D room is utilized for simplification purposes, as illustrated in 

Fig. 2. The room has dimensions of 1.5 meters in the x direction and 1 meter in the y direction. Within 

this room, two windows are present, each measuring 0.9 meters, located on the left and right walls. 

Additionally, there is an air outlet situated at the bottom of the right wall. To simulate high outdoor 

temperatures during summer, the windows and inlet air are set to temperatures of 35 °C and 10 °C, 

respectively. All other walls, except for the windows, have adiabatic boundary conditions applied. 

There are no additional heat sources in the room, meaning that the indoor environment is influenced 

solely by the windows and the air inlet/outlet. To study the impact of different air inlet positions, the 

height of the air inlet along the left wall is varied, ranging from the bottom to the top.  

The governing equations are Reynolds-Averaged Navier-Stokes (RANS) equations coupled with the k-

ε turbulence model, achieving a balance between accuracy and computational efficiency. The 

simulations are conducted on a virtual Linux system using OpenFOAM, powered by an Intel Core i7-

1265U 1.80 GHz processor. The Finite Volume Method (FVM) is utilized for discretizing the 

computational domain. The buoyancy term in the momentum equation is modeled using the Boussinesq 

approximation. To enhance edge accuracy, wall functions are applied to all walls and windows, which 

is specifically used to handle the boundary conditions of turbulent kinetic energy and Reynolds stress 

near the wall in turbulence models. This function aids in the more accurate calculation of turbulence 

parameters in the flow region near the wall, thereby improving the accuracy of the simulation results. 

Thirteen datasets were compiled for training and testing, focusing on the inlet height ranging from 0.05 

meters to 1.0 meters, which corresponds to the upper edge of the air intake. These datasets specifically 

explore the indoor temperature contour as the dependent parameter. The selection of datasets detailed 

in Table 1 was based on the distinct characteristics of flow fields and critical flow modes, as discussed 

in the results and discussion section. Although larger amounts of data generally improve model 

performance, this also implies longer training times and greater data requirements. To minimize 

computational load and train the model to adapt to sparse data, only 8 sets of training data were selected 

here.                                               

Table 1:   Training and testing dataset 

 Inlet height (m) 

Categories High temperature Medium temperature Low temperature 

Training dataset 0.05, 0.20   0.35, 0.50, 0.70      0.80, 0.90, 1.00  

Testing dataset 0.15, 0.25, 0.40, 0.60, 0.85 
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Fig. 2. Benchmark case 

2.2     CAERes and NN 

CAERes is a combined structure of two parts: CAE and ResNet, with ResNet embedded into each layer 

of the CAE. CAE is a type of unsupervised neural network that uses convolutional operations and is 

composed of an encoder and a decoder. Convolution involves sliding a kernel over the input signal, 

performing weighted summations of overlapping portions to obtain the output signal. The encoder 

extracts feature maps from the input data, reducing dimensions while increasing the number of 

channels, producing latent low-rank features that are passed to the decoder, which reconstructs the data 

to its original dimensions. ResNet enhances the model's performance and generalization by preserving 

important input features and enabling the network to learn more effective feature representations 

through residual learning. In CAERes, the encoder consists of three steps, each with a convolutional 

part, a max pooling downsampling layer, and a ResNet layer. During convolution and downsampling, 

the channel number expands from 1 to 32, and feature map dimensions decrease from 100×150 to 2×3. 

In the ResNet layer, dimensions and channels remain unchanged, but residuals from training are 

introduced to subsequent steps to capture additional information. The decoder mirrors the encoder, 

completing the CAERes architecture. The final configuration includes using mean squared error (MSE) 

as the loss function, setting the learning rate to 10-4, utilizing the Adam optimizer with a decay rate of 

10-7 (a popular variant of stochastic gradient descent), and employing the sigmoid function as the 

activation function before the output. A structural depiction of CAER is provided in Fig. 3.  

The theory of autoencoder is shown in equations (1), (2) and (3). The goal of this process is to produce 

an output that closely mirrors the input. Initially, the encoder, denoted as 𝜙 , transforms the original 

data 𝑿  into a latent space  𝑭 situated at the bottleneck. Subsequently, the decoder, denoted as 𝜓, maps 

this latent space 𝑭 back to the input space, generating an output that replicates the original data. The 

network is trained by optimizing a loss function 𝐿 , which is minimized through the standard 

backpropagation method.  

𝜙: 𝑿 → 𝑭   (1) 

𝜓: 𝑭 → 𝑿   (2) 

𝜙, 𝜓 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝜙,𝜓||𝑿 − (𝜙 ∘ 𝜓)𝑿||2   (3) 
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The theory of ResNet is described as equation (4), which is a step in the equation (1) and (2) The 

output of block 𝒀 is calculated by addition of input 𝒑 and residual function 𝑍(𝒑). 

𝒀 = 𝒑 + 𝑍(𝒑)  (4) 

Finally, the loss function L is used to train the network through the standard backpropagation procedure. 

𝐿(𝒙, 𝒙′)  = ||𝒙 − 𝒙′||2   (5) 

= ||𝒙 − σ′(W′(σ(W𝒙 + b)) + b′)||2   (6) 

A three-layer fully connected neural network (NN) serves as the predictive model to establish mappings 

between the air inlet heights and the compressed outputs generated by either CAERes. Each hidden 

layer in the network comprises 512 neurons, utilizing rectified linear unit (ReLU) activation functions 

between consecutive layers. The neural network's configuration mirrors that of CAERes. 

 

Fig. 3. CAERes structure 

3     Results and discussion 

In this section, the results and performance of CAERes-NN are presented and compared with CFD 

simulation results. Figures 4 and 5 depict the indoor temperature contours for different inlet positions, 

showing both CFD simulation results and CAERes-NN predictions, along with the absolute errors 

between them. The inlet is located on the left wall, and its height changes from the floor to the ceiling. 

As the inlet position moves from bottom to top, the temperature field can be roughly divided into three 

main categories. When the inlet height ranges from 0.05 m to 0.35 m, most of the air injected from the 

inlet exits the room directly through the outlet in the lower left corner, with only a small portion flowing 

upwards along the right wall. Obviously, this type of airflow cannot satisfy indoor cooling 

requirements, as the temperature in most regions remains high. The second type of situation occurs 

when the inlet height is between 0.35 m and 0.7 m. Here, the cooled air flows into the room and 

descends into the main area, forming a counter-clockwise circulation. This type is efficient for indoor 

air conditioning, as the inlet air reaches the personal activity area immediately after flow into the room, 

maintaining a proper temperature. When the inlet height ranges from 0.7 m to 1.0 m, the Coanda effect 

causes the air to form an attached jet. As the air flows into the room, it clings to the ceiling and moves 

forward without descending. Upon reaching the right wall, the air flows downward along the wall, 

creating a clockwise circulation. The Coanda effect is also used in various nozzle designs, allowing 

precise control of jet direction and flow by managing airflow attachment. The Fig. 6 and Fig. 7 illustrate 

the relative error and correlations between CFD and CAERes-NN, respectively without the top 0.5% 

outliers. The box plot is employed in Fig. 6 where the the five key summary statistics are minimum, 

first quartile, median, third quartile and maximum. 
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CFD       CAERes-NN Diff. between 

CFD & CAERes-NN 
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Fig. 4. Training dataset (℃) 
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Fig. 5. Testing dataset (℃) 

3.1     Training dataset 

The training dataset results are shown in the Fig. 4 indicating that indoor temperature fields of 

CAERes-NN are similar to that of CFD simulations in both three categories. With the inlet height 

increase, the indoor temperature decreases as the ventilation efficiency improves. This trend was 

successfully captured and learned by the CAERes-NN surrogate model and has a strong agreement 

with the CFD simulation results. Besides, in the training datasets, the error between CAERes-NN and 

CFD in most of the area of the room is little than 0.25℃ , which means the predicted indoor 

temperatures are reliable. However, Fig. 4 indicates that there are some highlighted regions in the air 

inlet area. These regions correspond to negligible errors, suggesting a slight misalignment in the 

surrogate model's prediction of the inlet position. Fig. 6 (a) presented the maximum relative error 

increase and reaching around 1.8%, when the inlet height rises from 0.05 m to 0.35m. Then the relative 
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error decreases to about 0.9% until the inlet height is 1.0 m. The reason of this trend is caused by 

complexity of temperature distribution of indoor temperature considering the Fig. 4 and Fig. 6 together. 

It is easily to find that when the inlet height is at lower height, the indoor temperature shows larger 

temperature difference than that at higher inlet height. As the relatively high errors of height 0.2 m and 

0.35 m, Fig. 7 exhibits the correlations between CFD simulated results and CAERes-NN predictions 

without 0.5% outliers, which prove that the model's predictions align closely with the actual 

observations, indicating that CAERes-NN's predictions are reliable on the training set. 

 

Fig. 6. Relative error of (a) CAERes-NN training data; (b) CAERes-NN testing data 

3.2     Testing dataset 

In the test dataset, the performance comparison of CFD and CAERes-NN is shown in Fig. 5, which 

indicates that the predicted temperature profile of CAERes-NN is similar to CFD results visually. The 

surrogate model describes not only the accurate temperature of the main area for indoor activities, but 

also the thermal boundary layer of windows. The thickness of boundary layer and the temperature 

gradient are almost same of CFD and CAERes-NN approaches. Besides, the evaluation of 

dimensionless numbers such as the Reynolds number and Prandtl number demonstrates CAERes-NN's 

reliable mastery of heat transfer mechanisms, but because of space limitation, this part is not shown in 

this paper in detail. However, the out-of-position of air inlet is more serious. Fig. 6 (b) reveals that the 

maximum relative errors are 12% and 11% when the inlet position is at 0.25 m and 0.6 m, respectively, 

as these two positions is close to the transition point between the three categories. The maximum value 

is significantly high, indicating the presence of some extremely high values or outliers. Nevertheless, 

the third quartile is relatively low, suggesting that the majority of the data is concentrated in the lower 

range. Considering Fig. 5, the high error area is small and occurs in a very limited volume due to a 

slight misplacement of flow, so these high errors are not significant. The box plot shows that the third 

quartile of position 0.15 m and 0.4 m are the two largest values, which means extremely high error 

values or outliers are minimal, but the errors are consistently concentrated in a higher range. Therefore, 

correlation plots were examined in Fig. 7 (c) (d) to check the prediction performance. It illustrates a 

strong linear correlation between the predicted values and CFD values, demonstrating the high accuracy 

and reliability of the prediction model as the R2 of positions 0.15 and 0.4 are around 0.98 and 0.97. 
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Fig. 7. Correlations between CFD results and CAERes-NN predictions of (a) Position = 0.2 m; (b) 

Position = 0.35 m; (c) Position = 0.15 m; (d) Position = 0.4 m 

4     Conclusion 

This paper applied a CAERes-NN surrogate model integrating CAE and ResNet to predict the indoor 

temperature distribution based on the CFD simulation database with various heights of various 

scenarios of inlet height variations in a 2D room benchmark. Overall, these results demonstrate the 

strong performance of the CAERes-NN model on both training and testing data, indicating that the 

neural network has effectively learned the fundamental patterns and mechanism of indoor heat transfer 

processes. Firstly, the model accurately captured the trend of indoor temperature decrease with 

increasing inlet height, reflecting improved ventilation efficiency. Then, the training dataset revealed 

that CAERes-NN achieved a high level of agreement with CFD results, with relative error mostly 

below 1.75% in most areas of the room, indicating reliable temperature predictions, but the deviation 

of air inlet position prediction should not be ignored. Thirdly, in the testing dataset, the maximum 

relative error is around 9 times of that in the training dataset on account of more serious misalignment 

of air inlet position. However, the maximum third quartile of relative error is 2.1%, only around 3 times 

of that in the training dataset. This states that in the majority of cases, the accuracy of the predictions 

is high, with errors controlled within a small range, which means the temperature of most of the area 

inside the room is predicted reliably. Last but not least, in the field of indoor temperature field 

prediction, relying solely on parameters like relative error to assess surrogate model performance is 

inadequate. Therefore, it is more accurate to evaluate the performance of the surrogate model by 

considering the stability of error distribution, the impact of extreme values, and the tolerance in 

practical applications, in conjunction with the structure and rationality of the predicted temperature 

field. 

In summary, this suggests that the CAERes-NN holds promise for understanding and predicting indoor 

heat transfer behavior and temperature field, offering valuable tools for fast indoor temperature 

prediction which benefits to the design and optimization of building and air conditioning design and 

optimization. However, further research could explore methods to enhance the model's accuracy and 

generalization capabilities, particularly in complex indoor environments and broader parameter spaces. 

 

References 

[1] Ganesh GA, Sinha SL, Verma TN, Dewangan SK. Investigation of indoor environment quality 

and factors affecting human comfort: A critical review. Build Environ 2021;204. 

https://doi.org/10.1016/j.buildenv.2021.108146. 

[2] Nielsen P V. Fifty years of CFD for room air distribution. Build Environ 2015;91:78–90. 

https://doi.org/10.1016/j.buildenv.2015.02.035. 



 ICCFD12

Twelfth International Conference on        
Computational Fluid Dynamics (ICCFD12), 
Kobe, Japan, July 14-19, 2024 

 

 

 11 

[3] Cetin YE, Avci M, Aydin O. Influence of ventilation strategies on dispersion and removal of 

fine particles: An experimental and simulation study. Sci Technol Built Environ 2020;26:349–

65. https://doi.org/10.1080/23744731.2019.1701332. 

[4] Han X, Tian W, VanGilder J, Zuo W, Faulkner C. An open source fast fluid dynamics model 

for data center thermal management. Energy Build 2021;230. 

https://doi.org/10.1016/j.enbuild.2020.110599. 

[5] Aftosmis MJ, Berger MJ, Adomavicius G, ~domavicius’ G. A Domain-Decomposed 

Multilevel Method for Adaptively Refined Cartesian Grids with Embedded Boundaries. n.d. 

[6] Wang H, Zhai ZJ. Analyzing grid independency and numerical viscosity of computational 

fluid dynamics for indoor environment applications. Build Environ 2012;52:107–18. 

https://doi.org/10.1016/j.buildenv.2011.12.019. 

[7] Brunton SL, Noack BR, Koumoutsakos P. Machine Learning for Fluid Mechanics. Annu Rev 

Fluid Mech 2020 2020;52:477–508. https://doi.org/10.1146/annurev-fluid-010719. 

[8] Chaudhuri A. POD-interpolation based prediction of indoor airflows. n.d. 

[9] Schmid PJ. Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 

2010;656:5–28. https://doi.org/10.1017/S0022112010001217. 

[10] Wang S, Chen X, Geyer P. Feasibility Analysis of POD and Deep-Autoencoder for Reduced 

Order Modelling: Indoor Environment CFD Prediction. Building Simulation Conference 

Proceedings, vol. 18, International Building Performance Simulation Association; 2023, p. 

647–54. https://doi.org/10.26868/25222708.2023.1227. 

[11] Zhou Q, Ooka R. Comparison of different deep neural network architectures for isothermal 

indoor airflow prediction. Build Simul 2020;13:1409–23. https://doi.org/10.1007/s12273-020-

0664-8. 

[12] Calzolari G, Liu W. Deep learning to replace, improve, or aid CFD analysis in built 

environment applications: A review. Build Environ 2021;206. 

https://doi.org/10.1016/j.buildenv.2021.108315. 

[13] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. n.d. 

  

 

 


