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Abstract: In this work, we systematically investigate the performance of the Runge-
Kutta discontinuous Galerkin(RKDG) method with different numerical fluxes and the
gas-kinetic scheme(GKS) with both compact and noncompact spatial reconstruction.
Accuracy, efficiency and shock-capturing capabilities are all within our comparison
range. It can be concluded that the compact GKS(CGKS) has similar efficiency
performance in smooth region as RKDG method in the same spatial order but capture
shock waves more precisely and robustly.
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1 Introduction
Both the RKDG method and GKS have abilities to solve the nonlinear time-dependent hyperbolic
conservation laws. In the work of recent years, the RKDG method with multi-resolution limiters [1] as
well as the GKS with compact spatial reconstruction(CGKS) [2] have great performance for simulating
flows efficiently.

The primary differences between the RKDG method and the GKS are outlined as follows:
1. CFL Number Flexibility: GKS operates with fewer restrictions on the Courant-Friedrichs-Lewy (CFL)
number compared to RKDG. However, reaching the accuracy level of RKDG or other high-order schemes
can be challenging for GKS, mainly due to the constraints imposed by its finite volume framework.
2. Identification of Troubled Cells and Limiting: RKDG and GKS use markedly different approaches for
detecting troubled cells and applying limits to the numerical solution. These differences stem from their
unique ways of handling the evolution of degrees of freedom within each cell.
3. Mathematical Formulation and Physical Foundation: RKDG is known for its straightforward math-
ematical formulation, though its performance can be problematic in regions with strong discontinuities,
where robustness tends to deteriorate quickly. In contrast, GKS, while more complex in formulation and
less straightforward to extend to very high orders, is rooted in a physical model of gas dynamics [3],
offering enhanced flexibility for managing complex flow scenarios.
4. Degrees of Freedom and Computational Demands: RKDG allows for high accuracy with limited mesh
refinement due to ample degrees of freedom. However, increasing the order of the scheme typically reduces
the permissible time step size, demanding greater memory bandwidth. On the other hand, the CGKS may
have fewer degrees of freedom but achieves high-order accuracy through spatial reconstruction. Its spatio-
temporal coupling approach relaxes CFL conditions for time advancement, although the computation of
time-accurate gas-kinetic flux terms can reduce its overall efficiency.

In this research, we address the solutions of one- and two-dimensional nonlinear hyperbolic conserva-
tion laws using the Runge-Kutta Discontinuous Galerkin (RKDG) method and the Gas-Kinetic Scheme
(GKS), evaluating their performance across various standard test cases.

2 Current Numerical Results
2.1 One dimensional accuracy tests
In this subsection, one dimensional advection of density perturbation is tested, and the initial condition
is given as follows

ρ(x) = 1 + 0.2 sin(πx), U(x) = 1, p(x) = 1, x ∈ [−1, 1].
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With the periodic boundary condition, and the analytic solution is

ρ(x, t) = 1 + 0.2 sin(π(x− t)), U(x, t) = 1, p(x, t) = 1.

In this computation, the computational domain is partitioned by uniform meshes, and the final time is
t = 2s. And the classical fourth-order Runge-Kutta method [4] is adopted for RKDG-P 4 method to
guarantee that the spatial error dominates. We measure the efficiency of the two methods using the
CPU time calculated from the L1 and L2 errors, which is shown in Figure 1 and Figure 2.
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Figure 1: Efficiency of simulation for smooth regions: comparisons between RKDG-P 2 method and
third-order GKS method. The left one is based on L1 error and the right one is based on L2 error.
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Figure 2: Efficiency of simulation for smooth regions: comparisons between RKDG-P 4 and fifth-order
GKS and CGKS. The left one is based on L1 error and the right one is based on L2 error.

2.2 One dimensional problems with discontinuities
In this subsection, we present several numerical tests with discontinuities in one dimension.

The first case is the Shu-Osher problem [5], which is used to test the performance of the numerical
methods in a domain consisting of both shocks and complex smooth regions. The initial conditions are

(ρ, U, p) =

{
(3.857134, 2.629369, 10.33333), −5 < x ≤ −4,

(1 + 0.2 sin(5x), 0, 1), −4 < x < 5,

and the computational domain is (-5,5). The density distributions at t = 1.8s of the two methods against
reference solution computed by the fifth-order WENO scheme with 10000 grid points are shown in Figure
3.
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As an extension of the Shu-Osher problem, the Titarev-Toro problem [6] is tested as well, and the
initial conditions in this case are the following

(ρ, U, p) =

{
(1.515695, 0.523346, 1.805), −5 < x ≤ −4.5,

(1 + 0.1 sin(20πx), 0, 1), −4.5 < x < 5,

and the computational domain is (-5,5). The non-reflecting boundary condition is imposed on left end,
and the fixed wave profile is given on the right end in the two cases. The results of the two methods
together with the reference solution is computed by fifth-order WENO scheme with 10000 grids are shown
in Figure 4. As the results of the accuracy test, the performance of the RKDG method for simulating
complex structure with shock waves and acoustic waves is between GKS and CGKS.

The last case for one-dimensional problems is the double rarefaction wave problem [7]. The initial
conditions are

(ρ, U, p) =

{
(1,−2, 0.4), 0 < x ≤ 0.5,

(1, 2, 0.4), 0.5 < x < 1,
(1)

and the computational domain is (0,1). The case is hard to simulate because of the near-vacuum region
in the middle of domain. The results of the two methods together with exact solution computed by the
exact Riemann solver [8] are shown in Figure 5.
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Figure 3: Shu-Osher problem: the density distributions and local enlargement at t = 1.8s with 400
cells. Left to right: RKDG-P 2 with third-order GKS, RKDG-P 4 with fifth-order GKS, RKDG-P 4 with
fifth-order CGKS.

2.3 Two dimensinal accuracy test
In this subsection, two dimensional advection of density perturbation is tested, and the initial condition
is given as follows

ρ(x, y) = 1 + 0.2 sin(π(x+ y)), U(x, y) = 1, V (x, y) = 1, p(x, y) = 1, x, y ∈ [−1, 1].

With the periodic boundary condition, and the analytic solution is

ρ(x, y, t) = 1 + 0.2 sin(π(x+ y − t)), U(x, y, t) = 1, V (x, y, t) = 1, p(x, y, t) = 1.
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Figure 4: Titarev-Toro problem: the density distributions and local enlargement at t = 5s with 1000
cells. Left to right: RKDG-P 2 with third-order GKS, RKDG-P 4 with fifth-order GKS, RKDG-P 4 with
fifth-order CGKS.
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Figure 5: Double rarefaction waves: the density distributions and local enlargement at t = 0.15s with
400 cells. Left to right: RKDG-P 2 with third-order GKS, RKDG-P 4 with fifth-order GKS, RKDG-P 4

with fifth-order CGKS.

The simulation time is t = 2s in this case. And fourth-order Runge-Kutta method [4] is adopted for
RKDG-P 4 to guarantee that the spatial error dominates. The comparison of the efficiency is presented
in Figure 6.

2.4 Double Mach reflection problem
This problem was extensively studied by Woodward and Colella [9] for the inviscid flow. The computa-
tional domain is [0, 4]× [0, 1], and a solid wall lies at the bottom of the computational domain starting
from x = 1/6. Initially, a right-moving Mach 10 shock is positioned at (x, y) = (1/6, 0), and makes a 60◦

angle with the x-axis. The initial pre-shock and post-shock conditions are

(ρ, U, V, p) = (8, 4.125
√
3,−4.125, 116.5),

(ρ, U, V, p) = (1.4, 0, 0, 1).
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Figure 6: Efficiency of simulation for two dimensional smooth regions:comparisons between RKDG-P 4

method and fifth-order GKS/CGKS method. The left one is based on L1 error and the right one is based
on L2 error

.

In this case, we tend to compare the resolution of the two methods under the premise of almost the same
computational load. A baseline uniform mesh with 800 × 200 grid points is used for the two methods,
and a refined one (1600× 400) is used in the CGKS method to make the comparison fair. There are 15
degrees of freedom contained in a single cell in the RKDG-P4 method, but only one and three degrees of
freedom for each variable in the GKS and CGKS, respectively. Thus, the refined one has similar degrees
of freedom(1, 920, 000 totally) with the RKDG-P4 method(2, 400, 000 totally). As is shown in Figure 7
and Figure 8, the CGKS(refined one) has a similar resolution with the RKDG-P 4 method.

3 Conclusion
In this research, we systematically evaluate the performance of the RKDG method and the GKS in terms
of accuracy, efficiency, and resolution. We demonstrate significant improvements in the efficiency of the
GKS through the use of compact spatial reconstruction and a simplified third-order gas distribution
method. Notably, GKS exhibits higher efficiency than the RKDG method in smooth flow regions. Im-
portantly, GKS is capable of handling viscous flows without additional computational demands, whereas
implementing viscous terms in the RKDG method requires further development, indicating a potentially
higher efficiency of the CGKS for real-world viscous flow simulations. During the implementation of
these methods, we encountered challenges in maintaining the stability of the RKDG method when us-
ing multi-resolution WENO limiters. The coefficients γℓ−1,ℓ and γℓ,ℓ for the limiters proved sensitive
and required case-specific adjustments to achieve both robustness and accuracy in capturing discontinu-
ous solutions. Furthermore, the multi-resolution scheme tends to incorrectly identify excessive extreme
points in smooth regions, thereby attenuating extreme values. Our comparative analysis highlights the
robustness of the CGKS and the high accuracy of the RKDG method in multi-dimensional scenarios.
Thus, integrating the strengths of GKS’s relaxed CFL conditions and DG’s high accuracy, a hybrid
scheme combining DG and CGKS with h− p refinement emerges as a promising approach for effectively
simulating flows in both smooth and discontinuous regions. This development is part of our ongoing
research efforts.
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