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∗∗ FOM Rijnhuizen, The Netherlands.Abstrat: Speial disretization methods are presented for multi-dimensionaldi�usion operators with strongly anisotropi di�usion. These operators ourin the magnetohydrodynami (MHD) equations desribing tokamak plasmaphysis.Keywords: Tokamak plasmas, magnetohydrodynamis, strongly anisotropidi�usion, speial disretization methods.1 IntrodutionIn tokamak fusion plasmas there is extreme anisotropy in heat ondution oe�ients due to thehigh temperature and large magneti �eld strength. This allows di�usive proesses, to e�etivelybe aligned with magneti �eld lines. Heat ondution in tokamak fusion plasmas an be up to
1012 times larger in magneti-�eld-aligned diretion than in the diretion normal to that. Thisanisotropy puts severe requirements on numerial methods for MHD; small misalignment of thegrid may ause the perpendiular di�usion to be signi�antly polluted by the numerial error inapproximating the parallel di�usion. A ommon remedy is to apply oordinates aligned with themagneti �eld. However, this approah runs into problems in ase of rossing �eld lines, e.g., at
x-points and where there is magneti reonnetion. It is useful therefore to onsider disretizationmethods whih are more tolerant to the misalignment of the grid with the magneti �eld lines,ultimately to allow for the use of artesian, non-aligned grids.Besides spurious di�usion in perpendiular diretion, two other problems that might arise dueto strongly anisotropi di�usion are: (i) non-positivity near high gradients and (ii) stagnationor loss of onvergene [1℄.To enable aurate numerial simulation of phenomena whih rely heavily on the resolutionof the perpendiular temperature gradient, here we present disretization methods that areaurate in ase of strongly anisotropi di�usion and misalignment.2 Problem StatementOur model problem is the unsteady heat equation
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where T represents temperature, b1, b2 the omponents of the unit diretion vetor of the mag-neti �eld line with respet to the oordinate axes, f some soure term, and D‖ and D⊥ theparallel and perpendiular di�usion oe�ients.For a 2D test ase with D‖

D⊥
= 106, in Figure 1 we give the exat disrete solution on a 40×40grid (Figure 1a) and the distributions of the solution error orresponding with a onventionaldisretization method (Figure 1b) and a novel method that we developed (Figure 1).
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(a) Exat disrete solution
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(b) Solution error, onventional method x

y

 

 

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0

1

2

3

4

5

6
x 10

−3

() Solution error, novel methodFigure 1: Exat disrete temperature distribution and solution errors for losed �eld line ase3 Conlusion and Future WorkThe novel method is signi�antly more aurate than the onventional method, but it is sus-eptible for overshoots and non-positivity. It still needs to be improved for monotoniity andpositivity.Referenes[1℄ S. Günter, Q. Yu, J. Krüger and K. Lakner. Modelling of heat transport in magnetisedplasmas under non-aligned oordinates. J. Comput. Phys., 209:354-370, 2005.


