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Abstract: In this paper a �rst-order moment method and a Kriging surrogate
model are used for optimizations under uncertainty applied to two-dimensional
lift-constrained drag minimizations. Given uncertainties in statistically inde-
pendent, random, normally distributed input variables, the two approaches
are used to propagate these uncertainties through the mathematical model in
order to be able to optimize output statistics of interest.
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1 Introduction and Motivation
In spite of the rapid advances and acceptance of numerical simulations, serious de�ciencies
remain in terms of accuracy, uncertainty, and validation for many applications. Deterministic
optimization tools are also widely used in engineering practice, however, engineering designs
do not operate exactly at their design point due to physical variability in the environment.
These small variations can deteriorate the performance of deterministically optimized designs.
It is, therefore, necessary to account for these uncertainties in the optimization process using
optimization under uncertainty (OUU) techniques, which implies that uncertainty quanti�cation
(UQ) is used in the optimization loop instead of a deterministic simulation. As one might expect
given the computational burden that is created both in optimization and in UQ alone when
applied to realistic engineering applications, OUU becomes computationally expensive for all
but the most trivial of problems. This is why OUU is considered as one of the most important
open problems in optimization [1].

2 Preliminary Results
Moment methods can be a good choice for propagating uncertainties through the simulation
process [2]. They are based on Taylor series expansions of the original non-linear objective func-
tion J (D) about the mean of the input, D̄, given standard deviations σDj , j = 1, . . . ,M . The
resulting mean, J̄ , and variance, VarJ , of the objective function are given to �rst order (MM1)

by J̄ = J (D̄) and VarJ =
∑M

j=1

(
dJ
dDj

∣∣∣
D̄
σDj

)2
. A general optimization under uncertainty

(OUU) problem can be expressed as

min F = F(J̄ ,VarJ , q̄, D̄)
s.t. R(q̄, D̄) = 0 (1)

g(J̄ , q̄, D̄) + kσg ≤ 0,

where k is the number of standard deviations, σg, that the inequality constraint, g, must be
displaced such that the probability that g is satis�ed is greater than a speci�ed probability, Pk,
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and the equality constraint, R, is deemed satis�ed at the mean values D̄ and q̄(D̄). Note that
MM1 requires �rst-order sensitivities to calculate VarJ and σg. Thus, a gradient-based quasi-
Newton optimization requires the Hessian to compute the objective function and constraint
gradients.

A more accurate estimate of the required means and variances in (1) can be obtained by
using a Kriging surrogate [2, 3]. One disadvantage of the Kriging method is the fact that one
has to construct a separate response surface for each simulation output J and system constraint
g. This will make this approach computationally more expensive than the MM1 method.

A robust lift-constrained drag minimization of the steady inviscid �ow over a transonic
NACA 0012 airfoil is considered by using F := C̄d + VarCd

. The free-stream Mach number is
0.755 with an angle of attack of 1.25 degrees. Six shape design variables which control the
magnitude of Hicks-Henne sine bump functions are allowed to vary and the resulting deforma-
tion of the mesh is calculated via a linear tension spring analogy. All six design variables are
assumed to have aleatory uncertainties due to manufacturing tolerances which are modeled with
the same normal distributions. A zero mean corresponds to the original NACA 0012 airfoil
and the standard deviations are taken to be 0.005. The ability to calculate the gradient and
Hessian for this problem and a robustness analysis of the lift coe�cient, Cl, has been previously
demonstrated [3]. In order to assess the quality of the predictions for the mean and variance of
the di�erent methods, a non-linear Monte-Carlo (NLMC) simulation with 3, 000 latin hypercube
samples is used for comparison in Table 1.

C̄l VarCl
C̄d VarCd

NLMC 0.267 8.7 · 10−3 5.95 · 10−3 5.8 · 10−6

MM1 0.268 6.6 · 10−3 5.21 · 10−3 3.6 · 10−6

Kriging 0.267 8.7 · 10−3 5.93 · 10−3 5.5 · 10−6

Table 1: Comparison of NLMC, MM1, and Kriging predictions

The Kriging model (constructed from 49 sample points) yields reasonable answers for a
fraction of the cost of a NLMC simulation. The di�erence to the MM1 predictions shows the
non-linearities in the design space. Using the Kriging model for the entire robust optimization
process (for the function, constraint, and gradient evaluation) yields the following results:

k Pk C̄d VarCd
C̄l σCl

0 0.5000 5.28 · 10−3 5.8 · 10−6 0.268 0.093
1 0.8413 7.30 · 10−3 7.9 · 10−6 0.367 0.093
2 0.9772 1.02 · 10−2 1.5 · 10−5 0.451 0.092
3 0.9986 1.92 · 10−2 2.8 · 10−5 0.561 0.098

Table 2: Robust optimization results using Kriging predictions for di�erent values of k

Just evaluating the optimal design obtained for k = 2 by using NLMC with 3000 sample
points yields C̄d = 1.02 · 10−2, VarCd

= 1.5 · 10−5, C̄l = 0.451, and σCl
= 0.091 and shows again

the excellent agreement between the Kriging results and a full NLMC.

3 Conclusion and Future Work
The �nal paper will have MM1 results which were omitted for brevity as well as more test cases.
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