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Abstract: We study very-high-order conservative discretizations for diffusive

terms with variable viscosity, which are present in the compressible Navier-

Stokes equations, using viscous fluxes at cell-interfaces. We show that the pro-

posed approach yields O(∆x2s) accuracy on the stencil {i − s, · · · , i, · · · , i + s},

thus improving upon previous proposals which are O(∆x2⌈ s

2
⌉) on the same sten-

cil. The extension of the method to 2-D and 3-D regular cartesian grids is de-

scribed. Several typical 1-D and 2-D computational examples substantiate the

accuracy of the method for test problems and for DNS of turbulent flows using

the 3-D compressible Navier-Stokes equations.

Keywords: High-Order Schemes, Viscous Terms, Diffusion Equation, Compress-

ible Navier-Stokes.

1 Introduction
Very-high-order accuracy is essential in several practical applications such as DNS of compressible

turbulence [3]. Whereas several very-high-order approaches for the discretization of convective

terms have been developed [2], the conservative discretization of the diffusive (viscous) terms has

received less attention. The popular compact scheme of Lele [4] is nonconservative. Zingg et al. [6]

have developed a conservative scheme for the viscous terms on the stencil Si,3,3 := {i−3, · · · , i+3},

which yields an O(∆x4)-accurate approximation of
(

µ(x) u′(x)
)′

, and Shen et al. [5] developed an

alternative O(∆x4)-accurate conservative formulation on the same stencil. It is straightforward to

generalize these apporaches to higher-order using larger stencils, obtaining O(∆x2⌈ s

2
⌉) schemes on

the stencil Si,s,s := {i − s, · · · , i + s}. In the present work we develop an O(∆x2s) method on the

stencil Si,s,s := {i − s, · · · , i + s}, ie twice more accurate.

2 Present Approach
To discretize (µ(x)u′(x))′i on a homogeneous grid x := x− 1 + (i− 1)∆x we define the numerical flux

F̌(µu′;i,s−1,s)
i+ 1

2

on the stencil Si,s−1,s := {i − s + 1, · · · , i + s} satisfying

(µ(x)u′(x))′i =
1

∆x

(

F̌(µu′ ;i,s−1,s)
i+ 1

2

− F̌(µu′;i,s,s−1)
i−

1
2

)

+ O(∆x2s) (1a)

Let pI,M−,M+
(x; xi, ∆x; f) be the Lagrange interpolating polynomial of f : R −→ R on the stencil

Si,M−,M+
:= {i − M−, · · · , i + M+} and pR1,M−,M+

(x; xi, ∆x; f) the corresponding reconstructing

polynomial [1] which approximates the function h : R −→ R, whose cell-averages are equal to f(x)

(f(x) =
∫ + 1

2

− 1
2

h(x + ζ∆x)dζ ∀x). Then we can show analytically and verify computationally (Fig. 1)

that the required numerical flux is

F̌(µu′ ;i,s−1,s)
i+ 1

2

:= pR1,s−1,s

(

xi + 1
2∆x; xi, ∆x;

[

pI,s−1,s(x; xi, ∆x; µ)p′I,s−1,s(x; xi, ∆x; f)
]

)

(1b)
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Figure 1: (Left) Error of the present approximation for the computation of (µu′)′ as a function

of grid refinement and comparison with previous approaches [5, 6]. (Center) High-Mach-number

Couette flow testcase. (Right) Application to DNS of compressible channel flow.

F̌(µu′ ;i,s−1,s)
i+ 1

2

=
1

∆x

s
∑

p=−s+1

µi+p

s
∑

q=−s+1

(

s
∑

ℓ=−s+1

αR1,s−1,s,ℓ(
1
2 )αI,s−1,s,p(ℓ)α

′
I,s−1,s,q(ℓ)

)

ui+q (1c)

The improvement upon previous approaches [5, 6] comes from the fact that we do not reconstruct

fluxes from interpolatory approximations of the product µu′ at half-points, but instead at the inte-

ger points of the stencil. At boundary-points, we use biased stencils recovering global O(∆x2s−1)
accuracy. The method is extended to 2-D and 3-D using the usual linewise approach [3, 5, 6]. Typi-

cal applications presented in the complete paper include:

1) Nonisothermal flow of glycerol (whose viscosity varies exponentially with temperature T )

2) Compressible laminar Couette flow (Fig. 1)

3) 2-D diffusion equation

4) DNS computations (Fig. 1).

3 Conclusion and Future Work
The present work defines numerical fluxes for very-high-order conservative discretization of (µu′),
applicable to the viscous terms of the Navier-Stokes equations. Future work includes a least-

squares genuinely multidimensional approach applicable to arbitrary unstructured grids and the

development of WENO discretizations of these terms for flows with discontinuities.
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