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Abstract: A discrete equation method (DEM) for the simulation of com-
pressible multiphase �ows including viscous and real-gas e�ects is illustrated.
Simulation results are validated with well-known results in literature. The
importance of viscous e�ects is then analyzed comparing with some Euler so-
lutions. Potentialities in improving the quality of the numerical prediction by
using a more complex equation of state are thus drawn.
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1 Introduction

Modeling the two-phase �ows is of great interest in CFD community. Two aspects are fundamen-
tal: (i) how to model the interface between two �uids with di�erent thermodynamic properties
and (ii) to characterize the mechanisms occurring at the interface as well as in zones where
the volume fractions are not uniform. The DEM method (see [1]) has been developed to solve
multiphase problems without conservation errors, to avoid the computation of average variables
and the numerical approximation of the non conservative terms. It is based on a probabilistic
approach and has been extensively applied for unsteady, wave propagation inviscid �ows using
generally a sti�ened gas equation of state (SG) for the de�nition of the thermodynamic (TD)
properties. In order to remove some numerical di�culties of DEM, an asymptotic expansion
of the scheme has been proposed [2]. The aim of this paper is to develop a general formula-
tion for viscous multiphase �ows taking into account complex equation of state. The starting
point consists in enriching the discrete scheme of [1] introducing the viscous e�ects. Then, an
asymptotic development is applied as in [2] in order to obtain the discrete form of a reduced
multiphase viscous model. Moreover, a SG and a Peng-Robinson (PR) equations of state are
implemented. While SG allows preserving the hyperbolicity of the system, real-gas e�ects are
taken into account by using the more complex PR equation.

2 Methodology and Results

The discrete scheme (based on [1]) developed in this work is a �nite volume method type. It
is solved by a MUSCL scheme and a relaxation Riemann solver for the extension to the second
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Figure 1: Comparison of the velocity pro�les. Left: results of [4] and DEM, right: results with
DEM of Euler and viscous formulations.
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where α is the phase volume fraction, U = (ρ, ρu, ρE) is the conservative variables vector, F and
Fv are the convective and viscous �uxes respectively. F

lag = F (U+
LR)− σ(UL, UR)U+

LR represents
the �uxes across the contact discontinuity between the left (UL) and right (UR) states, 1/ε is
related to the interfacial area between �uids. With the asymptotic expansion of (1), i.e. ε→∞,
the relaxation term disappears, obtaining in this way the reduced discrete scheme of [2].

Results of two test cases, using SG, are shown. The �rst is the viscous simulation of a shock
tube con�guration �lled out only with air (left side at a pressure of 105Pa and the right side at
a pressure of 106). A good agreement (see Fig. 1(a)) is obtained between the results obtained
in [4] and the DEM method. The second test-case is a shock tube �lled out with water and
air at the same volume fraction equal to 0.5 (left pressure is equal to 109Pa and the right one
to 105Pa). The comparison between the results obtained with the Euler formulation and the
viscous one (see Fig. 1), displays there is a negligible di�erence between the two models, as it is
known in literature [3].
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