
Seventh International Conference on
Computational Fluid Dynamics (ICCFD7),
Big Island, Hawaii, July 9-13, 2012

ICCFD7-1301

The Nitsche Method of the Navier-Stokes Equations for

Immersed and Moving Boundaries

J. Benk∗, M. Ulbrich∗∗ and M. Mehl∗∗∗

Corresponding author: benk@in.tum.de

∗ Department of Computer Science, TU München, Germany.
∗∗ Department of Mathematics, TU München, Germany.

∗∗∗ Institute for Advanced Study, TU München, Germany.

Abstract: The usual way for a �ow simulation with complex boundaries is to generate an un-
structured mesh that represents the boundary accurately. In this classical approach, the generation
and handling of the mesh is a complex task and the �nite element method (FEM) on unstructured
meshes can generate signi�cant computational overhead, especially in terms of memory require-
ments and access, an increasingly crucial aspect on massively parallel computing architectures. An
alternative approach is the Immersed Boundary (IB) method. In this paper, we investigate the
Nitsche Method for the Navier-Stokes equations (NSE) with immersed boundaries. This method
avoids the usage of computationally costly unstructured meshes by using an adaptive Cartesian
mesh instead. In contrast to unstructured meshes, Cartesian meshes can be partitioned in a load-
balanced way without a central storage of the whole mesh information and are highly storage
e�cient even in a sequential context. For an accurate simulation of our scenarios, no-slip bound-
ary conditions need to be imposed on complex boundary, that is not represented by the mesh
facets. For this purpose, we employ the Nitsche Method to impose these conditions in a weak
form. We extend the approach for moving boundaries, which enables us to compute �uid-structure
interaction (FSI) scenarios. The results of various FSI benchmark scenarios, presented at the end
of this paper, verify our approach.

Keywords: Nitsche Method, Navier-Stokes Equations, Immersed Boundary, Moving Boundary,
Fluid Structure Interaction.

1 Introduction

The representation of complex boundaries and their boundary conditions (BC) poses several challenges in
various applications. The application we consider here is a �nite element (FEM) based 2D and 3D �ow
computation, where the �uid is modeled by the incompressible Navier-Stokes equations. In this case, the
classical way to represent complex boundaries is the employment of unstructured meshes, where the boundary
is represented by the mesh's facets. Generating an unstructured mesh induces a major computational
and in particular storage overhead. Especially in parallel computations, the meshing and the partitioning
of the computational domain into load-balanced domains on distributed memory systems is a potential
bottleneck [1]. Obviously, the handling and the storage of such an unstructured mesh, capable to represent
complex boundaries, is more costly than a structured one. Therefore, several methods have been developed
for e�cient an accurate representation of complex boundaries on structured meshes. One intuitive way is
to use the facet cells of the structured mesh (e.g [2]). This leads to an O(h) order boundary representation,
where h denotes the mesh width. Especially in 3D, this �rst order representation proves to be ine�cient,
even if combined with mesh adaptivity, where the required mesh resolution for the boundary leads to too
high cell numbers.

This property of structured meshes leads to methods that represent the geometry explicitly by a separate

1



entity. These methods are called Immersed Boundary (IB) Methods and use an explicit and independent
representation of the boundary. With this approach, the question arises how to impose the BC on a geometry
that is non conforming with the boundary. In these cases, the boundary geometry intersects the boundary
cells in an arbitrary way. Thus, to impose a given BC on such intersected cells turns out to be challenging.
[3] gives an overview of various IB methods in �uid dynamics and categorizes the methods in discrete and
continuous approaches. A review of various IB methods is also included in [4].

Figure 1: Illustration of an Immersed Boundary. The boundary is illustrated by the curve intersecting the
cells of a regular Cartesian mesh. On such a boundary, we want to impose given Dirichlet BC. Ω represents
the computational domain, whereas ΩF denotes the �ctitious domain.

In this paper, we apply the Nitsche Method to impose a Dirichlet BC for the NS equations on IBs. This
method is formulated in a weak form as presented in Sect. 2. Hence, this IB method falls into the category
of continuous IB approaches. This formulation of the Nitsche Method for the NS equations has already
been used in [5, 6], but in both cases, the method was employed on the mesh's boundary facets, where
a BC could be imposed in the classical way as well. We, however, use this formulation in an IB setting
(see Fig. 1), where special cut-cell and boundary integrals are required for the cells that are intersected
by the boundary geometry. Section 2 describes the Nitsche Method for �xed and immersed boundaries,
the developed geometry representations, and the required cut-cell and boundary integrals in 2D and 3D.
In Sect. 3, we extend our approach for moving boundaries within a transient �ow �eld. Scenarios with
severe geometry changes are challenging in particular for unstructured meshes, where costly remeshing of
the domain might be required. For our approach, however, the mesh stays the same and �xed for the whole
simulation, which is, thus, a crucial advantage. One of the important applications of moving boundaries in
a �ow �eld are simulations of �uid-structure interactions (FSI). In this case, the consistent imposition of
BCs and boundary force computations play a crucial role. We introduce in Sect. 4 our approach to couple
the �uid and the structure, where the Nitsche Method is used on the �uid side. In order to demonstrate the
consistent imposition of Dirichlet BC on moving and immersed boundaries, we compute in Sect. 5 several
FSI benchmark scenarios. The paper closes with a short summary and outlook in Sect. 6.

2 The Nitsche Method of the Navier-Stokes Equation on Immersed

Boundaries

We start with the statement of the incompressible Navier-Stokes equations (NSE). The computational domain
is denoted by Ω ⊂ Rd with d = 2, 3, where the momentum equation and the continuity equation hold:

ρf
∂v

∂t
− νf∆v + ρf (v · ∇)v +∇p = f in Ω, (1)

∇ · v = 0 in Ω. (2)

v = g on Γ. (3)

2



ρf denotes the density of the �uid, whereas νf represents the kinematic viscosity. f(t) ∈ L2(Ω)d represents
external volume forces acting on the �uid. The �ow �eld is determined by the velocity vector �eld v and
the scalar pressure �eld p.

The problem, given by Eq. (1) and (2), is closed by Dirichlet boundary conditions (BC) for the velocity
on Γ := ∂Ω or a combination of Dirichlet and Neumann-type BCs. We denote the Dirichlet data by
g(t) ∈ H1/2(Γ)d Dirichlet BCs are in our focus on immersed boundaries such as the one illustrated in Fig. 1.

In the following, our goal is to present the Nitsche Method to impose Dirichlet BCs for the Stokes and
Navier-Stokes equations. The �rst step towards the Nitsche formulation is to derive the weak-form of Eq. (1)
and (2). We choose a suited function space for the velocity vector and for the pressure. For the components of
v = (v1, . . . , vd), we use the same discrete space. Since integration by parts is required during the derivation
of the weak form, we assume that v(t) ∈ H1(Ω)d. The Sobolev space H1(Ω) ensures the existence of weak
derivatives. The pressure �eld can be an element of L2

0 (Ω) in space. Analogously to the unknown space,
the test space for the velocity is chosen as ψ ∈ H1(Ω)d and for the pressure ξ ∈ L2

0 (Ω). We denote the
(d+ 1)-dimensional test function of both equations by φ = (ψ, ξ). Equation (1) is tested with the velocity's
test function ψ, whereas ξ tests Eq. (2). After these multiplications of the momentum equation Eq. (1) with
ψ and the continuity equation Eq. (2) with ξ, the terms

∫
Ω
−∇p ·ψ dx and

∫
Ω
νf∆v ·ψ dx are integrated by

parts. Considering a boundary conforming mesh, the resulting boundary integral usually vanishes, since the
test functions have compact support on Ω and ψ|Γ = 0. In the case of immersed boundaries, the degrees of
freedoms on the Dirichlet boundary cells are considered as unknowns. Hence, the boundary integrals do not
vanish:

(−νf∆v, ψ)Ω = νf

∫
Ω

∇v : ∇ψ dx− νf
∫

Γ

∂nv · ψ dS(x)

= νf (∇v,∇ψ)Ω − νf 〈∂nv, ψ〉Γ,

(∇p, ψ)Ω = −
∫

Ω

p (∇ · ψ) dx+

∫
Γ

p n · ψ dS(x)

= − (p,∇ · ψ)Ω + 〈p n, ψ〉Γ.

In the resulting equation, the weak form of the transient Navier-Stokes equations including the boundary
integrals is written in the compact notation:

ρf
(
∂v

∂t
, ψ

)
Ω

+ νf (∇v,∇ψ)Ω − νf 〈∂nv, ψ〉Γ + ρf ((v · ∇)v, ψ)Ω

− (p,∇ · ψ)Ω + 〈p n, ψ〉Γ + (∇ · v, ξ)Ω − (f , ψ)Ω = 0. (4)

The formulation of Eq. (4) does not include the Dirichlet BCs, but those will be included by the Nitsche
method.

The idea of the Nitsche method was introduced for the Poisson equation in [7]. It consist of de�ning an
energy functional that measures the deviation of a discrete solution from the PDE solution in Ω and from
the given Dirichlet BC on Γ. Analytically minimizing this functional results in the Nitsche Formulation of
the given problem that also includes the Dirichlet BCs. For further details on the derivation of the Nitsche
Method for the Poisson equation, we refer to the original paper [7], whereas for the Stokes and Navier-Stokes
equation we refer to [4, 5, 6].

In the following, we simply restate the Nitsche Formulation of the Stokes and Navier-Stokes equations,
without showing the derivation of the formula. For the sake of simplicity, we consider ρf = 1 and the
stationary1 case vt = 0. As a �rst step, we regroup the terms in Eq. (4). The volume integrals are denoted
by

a(u, φ) := νf (∇v,∇ψ)Ω + ((v · ∇)v, ψ)Ω − (p,∇ · ψ)Ω + (∇ · v, ξ)Ω ,

with u(v, p), and the boundary integrals are denoted by c

c(u, ψ) := −ν〈∂nv, ψ〉Γ + 〈pn, ψ〉Γ.
1However, this approach also covers the transient case.

3



With this notation, the stationary2 the NSE, where the Dirichlet BC has not been imposed yet, reads as

a(u, φ) + c(u, ψ) = (f, ψ)Ω ∀ φ. (5)

Using the Nitsche Method implies adding penalty terms and terms that maintain the skew-symmetry of the
Stokes operator [5, 6] in Eq. (5). The skew symmetric counter term ĉ of c has the following form:

ĉ(v, φ) := −νf 〈∂nψ,v〉Γ − 〈ξn,v〉Γ.

Further, the penalty terms νf
γ1
h 〈v, ψ〉Γ + γ2

h 〈v · n, ψ · n〉Γ are also added to Eq. (5).
Collecting all the listed terms results in the Nitsche Method of the stationary3 NSE (5). We denote the

discrete velocity space by Vh and the pressure space by Zh. If the spaces Vh and Zh are chosen such that
the resulting discretization is not LBB stable [8], further stabilization terms are added to Eq. (5), as it is
the case in [5, 4]:

a(uh, φh) + c(uh, ψh) + ĉ(vh, φh) + νf
γ1

h
〈vh, ψh〉Γ +

γ2

h
〈vh · n, ψh · n〉Γ

= (f , ψh)Ω + ĉ(g, φh) + νf
γ1

h
〈g, ψh〉Γ +

γ2

h
〈g · n, ψh · n〉Γ ∀ φh ∈ Vh × Zh. (6)

In Eq. (6), h denotes the local mesh width on the boundary Γ, where the Dirichlet BC g is imposed on. γ1 and
γ2 are the penalty coe�cients, which for our applications we set as γ1 = γ2 = 102 − 103. The formulation of
Eq. (6) is consistent in the sense that the solution satis�es the variational problem. Furthermore, convergence
for h −→ 0 is also assured.

Equation (6) shows the generality of Nitsche's approach, since it does not restrict the chosen discrete
spaces Vh and Zh. Hence, a Nitsche formulation can be employed in a mesh-free context as well [9]. In this
paper, we focus on the mesh-based implementation of Eq. (6). We mentioned previously that Eq. (6) was
already employed by [5] and [6] in similar forms. In both works, the Nitsche Method was employed on a
boundary conforming mesh, where a Dirichlet BC could be imposed in a classical way. The novel approach
of our work [10, 4] is that we employ this method in an immersed boundary context illustrated in Fig. 1 and
for moving boundaries (Sect. 3).

Since the boundary is represented by a separate entity, the domains Ω and ΩF can be represented by
a memory and computationally e�cient mesh. For this reason, we chose adaptive Cartesian meshes in
2D and 3D. This type of mesh has also good parallel capabilities, which was proven in [1], but will remain
unexploited in this paper.

Figure 2: Illustration of a triangulated surface representing a sphere in 3D. (picture from [4])

In the following, we present step by step our approach and methodology to implement the Nitsche Method
in 2D and 3D. The �rst element is the boundary geometry representation, for which we use polygons in 2D
and triangulated surfaces in 3D. A triangulated surface representing a spherical surface is illustrated o
in Fig. 2. Such simplicial boundary objects are relatively easy to handle, especially for the computations of

2For the Nitsche Method the stationary and transient problems lead to the same terms.
3and also transient

4



intersection points, which play an important role in volume and boundary integrals for the Nitsche Method
in Eq. (6).

Such, the domains Ω and ΩF are de�ned by a polygon in 2D and triangulated surfaces in 3D. According to
Eq. (6), the only features required for the Nitsche Method are volume and boundary integrals. Considering
the �rst example in Fig. 1, all non-intersected cells can be treated in a classical way, since they are completely
in- or outside of the domain Ω. Therefore, only the intersected cells need to be treated in a special way
(called cut-cell method). One example of a polygon intersecting a cell is illustrated in Fig. 3 in 2D, where a
function f needs to be integrated on the Ω part of the cell or on the line segments of the polygon representing
Γ = ∂Ω.

Figure 3: One possible scenario of a polygon and cell intersection. It illustrates that a given function f needs
to be integrated on ∂Ω or in Ω. (picture from [4])

In the following, we consider the intersection of a cell E and the domain Ω similar to the illustration
on Fig. 3. Given a function f , the task is to compute

∫
E∩Ω

f dx and
∮
E∩Γ

f dc. Knowing that the underlying
geometry representation is a polygon in 2D, the domain E ∩Ω can be decomposed into elementary objects,
that can be integrate with up to machine precision. Fig. 4 shows three di�erent scenarios in 2D of cell-

Figure 4: Illustration of the decomposition of a cell in elementary geometrical objects. This decomposition
is given by the line segments of the polygon. In all three cases, the integrals in E ∩ Ω or in E ∩ ΩF can be
computed up to machine precision. (picture from [4])

geometry intersection, where in each case E ∩Ω or E ∩ΩF can be be decomposed in a set of triangles (Ti),
quads (Qi), and trapezoids (Tri). The same rule also applies to the boundary integral on E ∩ Γ, where a
given function for the cell E needs to be integrated on the line segments contained in the cell E.

The same decomposition of the boundary and the domain inside a cell E can also be applied in 3D. In
this case, the geometry is a triangulated surface that can intersect a brick cell in an arbitrary way. In 3D, to
compute the integrals

∫
E∩Ω

f dx and
∮
E∩Γ

f dc up to machine precision would imply much more complicated
algorithms than in 2D with polygons. Therefore, we only approximate the intersection surface by using the
intersection points on the edges of the brick. This approximation of the intersection of a brick cell and a
triangulated surface is shown in Fig. 5 for four possible scenarios. Fig. 5 shows only the intersection points4,
which are marked with blue circles. These intersection points give rise to the approximated intersection
surface which is also formed by triangles. The surface integral of

∮
E∩Γ

f dc is computed on this approximated

4Intersection between the edge of the brick cell and the triangulated surface

5



triangulated surface (T1, . . . , Tn), n = 3 : 6. Cases, where an edge is intersected more than once or where the
approximated intersection surface can not be built, can be eliminated by additional local mesh re�nement.
Therefore, in 3D, we do not consider these cases.

Figure 5: The intersection points on the edges form a convex, approximated, and triangulated surface within
a brick cell E. (picture from [4])

For the volume integral of
∫
E∩Ω

f(x) dx, we employ the same idea of elementary decomposition. We use
the presented approximated surface to build the decomposition of one brick cell into elementary objects. By
projecting this surface onto one of the faces of the brick cell, we obtain the aimed volume decomposition.
Fig. 6 illustrates the volume decomposition of the top left intersection case in Fig. 5 into elementary 3D cells
(two prism and one tetrahedron cells).

Figure 6: The illustration shows the decomposition of the top left case in Fig. 5 into elementary 3D cells.
The E ∩ Ω part of the brick is decomposed into one tetrahedron and two prism cells. (picture from [4])

In [10] and [4], we described the mathematical formulation of the concrete boundary and volume integrals,
which were implemented within the Sundance PDE toolbox [11]. For cases, where

∫
E∩Ω

1 dx�
∫
E∩ΩF

1 dx,
a potential singularity would be introduced by the volume integration, since the element matrix of such cells
would have nearly zero entries. In order to avoid such singularities, we also weight the ΩF domain in the

6



cut-cell integration. In this way, the integral on cell E has the following form:

α1

∫
E∩Ω

f dx+ α2

∫
E∩ΩF

f dx, (7)

where α1 = 1.0 but α2 ∈ [10−8; 10−5]. Using a non-zero α2 parameter assures that the entries of the element
matrix have at least a minimal size. Hence, the presented volume integrals on cells should not represent
a signi�cant source of singularity. For further details on the presented volume and boundary integrals, we
refer to [10, 4].

2.1 Numerical Benchmark Results

In our previous work [10], we computed a stationary 2D benchmark scenario, where we were able to match
the benchmark values speci�ed in [12]. To extend the presented approach for transient simulations is rather
simple. One only needs to add the time derivative (vf , ψ) to Eq. (6). The results of a transient 2D benchmark
scenario are presented in [4].

Here, we focus on a 3D stationary benchmark scenario (3D-1Z in [12]). In 3D, the generation of a boundary
conforming mesh is more costly than in 2D. Furthermore, the parallel partitioning of an unstructured mesh
becomes a signi�cant computational overhead. In contrast, our approach does not pose these problems5 even
in 3D computations. In our approach, most of the computational overhead is restricted to the treatment of
intersected cells, e.g. the computation of the volume and boundary integrals on these cells.

The 3D-1Z benchmark scenario is a 3D channel �ow. In the middle upwind part of the channel, a cylinder
obstacle is placed as illustrated in Fig. 7. In the upwind boundary of the channel, a velocity Dirichlet BC
drives the �ow in the channel. For further details on this benchmark scenario, we refer to [12].

Figure 7: The 3D-1Z [12] benchmark scenario.

The benchmark values in this case are the benchmark lift and drag coe�cients measured on the surface
of the cylinder (see Fig. 7). These values can be computed by a surface integral over the boundary Γ [12],

Fφ =

∮
Γ

φ · σf (u) · n dS(x), (8)

where σf (u) = 2νεf (v) − pI is the stress tensor, εf (v) = 1
2 (∇v + ∇v T ) is the strain tensor, and φ is a

unit vector pointing in force direction. We set φ = (1, 0, 0)T for the total drag force computation, whereas
φ = (0, 1, 0)T results in the lift force integration. For more details on the computation of the benchmark
values, we refer to [12].

In order to ful�ll the LBB condition [8], we choose the Q2 basis for the velocities and Q1 for the pressure.
The resulting Q2Q1 element in 3D requires 89 degrees of freedom for a brick element. Since this element type
also results in a larger bandwidth of the system matrix, we also tried pressure stabilized Petrov-Galerkin
(PSPG) Q1Q1 elements [13, 14]. Such a Q1Q1 PGPS element needs only 32 degrees of freedom for a brick

5due to the adaptive Cartesian mesh

7



element. Thus, computations can be done on meshes with higher resolution compared to higher order
elements.

In the following, we show the results of the 3D-Z1 benchmark scenario in Tab. 1 with Q2Q1 and Q1Q1

elements. With the PSPG Q1Q1 elements, we were able to achieve considerably higher spatial resolution,
than with the LBB-stable Q2Q1 elements. The limiting factor for the Q2Q1 is not just the total number of
unknowns in the system, but also the resulting system matrix that becomes more dense and requires more
storage.

Q1Q1, γ1 = γ2 = 102 Drag Lift #Cells
40× 13× 13, l = 1 6.100 0.021 18916
20× 7× 7, l = 2 5.810 0.077 25764
22× 8× 8, l = 2 6.053 0.071 32783

Benchmark intervals [12] 6.05 - 6.25 0.008-0.01
Q2Q1, γ1 = γ2 = 5 · 102 Drag Lift #Cells

25× 10× 10, l = 1 5.539 -0.107 2502
27× 11× 11, l = 1 6.000 0.078 7624
26× 12× 12, l = 1 6.021 0.432 9113

Benchmark intervals [12] 6.05 - 6.25 0.008-0.01

Table 1: Results of the 3D-1Z benchmark computations. The columns Drag and Lift represent the two
coe�cients computed by the surface integrals. The �rst table contains the PSPG Q1Q1 elements' results,
whereas the lower table shows the results of the Q2Q1 element. Besides the initial spatial resolution in
the �rst column, l represents the number of additional re�nement iterations around the obstacle. (results
from [4])

The measured coe�cients in Tab. 1 with increasing spacial resolution show that the drag coe�cients with
the PSPG Q1Q1 elements match the benchmark interval. The lift coe�cients with the same element type
miss the reference interval only slightly.

With the Q2Q1 elements, we were able to compute only 9113 elements. But even though, the measured
drag coe�cient di�ers from the lower bound of the reference interval only at the third digit. On the other
hand, the lift coe�cient has the same sign as the benchmark value, but the error is larger in comparison
to the previous results. The poor result in the lift values might be due to the low mesh resolution at the
obstacle. The results in Tab. 1 demonstrate that the developed volume and boundary integrals on intersected
cells in 3D applied to the Nitsche Method perform well and were capable to compute benchmark values for
the Navier-Stokes equations.

The implementation of this computation was done in the Sundance PDE toolbox [11]. Part of the code
is presented in [4].

3 Moving Boundaries with the Nitsche Method

In this section, we extend the presented Nitsche Method also for moving boundaries in the �uid. Since
we are not employing a space-time discretization, we focus on the obstacle move between two consecutive
snapshots at t1 and t2. The movement of the boundary between these two snapshots is discrete, and from
the perspective of time step t2 it is seen as a jump. Therefore, the imposition of the Dirichlet velocity BCs6

and the treatment of the boundary jump require a special approach. Furthermore, we are using a �xed mesh
approach, where the mesh stays �xed for the whole simulation.

To illustrate this issue, we consider the illustration in Fig. 9, where we present the position of a circular
obstacle in the �ow at two discrete times, t1 and t2. The problem lies in the fact that at time t2 the domain
Ω and ΩF has changed, and for the time discretization needed vt1 might not be de�ned on the whole of Ωt2 .
In Fig. 7, we consider the domain ΩF1 \ΩF2 at time step t2. This domain was previously (at time t1) part of
the �ctitious domain, and, accordingly, the velocities vt1 might be set in an unphysical way. Furthermore,

6These velocities correspond to the velocity of the boundary.

8



the domain ΩF2 \ ΩF1 disappears from the computational domain at time t1 and might cause the violation
of the continuity equation (Eq. (2)) in the newly intersected cells.

Figure 8: Illustration of the moving boundary issue at two di�erent snapshots t1 and t2. ΩF1 and ΩF2

represent the �ctitious domain at the two di�erent time stamps. The computational domain Ω is also
changing during this time step (picture from [4]).

Our solution to these problems is presented next. This approach is based on a �xed mesh that minimizes
these e�ects impacting the solution of the transient NSE, as we impose the Dirichlet BC consistently with the
Nitsche Method of Eq. (6). The �rst component of our approach is to use a fully implicit time discretization.
Since the velocities vt1 on ΩF1 \ ΩF2 are not de�ned, we want to limit the impact of these values. Using a

fully implicit time discretization implies that vt1 will only appear in the discretization of the
dv

dt
term7 in

the momentum equation (Eq. (1)).
The second component of our approach is to limit the values of vt1 on ΩF1 \ΩF2 to avoid large extreme

values on the �ctitious domain. In order to achieve this, we solve a weakly weighted Poisson equation on
ΩF at each time step (β∆v = 0 on ΩF ). The weight β is usually set to 10−6, similar to the value of α2

in Eq. (7). First, this equation assures that the system matrix is solvable, since on each compute cell there
must be an equation de�ned. Second, it assures that the values near the boundary will not take extreme
values compared to the Dirichlet values.

Additionally, we also assume that the discrete move of the boundary is relatively small compared to the
mesh width. This further assures that the velocity values at the new position of the boundary will have
values close to the Dirichlet value, and that the 'unde�ned' velocities vt1 will have a limited e�ect in the
momentum equation.

In the following, we condense all the mentioned ideas into one formula that we use for the moving
boundaries with the Nitsche Method. Based on the location of the point x ∈ Rd in the mesh, we have the
following two equations:(

vh,t2 − vh,t1
∆t

, ψh

)
+ a(uh,t2 , φh) + c(uh,t2 , ψh) + ĉ(vh,t2 , φh) + νf

γ1

h
〈vh,t2 , ψh〉Γ +

γ2

h
〈vh,t2 · n, ψh · n〉Γ

= (f , ψh)Ω + ĉ(gt2 , φh) + νf
γ1

h
〈gt2 , ψh〉Γ +

γ2

h
〈gt2 · n, ψh · n〉Γ ∀ φh ∈ Vh × Zh , if x ∈ Ω

β (∇uh,t2 ,∇φh) = 0 φh ∈ Vh × Zh , if x ∈ ΩF . (9)

In Eq. (9), we denote the unknowns at time t2 by uh,t2 . Since the Dirichlet BCs g might be also time variant,
we denote the actual BC by gt2 .

In the following sections, we use the presented approach for the moving boundaries in �uid structure
interaction (FSI) simulations. In FSI computations, it is crucial that the Dirichlet boundary is imposed con-
sistently such that the resulting forces are also consistent and produce the correct structural deformations.

7in the weak form

(
vt2 − vt1

∆t

)
ψ

9



4 Fluid Structure Interaction with the Nitsche Method

In this section, we brie�y describe our FSI approach, which, according to our knowledge is a novel approach.
We use the Nitsche Method on the �uid side as presented in Sect. 3, to impose the Dirichlet BC on the
moving boundaries, whereas on the structure side we impose the Neumann BC in a classical way. It is
crucial that on the �uid side the BCs on the moving boundaries are imposed in a consistent way, such that
the correct coupling stress8 vectors are computed. The numerical results in Section 5 verify our approach.

The structure equation is naturally set-up in the Lagrangian framework, where the boundary of the
structure relative to the mesh stays �xed, and the displacement of the material point is de�ned by the
displacement on the same point. In this work, we focus only on the �uid �ow, modeled by the incompressible
NS equations and set-up in the Eulerian framework. Hence, we do not present here the equations of the
elastic structure. For a detailed description of the elastic body model and its solver we refer to [15, 4]. We
consider the structure equation as a black box solver, that requires the stress vector ts on the boundary as
input. The resulting quantities after a given time step ∆t are the displacement us and the velocity vs vectors
(see Fig. 9). us de�nes the new position of the boundary ΓE . ΓE denotes the boundary in the Eulerian
framework that corresponds to the �uid's boundary. ΓL denotes the structure's boundary in the Lagrangian
framework that stays �xed by de�nition. Using this notation, the new position of the boundary is given by
ΓE = {x+ us | x ∈ ΓL}.

Figure 9: Coupling of the interface quantities (displacement, velocity, and stress) between the structure
domain Ωs and the �uid domain Ωf . The illustration is made in the Eulerian framework (�uid side). (uf , p)
denotes the state of the �uid, whereas (us,vs) denotes the transient state of the structure (picture from [4]).

The structure's velocity vs is the Dirichlet BCs for the �uid. The stress vectors on the �uid side are
computed by σf · nf = ts, where σf was already used and de�ned in Eq. (8). By Summarizing all these
aspects of the coupling, we can derive the following equations on the coupling interface ΓE :

vf = vs,

σf · nf = ts,

ΓE := {x+ us | x ∈ ΓL}. (10)

We already mentioned that the structure and �uid problems are set-up in two di�erent frameworks and are
also solved by separate solvers.9 This approach of solving an FSI problem is called partitioned solving. In
contrast to the monolithic solving, the partitioned approach solves the two problems completely separately
and then couples the interface quantities. Oroginally, the interface quantities where coupled only once at the
discrete time steps that is called as explicit coupling. However, this type of partitioned coupling proves to
be unstable for scenarios with given properties [16, 17], such as the density ratio of the �uid and structure
and the sti�ness of the structure. In these category of scenarios fall the transient benchmark scenarios in
2D that we compute here. Therefore, in each time step an inner iteration loop is required, that ensures
the convergence of the coupled quantities at each time step. This approach is called implicit partitioned
coupling. For this inner iteration we employ the Aitken method that was �rst used for FSI in [18].

In the stationary case, the partitioned coupling approach is signi�cantly simpli�ed. Then, by default,
vf = vs = 0 holds on the boundary, and therefore only the last two equations from Eq. (10) hold. For the

8or force
9for a given time step ∆t

10



partitioned coupling, only one iteration loop needs to be done, until the remaining two coupling quantities
converge. For further details on FSI coupling approaches, we refer to [16, 19, 2].

5 FSI Results

In this section, we compute various FSI scenarios in order to verify our Nitsche approach of imposing the
Dirichlet BCs on moving and �xed boundaries in the �uid. The 2D FSI benchmark scenarios from this section
are described in [15]. Unfortunately, there are no similar validated benchmark scenarios in 3D. Therefore,
we set up one stationary 3D FSI scenario, which is described in more detail in [4]. For more details on the
scenario setups and on these computations, we refer to [4, 15].

5.1 Stationary FSI

We start with the 2D stationary benchmark that is called FSI1 [15]. The elastic structure is placed into
the �uid channel, where a parabolic in�ow BC drives the �ow. The obstacle is formed by a rigid cylinder
and by an elastic bar that is attached to the downwind part of the cylinder as shown in Fig. 10. Since
this obstacle is not placed symmetrically into this channel, a small positive lift coe�cient is measured. The
structure and the �uid equations are solved separately, and as we described in Section 2, we impose the zero
velocity BC with the Nitsche Method. With a constant underrelaxation factor (see [4]), we iterate until the
displacement update of the boundary is below a given value ε = 10−7. The benchmark values in all cases are
the displacements at the middle point of the elastic bar's right tip. Beside the displacements, the benchmark
drag and lift forces are also measured.

Figure 10: Illustration of the FSI1 and FSI3 [15] scenario con�gurations (picture from [4]).

We compute the FSI1 scenario with increasing mesh resolution. The results are shown in Tab. 2. The
columns of Ax and Ay show the X and the Y displacements at the measuring point. Furthermore, Fl is
the number of Q2Q1 �uid elements, whereas Sr is the number of elements in the structure's mesh. Beside
these two quantities, the number of polygon points also plays a role in the spatial resolution of the problem
that is denoted by Poly. One can observe that with increasing spatial resolution the measured displacement

#Fl × #Sr × #Poly Ax Ay Drag Lift
2601× 3380× 136 1.86e-5 0.00123 14.0779 0.820194

36666× 13370× 1093 2.21e-5 0.000703 14.1982 0.810081
54104× 13370× 1093 2.18e-5 0.000846 14.2236 0.793047
Benchmark values [15] 2.27e-5 0.000821 14.295 0.7638

Table 2: Stationary FSI1 results. The spatial resolution of the �uid, structure, and polygon (#Fl × #Sr
× #Poly) is speci�ed by the number of elements. Ax and Ay represent the displacements at the reference
point, whereas Drag and Lift represent the drag and lift forces computed on the boundary of the structure.

and forces are converging to the benchmark values in [15]. It is important to note that even with relatively

11



low resolution (�rst row of Tab. 2) the measured displacements and forces are quantitatively accurate and
the relative error for all four is less that 50%. This also shows the true potential of the Nitsche Method for
immersed boundaries.

In the next step, we consider a stationary 3D FSI scenario that is not a benchmarks scenario and is
presented in Fig. 11. The �ow channel in Fig. 11 has a size of 2.5 × 0.41 × 0.41. The �uid has a density
of 103 kg

m3 , similar to the previous FSI1 2D scenario and its parabolic in�ow velocity10 is 0.45ms . All other
parameters from this scenario correspond to the previous FSI1 scenario [15]. In this channel, the elastic
obstacle is a vertical bar, characterized by the Young modulus of E = 0.4 · 106 kg

ms2 and the Poisson ratio of
νs = 0.4. This structure object has a size of 0.05×0.25×0.1 and is placed at the position of (0.45, 0.0, 0.125)
into the �ow channel. As illustrated in Fig. 11, we use an initial 3D mesh resolution for the �uid and further
re�ne the cells around the obstacle. For spatial discretization, we use the PSPG Q1Q1 elements, which we
already employed successfully for the 3D-1Z scenario [12]. This scenario is also described in more details
in [4].

Figure 11: Illustration of the stationary 3D FSI scenario setup (picture from [4]).

We use the same stationary coupling algorithm. The coupling surface has 620 triangles. On the elastic
bar, at the Lagrangian position of (0.475, 0.25, 0.175) that represents the midpoint of the top face of the bar,
we measure the displacement vector of (1.1667e− 2,−4.2293e− 4, 6.619e− 3). As we expected, the most
dominant displacement is in the x-direction. However, due to the non-central position of the elastic bar,
there is also a signi�cant displacement in z-direction. This scenario further demonstrates the usability of our
approach in 3D.

5.2 Transient FSI

As a �nal example, we consider the transient 2D FSI3 benchmark scenario from [15]. This is also the only
2D transient benchmark scenario that is considered in the review paper of [17]. The scenario setup is the
same as for FSI1, except that the in�ow velocity is increased, such that an oscillation of the elastic bar is
produced. For a detailed description of the scenario and the model parameters, we refer to [15]. In this
scenario, we employ the approach for the moving boundaries presented in Section 3 and prove its usability
for FSI simulations.

This scenario with partitioned coupling requires implicit coupling, which makes the simulation of this
scenario particularlyy expensive.11 Therefore, we compute this scenario with lower resolution than the

10in average
11The simulation time is about 6 seconds, whereas the discrete time step was 0.001 second. Additionally, in average 13

12



stationary FSI1 scenario. The resulting time-dependent displacements and forces are shown in Tab. 3.
Since the position of the reference point (Ax,Ay) is time-dependent, we measure the average value and the
amplitude of the oscillation. The time-dependent behavior of the system is represented by the frequency of the
oscillation. The computed displacements especially in the y-direction match the benchmark values from [15].

#Fl×#Sr×#Poly Ax Ay Drag Lift

2507 × 864 × 136
-0.02866

±0.02857[11.1]
-0.00111

±0.03301[5.5]
524.5

±23.5[11.1]
56.50

±214.50[5.5]

5133 × 864 × 136
-0.00288

±0.00282[11.4]
0.00166

±0.03452[5.7]
532

±25[11.4]
-1.5

±229.50[5.7]

Benchmark [15]
-0.00269

±0.00253[10.9]
0.00148

±0.03438[5.3]
457.3

±22.66[10.9]
2.2

±149.78[5.3]

Table 3: Results of the transient FSI3 scenario. The o�set, the amplitude, and the frequency are measured
for each of the four benchmark quantities.

This amplitude in y-direction is the main characteristic measure of this benchmark. The displacements in
x-direction are also near the benchmark value. The lift and drag forces show a larger deviation compared to
the values in [15], but even in these cases the relative error is between 10−50%. We show the time dependent
drag and lift forces on Fig. 12. Especially in the drag force plot, we observe a high frequency noise, that
is due to our �xed mesh approach. However, these distortions are not signi�cant in their amplitude and
duration and they do not in�uence the results in a signi�cant way. In the frequency domain, the relative
error of the measured frequency is less than10%. By summarizing all these results, we can conclude that
using the presented approach for moving boundaries we were able to reproduce the benchmark values of a
transient FSI scenario. Therefore, we veri�ed our approach for FSI applications. We illustrate again the
moving boundaries on �xed meshes on Fig. 13, where we show two di�erent snapshot of the �xed mesh and
with the structure mapped into the �uid domain. The arrows on the boundary represent the stress vectors
acting on the surface of the structure. For further details on the computed results, we refer to [4].

Figure 12: The time-dependent lift and drag forces of the FSI3 simulation (picture from [4]).

6 Summary and Future Work

In this paper, we presented the Nitsche Method for the Navier Stokes equations to impose Dirichlet BCs
on immersed boundaries. In such a context, the boundary is represented explicitly by an separate entity.

implicit iterations were required for one implicit time step.

13



Figure 13: Two di�erent snapshots of the FSI3 scenario. The structure is mapped into the �uid mesh. The
arrows on the structure's boundary show the acting stress vectors.

We used polygons in 2D and triangular surfaces in 3D. Besides the Nitsche formulation of the equations, we
implemented special cut-cell and boundary integrals for the intersected cells. Furthermore, we extended our
approach for moving boundary scenarios, which allow us to compute transient FSI scenarios. This approach
has major advantages in comparison to the unstructured mesh approach. First, we can use a storage-e�cient
and easy to decompose Cartesian meshes. Second, the mesh stays �xed during the simulation and no mesh
operations are required. We computed various scenarios in 2D and 3D that verify our approach for �xed
and moving boundaries. For more details on our approach and on the computed scenarios, we refer to [4].

On the other hand, we did not exploited some of the advantages of our approach such as the parallel
capabilities of the adaptive Cartesian mesh. All the computations were done within the Sundance PDE
toolbox [11], that uses external linear algebra solvers. As a future work, it also remains to develope or �nd
a suitable preconditioner and iterative solver, which solve the resulting system matrix12 with a high parallel
e�ciency. Such parallel solvers with Cartesian meshes could reduce the parallel computing time especially
in 3D.

References

[1] C. Burstedde, L.C. Wilcox, and O. Ghattas. p4est: Scalable algorithms for parallel adaptive mesh
re�nement on forests of octrees. SIAM Journal on Scienti�c Computing, 33(3):1103�1133, 2011.

[2] H.-J. Bungartz, J. Benk, B. Gatzhammer, M. Mehl, and T. Neckel. Fluid-Structure Interaction �

Modelling, Simulation, Optimisation, Part II, volume 73 of LNCSE, chapter Partitioned Simulation of
Fluid-Structure Interaction on Cartesian Grids, pages 255�284. Springer, Berlin, Heidelberg, October
2010.

[3] R. Mittal and G. Iaccarino. Immersed boundary methods. Annual Review of Fluid Mechanics, 37(1):239�
261, 2005.

[4] J. Benk. Immersed Boundary Methods within a PDE Toolbox on Distributed Memory Systems. Disser-
tation (submitted), Technische Universität München, 2012.

[5] R. Becker. Mesh adaptation for Dirichlet �ow control via Nitsche's method. Communications in Nu-

merical Methods in Engineering, 18(9):669�680, 2002.
[6] P. Hansbo and M. Juntunen. Weakly imposed dirichlet boundary conditions for the brinkman model of

porous media �ow. Applied Numerical Mathematics, 59(9):1274�1289, 2009.
[7] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräu-

men, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar

der Universität Hamburg, 36:9�15, 1971.
[8] P. M. Gresho, R. L. Sani, and M. S. Engelman. Incompressible Flow and the Finite Element Method.

John Wiley & Sons, 1998.

12matrix that results from the Nitsche formulation

14



[9] A. Huerta, T. Belytschko, T. Fernandez-Mendez, and T. Rabczuk. Meshfree Methods. vol. 1 of Ency-
clopedia of Computational Mechanics ch. 10, pp. 279-309. Wiley, 2004.

[10] J. Benk, M. Mehl, and M. Ulbrich. Sundance pde solvers on cartesian �xed grids in complex and
variable geometries. In Proceedinggs of the ECCOMAS Thematic Conference CFD & Optimization,

Antlya, Turkey, May 23-25, 2011, 2011.
[11] K. Long. Sundance Website. [http://www.math.ttu.edu/ klong/Sundance/html/index.html], 2007.
[12] M. Schäfer and S. Turek. Benchmark computations of laminar �ow around a cylinder. In Flow simulation

with high-performance computers. Bd. 2., volume 52 of Notes on numerical �uid mechanics, pages 547�
566. Vieweg, Braunschweig, January 1996.

[13] T. E. Tezduyar and Y. Osawa. Finite element stabilization parameters computed from element matrices
and vectors. Computer Methods in Applied Mechanics and Engineering, 190(31):411�430, 2000.

[14] T.J.R. Hughes, G. Scovazzi, and L.P. Franca. Multiscale and Stabilized Methods. in Encyclopedia of
Computational Mechanics , eds. E. Stein, R. De Borst, T. J. R. Hughes. Wiley, 2004.

[15] J. Hron and S. Turek. Proposal for numerical benchmarking of �uid-structure interaction between elastic
object and laminar incompressible �ow. In H.-J. Bungartz and M. Schäfer, editors, Fluid-Structure
Interaction, number 53 in Lecture Notes in Computational Science and Engineering, pages 371�385.
Springer-Verlag, 2006.

[16] J. Degroote. Development of algorithms for the partitioned simulation of strongly coupled �uid-structure

interaction problems. Dissertation, Ghent University. Faculty of Engineering, 2010.
[17] S. Turek, J. Hron, M. Razzaq, H. Wobker, and M. Schäfer. Numerical Benchmarking of Fluid-Structure

Interaction: A Comparison of Di�erent Discretization and Solution Approaches, volume 73 of Lecture
Notes in Computational Science and Engineering, chapter 15, pages 413�424. Springer Berlin Heidelberg,
2010.

[18] U. Kuettler and W.A. Wall. Fixed-point �uid-structure interaction solvers with dynamic relaxation. In
Computational Mechanics. Springer, 2008.

[19] A. Gerstenberger. An XFEM based �xed-grid approach to �uid-structure interaction. Dissertation,
Technische Universität München, 2010.

15


