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1 Introduction
In kinetic theory of gases, the Boltzmann equation has been widely used to describe various transport
phenomena in classical rarefied gas covering wide range of flow parameters such as Reynolds number, Mach
number and Knudsen number. The Chapman-Enskog expansion method is usually applied to the Boltzmann
equation to derive closed set hydrodynamic transport equations that apply to a broad range of flow regimes,
see [1]. In analogy to the classical Boltzmann equation, a semiclassical Boltzmann equation, which generalizes
the collision term in order to treat the collision of particles of quantum statistics, has been developed; For
detail, readers may refer to [2, 3]. Hydrodynamic behaviour of quantum gases has been the subject of some
prominent researches, see [4, 5, 6], and the application of quantum Boltzmann hydrodynamic equations have
been implemented in the analysis of electron flows in quantum semiconductor devices, such as in the works of
[7, 8, 9]. In recent years, due to the rapid advancements of microtechnology and nanotechnology, the device
or structure characteristic length scales become comparable to the mean free path and the wavelength of
energy and information carriers (mainly electrons, photons, phonons, and molecules), some of the classical
continuum transport laws are no longer applicable. It is generally believed that the microscopic description of
Boltzmann equation (classical and semiclassical) is adequate to treat transport phenomena in the mesoscale
range. Different types of carriers may involve simultaneously in a single problem, therefore, it is desirable
to have a method that can allow one to treat them in a unified and parallel manner. Indeed, this is the
view advocated in micro- and nano-scale energy transport by Chen [10]. With the semiclassical Boltzmann
equation, it is possible to describe adequately the mesoscale transport of particles of arbitrary statistics.

The principal difficulty encountered in solving semiclassical Boltzmann equation as derived by Uehling
and Uhlenbeck is the same as that encountered in the classical counterpart and is mainly due to the com-
plicated integral nature of its collision term. The relaxation time approximation proposed by Bhatnagar,
Gross and Krook (BGK) [11] for the classical Boltzmann equation provides a much simpler form of collision
term and retains the principal effects of particle collisions and enables more tractable solution methods.
The BGK relaxation time concept is rather general and can be applicable to the semiclassical Boltzmann
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equation as well. The only change is that the equilibrium Maxwell-Boltzmann distribution in the classical
case is replaced by the Bose-Einstein or Fermi-Dirac distribution depending on the types of carrier particles.
The semiclassical Boltzmann-BGK equation has been widely applied for electron carrier transport in semi-
conductor, see [12], [13], [14], [15], [16], [17], [18], [19], [20] and phonon energy transport in thermoelectric
materials [10]. Similarly, the solution methodology developed for classical Boltzmann-BGK equation can be
applied to the semiclassical Boltzmann-BGK equation in phase space. In this work, we aim at developing an
accurate direct solver for the semiclassical Boltzmann-BGK equation in phase space that can treat particles
of three statistics on equal foot and in a parallel manner. Such a method will allow one to examine the same
physical flow problems but with different gas of particles. It is noted that even when solving the problems
for the classical Maxwell-Boltzmann statistics, the present formulation allows the analysis of fugacity which
has not been included in the original Boltzmann-BGK equation [11] nor in most of other existing works
based on it. First, depending on the carrier particles, the discrete ordinate method is used to discretize the
velocity (or momentum or wave number) space in the semiclassical Boltzmann-BGK equation into a set of
equations for the discrete distribution functions which are continuous in physical space with source terms
[21]. Second, the resulting equations can be treated as scalar hyperbolic conservation law with stiff source
term whose evolution in space and time can be modeled by existing shock-capturing schemes such as total
variation diminishing (TVD) schemes [22] and weighted essentially non-oscillatory (WENO) schemes [23],
both of which are adopted in this paper to describe the evolution of these equations.

This paper is organized as follow: Elements of semiclassical Boltzmann-BGK equation is briefly described
in Section 2. Its correlation with hydrodynamic equations is outlined. In Section 3, we describe the use of
discrete ordinate method to discretize the particle distribution function into a set of hyperbolic conservation
laws with source terms. In section 4 we present the description of explicit and implicit time integration
formula in capturing the evolution of discretized distribution function equations. In Section 5, numerical
experiments of two-dimensional semiclassical gas dynamical flows are presented to illustrate the present
algorithm. Finally, concluding remarks will be given in section 6.

2 Semiclassical Boltzmann - BGK Equation
In this section, we delineate the elements of semiclassical Boltzman-BGK equation which we expect to tackle
in the present work. Following the works of [2], we consider the extension of the Boltzmann equation to
quantum systems due to Uehling and Uhlenbeck in which they took the Pauli exclusion principle into account.

It should be emphasized here that, parallel to classical Boltzmann equation, one can extend the classical to
semiclassical formulation. The semiclassical Boltzmann equation (also called Uehling-Uhlenbeck Boltzmann
equation) is used to describe the flow for fermions and bosons. The main difference between semiclassical
Boltzmann equation and classical Boltzmann equation is the derivation of collision term (right hand side of
Boltzmann equation). The collision term is described by time-dependent perturbation theory in quantum
mechanics. This generalization is necessary when considering degenerate gases. Since the left hand side of
semiclassical Boltzmann equation are the same as classical one, we do not need to repeat it again.

As stated above, the major and only difference between semiclassical Boltzmann equation and classical
Boltzmann equation is the collision term. In the classical one, collision term is derived based on classical
mechanics [24] while it is derived by quantum scattering theory in the semiclassical one [25]. The collision
term for semiclassical Boltzmann equation is described below.(

∂f

∂t
+

p

m
· ∇x −∇U(x, t) · ∇p

)
f (p,x, t) =

(
δf

δt

)
coll.

(1)

where m is the particle mass, U is the mean field potential and f(p,x, t) is the distribution function which
represents the average density of particles with momentum p at the space-time point x, t. The (δf/δt)coll.
denotes the collision term and according to Uehling and Uhlenbeck, it takes the form,

(
δf

δt
)UUcoll. =

∫
dp

∫
dΩK(p,q,Ω){[1 + θf(p, t)][1 + θf(q)]f(p∗, t)f(q∗, t)

−[1 + θf(p∗, t)][1 + θf(q∗)]f(p, t)f(q, t)}, (2)
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where K(p,q,Ω) denotes the collision kernel and Ω is the solid angle and θ is a parameter which specifies
the type of particle statistics. Here, for θ = +1, Bose-Einstein particles are considered, for θ = −1, Fermi-
Dirac particles, and for θ = 0, the Maxwell-Boltzmann classical particles are considered. According to the
Boltzmann’s H-theorem and conservation conditions, the collision integral of the semiclassical Boltzmann
equation will automatically vanish when the distribution functions are in equilibrium and the equilibrium
distribution function for general statistics can be expressed as

f eq (p,x, t) =
1

z−1 exp
{

[p−mu(x, t)]
2
/2mkBT (x, t)

}
+ θ

(3)

where u(x, t) is the mean velocity, T (x, t) is temperature, kB is the Boltzmann constant and z (x, t) =
exp (µ(x, t)/kBT (x, t)) is the fugacity, where µ is the chemical potential. In (3), θ = −1 denotes the Fermi-
Dirac statistics, θ = +1, the Bose-Einstein statistics and θ = 0 denotes the Maxwell-Boltzmann statistics.
We note that even with the case of θ = 0, we still have chemical potential µ or fugacity z which is rather
different from the usual classical Maxwellian distribution.

One of the main functions of the particlle collision term is to drive the gas distribution function f back
to equilibrium state f eq corresponding to the local values of number density, momentum density and energy
density n, nu and ε. The collision theory assumes that during a time dt, a fraction of dt/τ of molecules in
a given small volume undergoes collision, where τ is the average time interval between successive particle
collisions for the same particle. The collision term in the BGK model alters the velocity-distribution function
from f to f eq. This is equivalent to assuming that the rate of changes df/dt of f due to collisions is
−(f − f eq)/τ . Hence, in this dissertation, to avoid the mathematical difficulty caused by the nonlinear
integral collision term , the relaxation time concept of Bhatnagar, Gross and Krook is generally applied to
replace the collision term of Uehling and Uhlenbeck. Thus the semiclassical Boltzmann-BGK equation reads(

∂f

∂t
+

p

m
· ∇x −∇U(x, t) · ∇p

)
f (p,x, t) =

(
δf

δt

)BGK

coll.
= − f − f eq

τ
(4)

Here, τ is the relaxation time and needs to be specified for each carrier scattering.The model shares the
same form with classical BGK equation, but the equilibrium distribution is the semiclassical distribution
instead. Hence the system will relax to semiclassical equilibrium distribution instead of classical Maxwellian.
Furthermore, in this dissertation, the model is specified as semiclassical Boltzmann-BGK model (SB-BGK)
to avoid the ambiguity to classical BGK model. Although the effect of collision is simplified in SB-BGK
model, it still retains the main character of collision once the relaxation time is correctly modeled. The
collision term in either classical BGK or SB-BGK model should preserve the conservation property.

2.1 Semiclassical Hydrodynamic Equations
Analogous to the classical Boltzmann equation, the Chapman-Enskog procedure has been generalized to
obtain the expressions for the transport coefficients such as shear viscosity and thermal conductivity in
the hydrodynamic equations. The semiclassical hydrodynamic equations are obtained by taking moments
to the semiclassical Boltzmann equation. Theses conservation laws have the same form as their classical
counterparts. However, to close the moment expansion at the three moments for hydrodynamics, one must
define the other higher moments in terms of the particle number density, momentum density and energy
density. The hydrodynamic conservation laws are obtained by multiplying semiclassical Boltzmann equation
by 1, , The macroscopic dynamic variables of interest such as number density, momentum density and energy
density are low order moments of the distribution function and are defined by:

n (x, t) =

∫
dp

h3
f (p,x, t) , (5)

j (x, t) =

∫
dp

h3

p

m
f (p,x, t) = n(x, t)u(x, t), (6)

ε (x, t) =

∫
dp

h3

p2

2m
f (p,x, t) . (7)
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where h is Planck’s constant. Other higher-order moments such as stress tensor Pij and the heat flux vector
Φi(x, t) can also be defined accordingly as

Pij(x, t) =

∫
dp

h3
(
pi
m
− ui)(

pj
m
− uj) f (p,x, t), (8)

Φi(x, t) =

∫
dp

h3

(p−mu)2

2m
(
pi
m
− ui) f (p,x, t). (9)

The conservation laws of macroscopic properties can be obtained by multiplying Eq. (1) respectively
by 1, p and p2/2m and integrating the resulting equations over all p. Consequently, the integrals of
the collision terms in all three cases vanish automatically resulting in the conservation laws in the form
of differential equations for the conserved macroscopic quantities i.e., number density n(x, t), momentum
density mnu(x, t), and energy density ε(x, t) as follow:

∂n (x, t)

∂t
+ ∇x · j (x, t) = 0, (10)

∂mj (x, t)

∂t
+ ∇x ·

∫
dp

h3
p

p

m
f (p,x, t) = −n(x, t)∇xU(x, t), (11)

∂ε (x, t)

∂t
+ ∇x ·

∫
dp

h3

p

m

p2

2m
f (p,x, t) = −j(x, t) · ∇xU(x, t). (12)

Derivations of the semiclassical Euler and Navier-Stokes equations from the Boltzmann-BGK equation
can be obtained from the zeroth order and first order solutions via the Chapman and Enskog expansion [1].
Also, the transport coefficients such as the viscosity η and the thermal conductivity κ can be derived in
terms of the relaxation time as

η = τnkBT
Q5/2(z)

Q3/2(z)
(13)

and

κ = τ
5kB
2m

nkBT [
7

2

Q7/2(z)

Q3/2(z)
− 5

2

Q5/2(z)

Q3/2(z)
] (14)

where Qν(z) is the Fermi or Bose function of order ν. For similar results derived from the linearized
semiclassical Boltzmann equation, see [4]. Here the case of two space dimensions is assumed. The relaxation
times for various scattering mechanisms of different carrier transport in semiconductor devices including
electrons, holes, phonons and others have been proposed [15].

In this work, we will also consider the case of semiclassical Euler limit in which the particle distribution
function is always in equilibrium, i.e., f = f eq and the collision term of Eq. (1) vanishes automatically. In
the later section, we will present the comparison of our results with those of the semiclassical Euler solutions.
In recent years, notable numerical methods to describe the ideal quantum gas flows have been developed,
see [26, 27, 28].

Before we proceed, without losing generality, we neglect the influence of externally applied field U(x, t).
To illustrate the present method, we formulate the equilibrium distribution in two spatial dimension as

the following,

f eq (px, py, x, y, t) =
1

z−1 exp ((px −mux)2 + (py −muy)2)/(2mkBT (x, y, t)) + θ
. (15)

In a closed form in terms of quantum functions, we replace the distribution function f with f eq which
automatically reduces the source term in the BGK Boltzmann equation to zero. The macroscopic moments,
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i.e., number density n(x, y, t), momentum j(x, y, t) and energy density ε(x, y, t) are given by

n(x, y, t) =

∫ ∫
dpx dpy
h2

f eq(px, py, x, y, t)

=
Q1(z)

λ

2

(16)

jx(x, y, t) =

∫ ∫
dpx dpy
h2

px
m
f eq(px, py, x, y, t)

= n(x, y, t)ux(x, y, t) (17)

jy(x, y, t) =

∫ ∫
dpx dpy
h2

py
m
f eq(px, py, x, y, t)

= n(x, y, t)uy(x, y, t) (18)

ε(x, y, t) =

∫ ∫
dpx dpy
h2

px
2 + py

2

2m
f eq(px, py, x, y, t)

=
Q2(z)

βλ2
+

1

2
mn(ux

2 + uy
2)

=
P (x, y, t)

(γ + 1)
+

1

2
mn(ux

2 + uy
2) (19)

where λ =
√

βh2

2πm is the thermal wavelength, P is pressure and β = 1/kBT (x, y, t). The functions Qν(z) of
order ν are respectively defined for Fermi-Dirac and Bose-Einstein statistics as

Fν(z) ≡ 1

Γ(ν)

∫ ∞
0

dx
xν−1

z−1ex + 1
≈
∞∑
l=1

(−1)l−1 z
l

lν
(20)

Bν(z) ≡ 1

Γ(ν)

∫ ∞
0

dx
xν−1

z−1ex − 1
≈
∞∑
l=1

zl

lν
(21)

Here, Fν(z) applies for Fermi-Dirac integral and Bν(z) for Bose-Einstein’s, whereas Γ(ν) is gamma function.
Further details of the numerical application of these functions can be found in the Appendix B. The definition
of macroscopic quantities in terms of Fermi or Bose function applies for both cases of quantum distributions.
One only needs to replace Fermi function with Bose function or vice versa whilst maintaining the same
procedure. In one-spatial dimension, the distribution function for the three statistics can be expressed as

f eq (px, x, t) =
1

z−1 exp
{

[px −mux]
2
/2mkBT (x, t)

}
+ θ

(22)

and the hydrodynamic moments are to be obtained respectively through

n(x, t) =

∫
dpx
h
f eq(px, x, t) =

Q1/2(z)

λ
(23)

j(x, t) =

∫
dpx
h

px
m
f eq(px, x, t) = n(x, t)ux(x, t) (24)

ε(x, t) =

∫
dpx
h

px
2

2m
f eq(px, x, t) =

Q3/2(z)

2βλ
+

1

2
mnu2

x (25)
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The higher order moments can be similarly calculated, whereas pressure P can be deduced as

P (x, t) = nkBT (x, t)
Q5/2(z)

Q3/2(z)
(26)

2.2 Classical limit
Note that for z � 1, both Qν(z) functions for all ν behave like z itself, i.e., Qν(z) ≈ z. Physically, a large
and negative value of chemical potential of a dilute system and high temperature environment do correspond
to small z. On the other hand, we know that at the low temperature, the Fermi-Dirac case displays its
most distinctive property in terms of one particle per one energy level mapping. We may intuitively say
that the hydrodynamic properties of classical case can be acquired by replacing the Qν(z) function into z
itself. In summary, when z approaches zero, the semiclassical distribution function will coincide with its
classical counterpart. Another physical explanation is that the length of particle’s dimension is larger than
the particle’s de Broglie wavelength. The wave property would thus be unimportant. When z is considerably
large, two length scales become comparable and one cannot omit the semiclassical effect anymore. One may
think of fugacity as the index of the degree of degeneracy. The fugacity has some restrictions in two different
semiclassical distributions. In the case of Boson, z should not exceed 1 because of the non-negative density,
and in the case of Fermion, there are no such restriction on z. Mathematically, we can obtain the classical
hydrodynamic properties by applying the same procedure to the Maxwell-Boltzmann statistics as done to
the other quantum statistics.

For θ = 0, the distribution function becomes

fMB (px, py, x, y, t) =
1

{z−1 exp {[(px −mux)2 + (py −muy)2] /2mkBT}}
. (27)

In this case, no approximation for Qν(z) is required and the macroscopic values for two spatial dimensions
can be obtained by

nc(x, y, t) =

∫ ∫
dpx dpy
h2

fMB(px, py, x, y, t) =
z

λ2
. (28)

In other words, in the classical limit,

z(x, y, t) = eµ(x,y,t)/kBT (x,y,t) = λ2 nc(x, y, t), (29)
µ(x, y, t) = kBT (x, y, t) ln(λ2 nc(x, y, t)). (30)

In the later section, we shall see the numerical examples that compare Fermi and Bose gas to the classical
limit.

2.3 Normalization
Before proceeding to discretize the equation, in this section we introduce the characteristic properties of V∞
and t∞ for the purpose of normalization. The characteristic velocity and time can be defined as,

V∞ =

√
2kBT∞
m

, t∞ =
L

V∞
, (31)

with L defined as the characteristic length of the problem. Hence the definitions of non-dimensional variables
are introduced as

(t̂, τ̂) = (t, τ)/t∞, (ûx, υ̂x) = (ux, υx)/V∞, x̂ = x/L, T̂ = T/T∞

(ûy, υ̂y) = (uy, υy)/V∞, ŷ = y/L, n̂ = n/
(
m2V 2

∞
h2

)
ĵ = j/

(
m2V 3

∞
h2

)
, ε̂ = ε/

(
m3V 4

∞
h2

)
, f̂ = f. (32)
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Hence the normalized semiclassical Boltzmann-BGK equation,

∂f̂(υ̂x, υ̂y, x̂, ŷ, t̂)

∂t̂
+ υ̂x

∂f̂(υ̂x, υ̂y, x̂, ŷ, t̂)

∂x̂
+ υ̂y

∂f̂(υ̂x, υ̂y, x̂, ŷ, t̂)

∂ŷ
= − f̂ − f̂

eq

τ̂
(33)

with υ̂x and υ̂y as particle velocities. Neglecting the hat sign, the normalized two-dimensional semiclassical
equilibrium distribution function becomes

f eq (vx, vy, x, y, t) =
1

z−1 exp ((vx − ux)2 + (vy − uy)2)/T + θ
(34)

Before the application of discrete ordinate method is described, we shall explain the evolution of the particle
distribution function in time. One of the advantages of using BGK model is that it can be solved analytically
by following the characteristic line, see [29].

3 Discrete Ordinate Method
In this section, the implementation of discrete ordinate method is explained. examples of previous usages of
discrete ordinate method on Boltzmann equation is given. Lastly, the methodology of its application is laid
down. As applied by Huang and Giddens [30] and Shizgal [31] to the linearized Boltzmann-BGK equation,
the discrete ordinate method represents functions by a set of discrete points that coincide with the evaluation
points in a quadrature rule. The method replaces the original functional dependency on the integral variable
by a set of functions with N elements of Wif(xi) with i = 1, . . . , N . The points xi are quadrature points
and Wi are the corresponding weights of the integration rule∫ b

a

W (x)f(x)dx =

N∑
i=1

Wif(xi). (35)

The interval [a, b] will be either [0,∞] or [−∞,∞] depending on considered application. Different weighting
function W (x) is addressed accordingly. The xi are the roots of the Nth-order polynomial Rn(x) of the set
that satisfy, ∫ b

a

W (x)Rn(x)Ri(x)dx = δin (36)

where the set polynomials Rn(x), orthonormal with respect to the weight functionW (x) on the interval [a, b],
form a complete basis of the L2[a, b] Hilbert space. The first N of these polynomials form a subspace of this
Hilbert space which is isomorphic with the RN Euclidian space. It may be shown from the treatment of the
integral over the interval [a, b] with the quadrature rule equation 35 that the discrete ordinate representation
is equivalent to the truncated polynomial representation of the Nth-order.

It is shown from [32] that, in general, the velocity distribution function f for states removed from
equilibrium is proportional to exp(−c2) just as it is for equilibrium, that f has finite bounds under the specific
precision in the velocity space and tends to zero as c tends to infinity (Here c represents the magnitude of
the thermal (peculiar) velocity of the molecule, that is c = υ−u). That is, the integration of the normalized
distribution function over all velocity space should yield unity, and the probability of the molecular velocities
far removed from the mean velocity u of the flow is always negligible. Thus, in order to replace the continuous
dependency of the molecular velocity distribution technique can be introduced to discretize the finite velocity
region removed from u. Consequently, the numerical integration of the macroscopic flow moments of the
distribution function f over the velocity space can be adequately performed by the same quadrature rule,
with f evaluated at only a few discrete velocity points. The selections of the velocity points and the range
of the velocity space in the discrete ordinate method are somewhat dependent on the related problems.

Additionally, this method is beneficial given the fact that in the end, we are not just interested in the
distribution function per se but in the macroscopic moments and the evaluations of the macroscopic moments.
In regard to classical gas dynamics, the discrete ordinate method has been applied to the classical nonlinear
model Boltzmann equations for rarefied flow computations [21].
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Although in this paper, a full-range Gauss-Hermite quadrature is utilized, in terms of the symmetric qual-
ity of the exponential function exp−υ2 over the interval −∞,∞, the Gauss-Hermite half-range quadratures
can be extended to evaluate the infinite integral of the velocity distribution function over all the velocity
space. The discrete velocity ordinate points and the weights corresponding to Gauss-Hermite quadrature
can be obtained using the algorithms described by Huang and Giddens, and Shizgal.

The Gauss-Hermite quadrature rule over the interval [−∞,∞] reads,

∫ ∞
−∞

exp(−υx2)f(υx)dυx ≈
N̄∑
σ=1

Wσ f(υσ) (37)

or ∫ ∞
−∞

exp(−υx2)[exp(υx
2)f(υx)]dυx ≈

N̄∑
σ=1

Wσ exp(υσ
2) f(υσ) (38)

The discrete points υα and weight Wα, with α = σ, δ, are tabulated in the table of the Gauss-Hermite
quadrature, see [33] and can be found through

Wσ =
2N̄−1N̄ !

√
π

N̄2[HN̄−1(υσ)]2
(39)

with l is number of quadrature points and where υσ are the roots of the Hermite polynomial HN̄ (υ). It is
known that when calculating the Hermite polynomial this way, the number of the discrete velocity points is
limited, as it is very difficult exactly to solve high-order Hermite polynomial.

One of the advantages of using the modified Gauss-Hermite quadrature formula is its relatively high
accuracy, but for high freestream temperature or Mach number flows, the number of discrete velocity grid
points needed to cover the appropriate velocity range could become quite large. To simulate hypersonic flows,
the composite integration method based on equally spaced Newton-Cotes formulas which can be developed
by setting the polynomial in the discrete ordinate method as a quadratic interpolating polynomial and the
Gauss-Legendre numerical quadrature rule whose integral nodes are determined by using the roots of the
kth Legendre polynomials have been applied to this study.

3.1 Application of Discrete Ordinate Method
In two dimensional space, the Gauss-Hermite quadrature rule reads∫ ∞

−∞

∫ ∞
−∞

e−υx
2

e−υy
2

f(υx, υy)dυx dυy ≈
N1∑

σ=−N1

N2∑
δ=−N2

WσWδ fσ,δ (40)

or ∫ ∞
−∞

∫ ∞
−∞

e−υx
2

e−υy
2

[eυx
2

eυy
2

f(υx, υy)dυx dυy] ≈
N1∑

σ=−N1

N2∑
δ=−N2

WσWδ e
υσ

2

eυδ
2

fσ,δ (41)

By applying the discrete ordinate method to the equation (33), the distribution function in phase space
f(υx, υy, x, y, t) can be rendered into a set of hyperbolic conservation equation with source terms for fσ,δ(x, y, t)
in the physical space, where σ = −N1, . . . ,−1, 1, . . . , N1 and δ = −N2, . . . ,−1, 1, . . . , N2. The resulting equa-
tions are a set of

∂fσ,δ(x, y, t)

∂t
+ υσ

∂fσ,δ(x, y, t)

∂x
+ υδ

∂fσ,δ(x, y, t)

∂y
= − fσ,δ − fσ,δeq

τ
(42)

with fσ,δ, υσ and υδ represent the values of respectively f , υx and υy evaluated at the discrete velocity points
σ and δ.

Once the discrete velocity distribution functions fσ,δ are solved, the macroscopic flow moments at any
time in each point of the physical space can be obtained and updated by the appropriate discrete velocity

8



quadrature method as describe in the following:

n(x, y, t) =

∫ ∞
−∞

[f(υx, υy, x, y, t)e
υx

2

eυy
2

]e−υx
2

e−υy
2

dυxdυy

=

N1∑
σ=−N1

N2∑
δ=−N2

WσWδ e
υσ

2

eυδ
2

fσ,δ (43)

jx(x, y, t) =

∫ ∞
−∞

[υx f(υx, υy, x, y, t)e
υx

2

eυy
2

]e−υx
2

e−υy
2

dυxdυy

=

N1∑
σ=−N1

N2∑
δ=−N2

υσWσWδ e
υσ

2

eυδ
2

fσ,δ

= n(x, y, t)ux(x, y, t) (44)

jy(x, y, t) =

∫ ∞
−∞

[υy f(υx, υy, x, y, t)e
υx

2

eυy
2

]e−υx
2

e−υy
2

dυxdυy

=

N1∑
σ=−N1

N2∑
δ=−N2

υδWσWδ e
υσ

2

eυδ
2

fσ,δ

= n(x, y, t)uy(x, y, t) (45)

ε(x, y, t) =

∫ ∞
−∞

[
υ2
x + υ2

y

2
f(υx, υy, x, y, t)e

υx
2

eυy
2

]e−υx
2

e−υy
2

dυxdυy

=

N1∑
σ=−N1

N2∑
δ=−N2

(
υ2
σ + υ2

δ

2
)WσWδ e

υσ
2

eυδ
2

fσ,δ (46)

Pressure P (x, y, t) can be defined as

P (x, y, t) = [ε(x, y, t)− 1

2
n(x, y, t)(u2

x + u2
y)](γ − 1) (47)

The value of relaxation time is given by
τ = η/P (48)

Of course, for one dimensional case, the macroscopic quantities can be obtained similarly e.g., the density
can be calculated as

n(x, t) =

∫ ∞
−∞

[f(υx, x, t)e
υx

2

]e−υx
2

dυx

≈
N̄∑
σ=1

Wσ [fσ e
υσ

2

] (49)

which can be analogously defined for the composite Boole’s rule as a class of Newton-Cotes quadratures, for

9



example

n(x, t) =

∫ ∞
−∞

f(υx, x, t)dυx

≈ h

N̄∑
σ=1

Hσfσ(x, t). (50)

Here, we note that the basic criteria of choosing different quadratures is to guarantee that the macroscopic
moments can be accurately computed which requiring the accurate representation of the distribution function
with suitable velocity range being covered. The equally spaced Newton-Cotes formula can also be used if
one needs to cover the high energy tail of the distribution function.

4 Numerical Method
On Cartesian grid, the explicit and implicit methods of the current work is developed. This section of the
paper will elaborate the application of both methods. To begin, we firstly discretize the space x, y and time
t into a number of cells centered at i, j at time n, hence we approximate fσ,δ by fσ,δni,j . First, In terms of
numerical fluxes and in explicit first order accurate in time and fully discrete form, the evolution from nth

time level to (n+ 1)th time level is expressed by

fσ,δ
n+1
i,j = fσ,δ

n
i,j −

∆t

∆x

(
FNi+1/2,j − F

N
i−1/2,j

)
− ∆t

∆y

(
GNi,j+1/2 −G

N
i,j−1/2

)
+

∆t

τ

(
feqσ,δ

n

i,j
− fσ,δni,j

)
(51)

From this point further description of the numerical flux FNi+1/2,j can be given according to specific numerical
methods.

4.1 Implementation of WENO
The representation of numerical fluxes in Eqs. 51 according to WENO schemes is given as follows

FNi+1/2,j = F+
i+1/2,j + F−i+1/2,j , G

N
i,j+1/2 = G+

i,j+1/2 +G−i,j+1/2 (52)

where the split flux vectors are defined by

F+
i,j = υ+

σ fσ,δi,j , F−i,j = υ−σ fσ,δi,j

G+
i,j = υ+

δ fσ,δi,j , G−i,j = υ−δ fσ,δi,j (53)

Here, υ±σ = (υσ ± |υσ|)/2 and υ±δ = (υδ ± |υδ|)/2. Numerical fluxes for the positive part are expressed as

F+
i+1/2,j = ω+

0

(
2

6
F+
i−2,j −

7

6
F+
i−1,j +

11

6
F+
i,j

)
+ ω+

1

(
−1

6
F+
i−1,j +

5

6
F+
i,j +

2

6
F+
i+1,j

)
+ ω+

2

(
2

6
F+
i,j +

5

6
F+
i+1,j −

1

6
F+
i+2,j

)
(54)

ω+
k =

α+
k

α+
0 + α+

1 + α+
2

, k = 0, 1, 2 (55)
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α+
0 =

1

10(ε+ IS+
0 )2

, α+
1 =

6

10(ε+ IS+
1 )2

, α+
2 =

3

10(ε+ IS+
2 )2

(56)

IS+
0 =

13

12

(
F+
i−2,j − 2F+

i−1,j + F+
i,j

)2
+

1

4

(
F+
i−2,j − 4F+

i−1,j + 3F+
i,j

)2
IS+

1 =
13

12

(
F+
i−1,j − 2F+

i,j + F+
i+1,j

)2
+

1

4

(
F+
i−1,j − F

+
i+1,j

)2
IS+

2 =
13

12

(
F+
i,j − 2F+

i+1,j + F+
i+2,j

)2
+

1

4

(
3F+

i,j − 4F+
i+1,j + F+

i+2,j

)2 (57)

Whereas the numerical flux for the negative part is given by

F−i+1/2,j = ω−0

(
−1

6
F−i−1,j +

5

6
F−i,j +

2

6
F−i+1,j

)
+ ω−1

(
2

6
F−i,j +

5

6
F−i+1,j −

1

6
F−i+2,j

)
+ ω−2

(
11

6
F−i+1,j −

7

6
F−i+2,j +

2

6
F−i+3,j

)
(58)

ω−k =
α−k

α−0 + α−1 + α−2
, k = 0, 1, 2 (59)

α−0 =
3

10(ε+ IS−0 )2
, α−1 =

6

10(ε+ IS−1 )2
, α−2 =

1

10(ε+ IS−2 )2
(60)

IS−0 =
13

12

(
F−i−1,j − 2F−i,j + F−i+1,j

)2
+

1

4

(
F−i−1,j − 4F−i,j + 3F−i+1,j

)2
IS−1 =

13

12

(
F−i,j − 2F−i+1,j + F−i+2,j

)2
+

1

4

(
F−i,j − F

−
i+2,j

)2
IS−2 =

13

12

(
F−i+1,j − 2F−i+2,j + F−i+3,j

)2
+

1

4

(
3F−i+1,j − 4F−i+2,j + F−i+3,j

)2 (61)

The expression of G+
i,j+1/2 and G−i,j+1/2 for y direction can be derived in a similar fashion.

4.2 Implementation of TVD
For comparison purpose, we also implement a second-order TVD scheme [22]. TVD scheme with particularly
Van Leer’s limiter [34] is utilized in this work. The scheme is of second-order accurate and aside for the pur-
pose of comparison, the inclusion of TVD scheme is to appeal to CFD practitioners with less computational
resources. TVD scheme requires different and rather simpler treatment of boundary condition. Although its
spatial accuracy is not as high as that of WENO, second-order accurate numerical schemes may be adequate
for engineers who use this method in more practical implementations and who seek quicker results without
emphasizing much on excellent accuracy. In other words, it may serve as a reliable substitute which demands
less computational power and memory.

Using the same expression as Eq. (51), we can also define the numerical fluxes for a TVD scheme given
by

FNi+1/2,j = FL(fσ,δi,j , fσ,δi+1,j) + φ(θxi+1/2,j)[FH(fσ,δi,j , fσ,δi+1,j)

− FL(fσ,δi,j , fσ,δi+1,j)] (62)
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where FL(fσ,δi,j , fσ,δi+1,j) are the low order upwind flux given by

FL(fσ,δi,j , fσ,δi+1,j) = υ+
σ fσ,δi,j + υ−σ fσ,δi+1,j , (63)

with the high order Lax-Wendroff scheme given by

FH(fσ,δi,j , fσ,δi+1,j) = (υ+
σ fσ,δi,j + υ−σ fσ,δi+1,j)

+
1

2
|υσ| (1−

∆t

∆x
|υσ|)(fσ,δi+1,j − fσ,δi,j). (64)

Here, υ±σ = (υσ ± |υσ|)/2 and similarly, υ±δ = (υδ ± |υδ|)/2; whereas for the limiter function φ(θxi+1/2,j),
Van Leer’s limiter is chosen and is given by

φ(θxi+1/2,j) =
(|θxi+1/2,j |+ θxi+1/2,j)

1 + |θxi+1/2,j |

θxi+1/2,j =
fσ,δ

n
i′+1,j − fσ,δ

n
i′,j

fσ,δ
n
i+1,j − fσ,δ

n
i,j

, i′ = i− sgn
(
υσ

∆t

∆x

)
. (65)

The application of WENO and TVD which are respectively fifth and second order accurate entails differing
treatment of boundary condition considering the nature of these schemes’ stencils. The inclusion of these two
methods is not intended to subordinate any of these schemes, instead interested readers can choose between
these two methods in accordance to the computational resources available.

In order to solve steady state gas flow problems, one usually resort to implicit methods instead of explcit
methods. This is due to the fact that explicit method entails the Courant-Friedrich-Lewy condition which
limit the time-step rather strictly. The CFL condition requires that the region of dependence of the difference
scheme must at least include the region of dependence of the differential equation.

Implicit schemes theoretically lift all the restrictions on numerical time-step due to convection term, hence
enable faster convergence rate. Along the developments of implicit schemes, approximate factorizations are
commonly embedded with the schemes.

The application of Euler implicit time differencing formula on the current method is reported. More
sophisticated higher order accurate (in time) implicit formulas are subject to future endeavor. Here, the
emphasis is simply to test the new algorithm on implicit time integration framework.

In this section the implicit numerical algorithm to solve Eq. (42) is delineated. The LU factorization [35]
is utilized. Using the Euler implicit time-differencing formula, Eq. (42) can be written as

[I + ∆t(Dxυσ +Dyυδ + S)]∆fσ,δ
(n+1)
i,j = RHSni,j (66)

where ∆fσ,δ
(n+1)
i,j = fσ,δ

(n+1)
i,j − fσ,δ(n)

i,j , I is the unit matrix, S =
∂(fσ,δ−feqσ,δ/τ)

∂fσ,δ
. The time step ∆t is chosen

to be less than the local relaxation time, τ . RHSni,j is defined as

RHSni,j = −∆t

(
υσ

∂fσ,δ
∂x

+ υδ
∂fσ,δ
∂y

+
fσ,δ − fσ,δeq

τ

)n
i,j

(67)

Applying the lower-upper factorization method to Eq. (66) we achieve

[I + ∆t(L+ U + S)]∆fσ,δ
(n+1)
i,j = RHSni,j (68)

where

L = D−x υ
+
σ +D−y υ

+
δ , U = D+

x υ
−
σ +D+

y υ
−
δ

RHSni,j = −∆t

∆x

(
FNi+1/2,j − F

N
i−1/2,j

)
− ∆t

∆y

(
GNi,j+1/2 −G

N
i,j−1/2

)
+

∆t

τ

(
feqσ,δ

n

i,j
− fσ,δni,j

)
(69)
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Here, D− and D+ denote the backward and forward difference operators respectively. Although in theory,
implicit method is utilized such that the chosen time-step can be larger, the fact that the linearization is done
in terms of first order accurate backward and forward difference method, eventually limits the time-step. We
chose the first-order linearization because TVD or WENO schemes are highly non-linear and it would take
a huge computational resource to do so. Hence, the discrepancy between the spatial discretization and its
Jacobian’s order of accuracy contributes to the limitation of time-step [36]. υ±σ,δ = (υσ,δ ± |υσ,δ|)/2, whereas
F and G are the numerical fluxes which will be described in the following section.

The approximate LU factorization can be given as

[E + ∆tL]E−1[E + ∆tU ]∆fσ,δ
(n+1)
i,j = RHSni,j , E = I + ∆tS (70)

which can be sequentially solved by:

[E + ∆tL]∆fσ,δ
∗
i,j = RHSni,j , (71)

[E + ∆tU ]∆fσ,δ
(n+1)
i,j = ∆fσ,δ

∗
i,j , (72)

and lastly,
fσ,δ

(n+1)
i,j = fσ,δ

(n)
i,j + ∆fσ,δ

(n+1)
i,j , (73)

The approximation factorization error of Eq. 70 can be calculated as

ELU = ∆t2LE−1U∆fσ,δ
n+1
i,j (74)

which can be shown to produce the least amount of error among several possible factorizations, particularly
when the norms of the source terms are large [37].

5 Computational Experiments
In this section, several computational experiments are done to demonstrate the ability of the developed
solver. Both transient and steady state problems are considered. A range of relaxation times and Knudsen
numbers are tested to illustrate flows in near continuum and transitional regimes. Firstly, we define the
Knudsen number based on the relation Kn = λ∞/L which indicates the degree of rarefaction of the gas flow.
Here, the relaxation time will vary with Kn number according to τ = 5

√
πKn

8nT (1−χ)

Q1(z)
Q2(z) , where χ = 1.

A. Numerical simulations on transient problems
In this example, we would like to illustrate the ability of the method in dealing with complex flow field
which usually emerges from shock interactions. In this example, WENO is utilized for solving internal flow
problems. A square cylinder is placed as an obstacle inside a 2-D narrow duct/channel.

We consider an incident moving shock wave which is located in front and to the left of a square cylinder
initially and start to move to the right and impinge upon the square cylinder and encounter the complex
shock diffraction processes. The initial condition at state 1(ahead of moving shock) and state 2(behind the
moving shock) for the incident shock wave shall obey the Rankine-Hugoniot condition i.e.,

P2

P1
=

2γM2
s − (γ − 1)

γ + 1
(75)

n2

n1
=
G(P2/P1) + 1

G+ (P2/P1)
(76)

u2 = Ms

[
1− (γ − 1)M2

s + 2

(γ + 1)M2
s

]
c1, (77)

where G = (γ + 1)/(γ − 1), Ms is the incident shock Mach number and c = (γP/n)
1/2 is the local sound

speed. For two dimensional case, we utilize γ = 2.
The boundary condition needs to relate the distribution function of the incoming particle fI and that of

the outgoing particle from the wall fO. When the specularly reflecting wall is considered, it is assumed that
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a particle does not exchange energy with the wall; the wall is adiabatic and no shear stress acting on the
wall. Hence, the outgoing distribution function fO would follow analogously from the incoming distribution
function with accordingly transformed normal velocities fI(−υn) i.e.,

fO = fI(−υn, ~x, t), υn ≥ 0 (78)

where υn = ~υ · ~n and ~n is the outward unit normal to the stationary solid surface.
Here, ∆x = ∆y = 0.0307 are used with 20 × 20 Gauss-Hermite quadrature points. Physically, we set

Ms = 2.0 and the initial condition for the Fermi-Dirac gas at rest ahead of shock are set as (n1, ux1, uy1, P1) =
(0.1497, 0, 0, 0.038) which correspond to z1 = 0.1 and T1 = 0.5, whereas the condition before the shock are
set as (n2, ux2, uy2, P2) = (0.2994, 0.7125, 0, 0.192) which correspond to z2 = 0.078. The relaxation time is
set as τ = 0.0001 which corresponds to Kn = 0.000105. In Fig. 1 the important macroscopic quantities like
density, pressure, temperature and fugacity are depicted in good detail which then highlights the high-order
accuracy of WENO scheme.

In Fig. 1(a) we can see the density contour in which, the accelerated shock is already disturbed by
the incoming shock reflected by the channel wall. The decelerated shock here is accompanied by a few
diverging acoustics which come in sequences. These acoustic waves form part of eccentric circles, each of
which are connected to decelerated shock at its end, resembling a sound source moving with a sonic speed
in a quiescent flow medium. The other ends of the circular waves decay quickly near the far boundary,
justifying their name diverging acoustics firstly coined by Chang and Chang [38]. The decelarated shock,
on the other hand, penetrates the vortex core to develop a transmitted shock. As decelerated shock moves
counterclockwise during its expansion, so does the transmitted shock. Here, one can see transmitted shocks
connected from the upper and lower vortices already to form a full-fledged transmitted shock. The complexity
of the flow field is increased when the reflected shock wave by the channel wall penetrate the front slip layer
which develops another accelerated shock.

In the front of the wall, complex shock, slipstream, and square cylinder wall interaction develop another
weaker reflected shock, as well at the tail of the square cylinder. Small terminator actually occurs during
this simulation since the incoming shock wave is of relatively strong Mach i.e., Ms = 2.0. Note that this
simulation includes a small value of relaxation time which then contributes viscosity to the flow. Hence, one
shall not expect an inviscid-like details as what would be exhibited from solving Euler limit solution.

In Fig. 1(d) the fugacity contour is given. Note that for Maxwell-Boltzmann gas we can also give the
analysis of fugacity and chemical potential if desired which is not the case when other contemporary classical
gas schemes are considered.

B. Numerical simulations on steady state problems
For solving steady state problems, CFD practicioners commonly resort to implicit scheme due to its ability
to relax the time-step limitation imposed by the usage of explicit schemes. Now we would like to demonstrate
the ability of the current scheme in solving the steady state problems. The problems chosen is a supersonic
flow of gases of arbitrary statistics over a square cylindrical obstacle.

For the first test, we condition the supersonic flow of Mach number M∞ = 2.0 of Fermi-Dirac gas at
n∞ = 0.2 and P∞ = 0.1 on Cartesian grids. This corresponds to fugacity z = 0.0668. The speed of sound
is determined as c = (γP/n)1/2, where the gas constant γ = 2 is taken. A flow near continuum regime
is conditioned as small relaxation time of τ = 0.0005 which corresponds to Kn = 0.000511 is considered.
Numerically, the problem is solved on Cartesian grid using 143 × 319 grid points. Second order accurate
TVD scheme is used along with the Van Leer’s limiter [22, 34].

In Fig. 2, the steady state profile of Fermi-Dirac gas is presented. The contours of density, pressure,
fugacity and Mach number are plotted. The flow structures including the bow shock, the stagnation region,
the near wake, recompression shock, and far wake regions are well captured. In this example, by setting a
small relaxation time, the freestream is in the near continuum flow regime and a recirculation zone is present
in the near wake region. The enlarged view of this region is well captured in Fig. 3. The history of L2

norm of residual is plotted. The residual lower than 10−7 is taken as our criteria of convergence and can be
achieved after approximately 4500 iterations.

In the second test, we consider the supersonic flow of Bose-Einstein gas with the same macroscopic
conditioning as used in the first test. Except for different application of relaxation times, other numerical
properties in the setup of the problem is the same with that of the first test. Here, we would like to test
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the current scheme’s ability in tackling big relaxation time which corresponds to the environment close to
transitional regime. In Figs. 4, the density contour of Bose-Einstein gas at τ = 0.1 (b) is compared to that
of the Euler limit solution (a) which can be achieved when the distribution function is assumed to be always
at equlibrium. The result of that of Euler limit gives much sharper flow structure compared to that with
big relaxation time.

At large relaxation time (and Knudsen number) the thickening of the front bow shock and no recompres-
sion shock above the near wake are noticeable differences in more rarefied cases of gas flows when compared
to the small relaxation time counterpart.

6 Concluding Remarks
In this work, the explicit and implicit time integration schemes for solving rarefied flow problems of gases
of arbitrary statistics based on semiclassical Boltzmann-BGK equation have been presented. Here, the
unsteady shock wave diffraction patterns by a square cylinder in gases of particles of arbitrary statistics and
a steady supersonic flow of gases of arbitrary statistics over a square cylindrical obstacle are computed by
using the accurate solver in phase space. A series of diffraction patterns of different flow properties at various
time instants are recorded for detailed flow fields analysis. The numerical method is a combination of the
discrete ordinate method and high order methods such as WENO and TVD. Different range of relaxation
times and Knudsen numbers covering continuum and rarefied flow regimes are computed. For comparison
purpose, the equilibrium limit solution, i.e., zero relaxation time and f = f eq everywhere, is also computed.
The effects of gas particles that obey the Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics are
examined and depicted. When the relaxation time and Knudsen values are small such that the flows are in
the continuum regime, all the expected flow features of gas dynamics comprising incident shocks, reflected
shocks, triple Mach shocks, slip lines and their roll-up to form vortices can be seen with considerably good
detail and are in good agreement with available experimental observations. Moreover, even for gases with
Maxwell-Boltzmann statistics, the present results are quite different from traditional classical results as the
fugacity or chemical potential is present. The capability in describing the gas flows of arbitrary particle
statistics in various flow regimes on equal footing have been illustrated without much major constraints. We
believe the present work is the first result that gas dynamical characteristics of three particle statistics in
an identical flow problem have been simultaneously exhibited. The present work emphasizes on building
the unified and parallel framework for treating semiclassical rarefied gas flows and specific application to
different individual carrier in specific physical problem can be separately pursued such as electrons transport
[14, 15] and phonon energy transport [39].
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Figure 1: (a) Density, (b) Pressure, (c) Temperature and (d) Fugacity contours of diffracted gas flow in a
channel
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Figure 2: Supersonic flow of M∞ = 2.0 depicting, a. Density, b. Pressure Contours, c. Fugacity and d.
Mach Contours of Fermi-Dirac Gas with τ = 0.0005, Kn = 0.000511 and M∞ = 2.0

Figure 3: (left) Streamline of Fermi-Dirac Gas near Continuum Regime with τ = 0.0005, Kn = 0.000511
and M∞ = 2.0 . (right) History of Residual Versus Iteration
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Figure 4: (a) Density contour of Bose-Einstein gas at Euler limit upon Convergence, (b) Density contour of
Bose-Einstein gas with τ = 0.1 (Kn = 0.112) at M∞ = 2.0

20


