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Abstract: The functional box plot is generalized to provide a holistic view of the 
four dimensional space-time field data resulting from unsteady Computational 
Fluid Dynamics simulations. It displays the variation of five common statistics - 
minimum, first-quartile, median, third-quartile, and maximum – projected onto the 
three-dimensional spatial sub-space. Visual analysis using the generalized box plot 
is demonstrated for the unsteady flows past a swept cylinder and a wind turbine. 
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1     Introduction 
 

The application of computational fluid dynamics (CFD) in the design process has increased 

dramatically over the last decade. This is due, in large part, to the relentless and continuing growth of 

computer performance. In some cases the enhanced computer power is used to perform high-

resolution CFD calculations to analyze the details of complicated unsteady flow fields around 

complex configurations. In other cases it is used to create a virtual wind-tunnel where hundreds or 

thousands of lower resolution CFD computations are performed to estimate the aerodynamic 

properties of a prospective configuration throughout its operating envelope. The design-space 

defining the operating envelope is highly dimensional – it has many factors, or parameters, that define 

the operating conditions and configurations used for each run. The primary product of these 

parametric studies is not the details of the flow-field but a performance database of CFD meta-data, 

like force and moment coefficients. With this database, an engineer may analyze the performance and 

fluid-dynamic characteristics of the machine, or evaluate control system designs. However, to 

discover the root cause of anomalies in the meta-data and to better design fixes for undesirable flow 

behavior, the detailed flow-field must still be analyzed in many cases. This paper presents a new 

technique, the generalized box-plot, for dimensional reduction to provide a more holistic visual 

analysis of unsteady flow-field data in the highly-dimensional design space. 

The components of the design space vary with the goal of the parametric analysis. For an aircraft, 

it will typically include the five standard flight parameters: α, β, M, Re, and Pr (or T). It will also 

generally include some configuration parameters, but the nature of these will vary with the goal of the 

parametric study. For example, if the analysis is focused on flight dynamics, stability and control, or 

G&C, the configuration parameters might be control-surface deflection angles. In this case the 

aerodynamic database may eventually be combined with a six degree-of-freedom analysis to evaluate 

the flight characteristics and/or G&C system for the vehicle or design. If the analysis if focusing on 
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high-lift configurations, it may include flap angles or landing gear position. Alternately, if the focus is 

on configuration design tradeoffs or optimization, the configurations parameters might be definitions 

of the wing shape. Finally, there are a host of CFD-analysis related parameters that have nothing to do 

with flight conditions or vehicle configuration. These may include grid refinement levels utilized in a 

grid resolution study, analysis fidelity (Euler, RANS, LES, etc.), turbulence models, CFD code used, 

date of analysis, etc. All of these parameters are inputs into the CFD analysis and, therefore, 

independent variables in the aerodynamic database and each adds a dimension to the parameter space. 

As a result, the number of dimensions in the parameter space can be very large. 

Non-aircraft applications have a similar set of parameters. The flow conditions for a wind turbine 

may have wind speed, angle, and velocity profile (it is embedded in atmospheric boundary layer) 

while the configuration parameters may include blade pitch angle and rotation rate. Scalar output 

dependent variables would include forces and moments on the blades, which would be used in further 

analysis of the wind-turbine performance. Wind turbines, and other rotating machinery, have 

inherently unsteady periodic flow-fields that complicate the field-data analysis.  

In a previous paper[1], the authors discussed the application of the generalized box-plot to 

dimensional reduction in the analysis of CFD meta-data. In this paper, we present an extension of the 

generalized function box plot for the visualization of four-dimensional unsteady data (x, y, z, t), in a 

static three-dimensional data (x, y, z) image (or static images based on subsets of this data). This 

greatly simplifies the analysis of parametric studies of unsteady flow-fields.      

The visual analysis of high-dimensional spaces is an active area of research. Ultimately, the data 

must be mapped to a two- or three-dimensional display in a way that is meaningful to the user. 

Standard CFD post-processing deals with three-dimensional data (x, y, z), which is intuitive to the 

human visual cognition system, or four-dimensional data (x, y, z, t), which is intuitive when animated. 

While animations are intuitive and effective in comparing local variations, it is difficult to visually 

synthesize global statistics from a long animation.  In contrast, there is nothing intuitive about five-

dimensional, or higher, spaces.  The challenge of highly-dimensional data visualization is providing 

an intuitive understanding of both the local details and global extents of the data in one image. 

Existing strategies range from arrays of simple histograms, which don’t display the dependency of the 

data on the independent variables, to complicated projection schemes and clustering algorithms. An 

example is the parallel-coordinate plot, which shows some of the relationships between variables, but 

is not typically used in the engineering world. Our strategy takes the functional box plot, a statistical 

technique used to visualized ensembles of one-dimensional functional results, and generalizes it to the 

projection of N-dimensional data statistics to one-, two-, or three-dimensional subspaces. In this 

paper, we focus on the application of the box plot to holistically summarize the unsteady properties of 

a flow field in a steady-state plot. 
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Figure 1.  Basic box plot symbol (from Wikipedia). 

 

The basic box plot symbol is shown in Figure 1. First developed by Tukey[2], it shows five 

descriptive statistics for a set of data values. The central line in the box is the median value, the lower 

and upper extent of the box is the 25th and 75th percentile values, and the ends of the lines above and 

below the box (also known as the whisker) are one set of several possible measures of the extent of 

the data. In some cases, these are the minimum and maximum values. In others, these are the 5th and 

95th percentile. Throughout this paper, we will utilize the minimum and maximum values in our 

generalized box plots. 

 

 
Figure 2.  Functional Box Plot example. 

 
A one-dimensional functional box plot is shown in Figure 2 (from reference 3). The functional 

box plot is an extension of the box plot concept to ensembles of one-dimensional functions. In this 

example, it was applied to measurements of height versus age of boys in France. The box plot is 

ultimately based on sorted data and the main difference between variants of the functional box plot is 

in how the data is sorted. In the simple case, the function is discretized, the results of the functions at 

the same value of the independent variable are sorted, and the values for the five statistics are used to 
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create the next segment of the lines for the five statistics. In other cases, the entire functions are sorted 

first.  

For N-dimensional data visualization, the generalized functional box plot shows the variation of 

the same five statistics (minimum, first quartile, median, third quartile, and maximum) within 

conventional one-, two-, or three-dimensional plots. When combined with the same data for specific 

subspaces (sets of one, two, or three independent variables), the generalized box plot displays both the 

local variation of and a holistic view of the N-dimensional data.  

 

2     Problem Statement 
 
The generalized box plot is constructed using the following steps: 

 

1. Of the N independent variables, �, define a subset, ��, that are the active independent 

variables which the user wishes to retain. In unsteady flow, this is generally the spatial 

variables x, y, and z, plus any other parameter if it is a set of unsteady solutions from a 

parametric analysis.  

2. Define the inactive subset of independent variables, ��, as those you wish to summarize using 

the box-plot statistics. For unsteady flows, this is generally time. 

3. For each point of ��, sort by the dependent variable � over all points in �� and define the 

minimum, first quartile, median, third quartile, and maximum values. 

4. On the plot in ��, display the line, surface, or isosurface of the five statistics along with local 

� data at a specific value of ��. 

 

This complexity of the algorithm is O(n log(n/k)), where n is the total number of points in parameter 

space and k is the number of points in the active subspace. 

Frequently the parametric data is not full factorial and must be resampled to an N-dimensional 

rectangular array before this algorithm is applied. The resampling is generally based on a kriging or 

response surface surrogate model for the variation of  � with �. This works well unless the parametric 

space is inherently non-rectangular. In this case, a more complex form of resampling is required.   
 
 

 

2.1     Results for Meta-Data Dimensional Reduction 
As a first example, we will demonstrate the box-plot for reducing the dimensionality of meta-data in 
an high-dimensional parametric space. The application of the box-plot for unsteady data is in section 
2.2.  

The generalized functional box plot has been tested on the meta-data from two collections of CFD 

meta-data: force and moment data from a parametric study of the BEES Flyer[1,4,5] and the force and 

moment data from the 2010 High Lift Prediction Workshop[1,6,7]. 

 

2.1.1     BEES Flyer Parametric Study 
The first example is an aerodynamic database for the bio-inspired engineering of exploration systems 
(BEES) flyer[5]. This system was envisioned as a small autonomous flying vehicle, with an adaptive 
control system mimicking those of biological systems, for the exploration of Mars. The geometry, 
show in figure 3, has a triangular planform with a set of vertical fins at the wing tips. It has a set of 
two elevons for pitch and roll control. 
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Figure 3. Prototype of BEES flyer geometry (cf. Ref. 4 for details) 

 

Murman, et. al.4 created a 5-dimensional aerodynamic database for this configuration using the 

CART3D Euler code. They used a full-factorial (5D rectangle) experimental design with the 

following parameters: 

 

Configuration Space:  

Parameter Values Number of 

values 

Left elevon 

deflection (δL) 

-10 deg to 20 deg. in 5 deg. increments 7 

Right elevon 

deflection (δR) 

-10 deg to 20 deg. in 5 deg. increments 7 

 

Flight Parameter Space:  

Parameter Values Number of 

values 

Mach Number (M) 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8 8 

Angle of Attack (α) -10 to 15 in 5 deg. increments 6 

Yaw Angle (β) 0 deg. And -10 deg. 2 

   

In total they solved the Euler equation for 4,704 discrete conditions. They visualized the field data 

results for M, α, and β held constant using an array of 49 (7x7) contour plots, and visualized surfaces 

of CL and CM versus both elevon deflections for M=0.6, α=5.0˚, and β = 0.0˚.  This visualization, 

with the addition of the coefficient of rolling moment, is duplicated in Figure 5. 
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Figure 4.  BEES Flyer Roll Control Analysis. 

 

The purpose of Figure 4 is to analyze the roll control of the BEES flyer during deflection of the 

elevons. Note that a directly proportional, asymmetrical, deflections (δL=-δR) of the elevons result in 

the desired rolling moment with little change in the lift or pitching moment. This is the desired 

behavior – no pitching generated or required during a rolling maneuver. Note however, that this 

conclusion is based on only 1% of the aerodynamic database. Does it behave similarly at other values 

of M, α, and β? 

Figure 5 shows a surface generalized box plot for rolling-moment coefficient. It displays five 

surfaces for minimum (purple), first quartile (blue), median (color flooded contours), third quartile 

(yellow), and maximum (pink) based on all of the data over the inactive variables (M, α, and β) for 

each combination of δL and δR. It also displays the original surface shown in Figure 5. There is a 

significant spread over the inactive variables, but the trends seem to hold over the entire dataset. To 

be sure it would be necessary to investigate further, perhaps using filters which alter the range of M, 

α, and β to interactively explore the impact on the surface box plot.   
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Figure 5. Generalized surface box plot for rolling moment coefficient of BEES flyer 

 

Figure 6 shows a surface box plot for the lift coefficient. As you might expect, lift coefficient is 

strongly influenced by one of the inactive variables, α, and the result is a large spread in the box plot 

statistics. While the data appears to have the desired trends, it would not be wise to base any design 

decisions on this plot alone. 

 

 
Figure 6. Generalized surface box plot for lift coefficient of BEES flyer 
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2.1.2     High Lift Prediction Workshop Forces and Moments 
 

 
Figure 7. Grid and computed flow properties for the NASA Trapezoidal Wing configuration used in the 

High Lift Prediction Workshop (image from http://hiliftpw.larc.nasa.gov/Workshop1/geometries.html). 

 

The second example is force and moment data from the first High Lift Prediction Workshop[6,7]. The 
2010 workshop contained three cases: a mandatory grid convergence study, and mandatory flap 
deflection prediction study, and an optional flap and slat support effects study. The geometry used 
was the NASA Trapezoidal Wing configuration, for which substantial wind-tunnel data has been 
collected. The workshop was held at the AIAA Applied Aerodynamics Conference in August 2010. 
The result was 35 datasets, submitted by participants in 18 individual organizations.  

The force and moment data from these 35 datasets represents a far less structured collection of 

data than from the BEES-flyer database. The grid resolution study required runs with 3 or 4 grid 

resolutions at two angles-of-attack and fixed M, Re, flap angle, and slat angle. The flap deflection 

prediction study contained a sweep over seven angles-of-attack and two flap angles, with everything 

else held constant. Finally, the optional support effects study involved two support configurations 

(there or missing) with everything else held constant. In addition, of course, the participants used a 

variety of CFD codes, with differing solution schemes, solving variations of the Navier-Stokes 

equations, with a variety of turbulence models. Each of these four items could also be considered an 

independent variable in the overall database. The result is a database with up to seven independent 

variables: angle-of-attack, grid resolution, flap angle, CFD code, solution scheme, Navier-Stokes 

variant (thin layer, etc.), and turbulence model. 

The comparisons of the results with experiment were primarily done with arrays of XY plots. 

Because the generalized box plot could show the statistics for the entire database on one plot per 

dependent variable, it can dramatically reduce the number of plots required to quantitatively compare 

datasets.  The surface box plots for C� versus α and flap angle is shown in figure 9. The central 

surface with flooded contours is the median values, the light blue surface are the first and third 

quartiles, and the outer translucent surface are the minimum and maximum. The central 50% of the 

datasets are closely packed for angles-of-attack below stall. Above stall there is significant 

divergence. The minimum surface diverges at a much lower angle-of-attack and warrants further 

investigation. The box plot doesn’t show which dataset is responsible for the divergence of the 

minimum surface at the low angle-of-attack, or even how many datasets contribute to the surface. 
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Figure 8. Surface box plot for lift coefficient versus angle-of-attack and flap angle. 

 

The line functional box plots for configurations 8 and 1 (flap angles 20 and 25 deg.) are shown in 

figures 9 and 10. These correspond to the minimum and maximum flap-angle edges of the surface box 

plot in figure 8. Figures 9 and 10 also include experimental data for comparison. It is clear from these 

figures that the majority of CFD codes do a good job predicting lift at angle-of-attacks below stall, but 

there is significant divergence above stalling angle-of-attack. 
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Figure 9. Line functional box plot for lift coefficient versus angle-of-attack at 20 degree flap angle. 

 
 

 
Figure 10. Line functional box plot for lift coefficient versus angle-of-attack at 25 degree flap angle. 

 

 
 
 
 

The results are very similar for drag (figures 10, 11, and 12), with the majority of datasets closely 

matching the experimental data for angles-of-attack below stall. For pitching moment (figures 13, 14, 

and 15) it is a different matter. The box plots show the CFD codes systematically predict higher (less 

negative) values of pitching moment. The analysis indicates that you should not trust pitching-

moment predictions from the codes and grids used in the high lift prediction workshop.   
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Figure 10. Surface box plot for drag coefficient versus angle-of-attack and flap angle. 
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Figure 11. Line functional box plot for drag coefficient versus angle-of-attack at 20 degree flap angle. 

 

 
Figure 12. Line functional box plot for drag coefficient versus angle-of-attack at 25 degree flap angle. 
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Figure 13. Surface functional box plot for pitching-moment coefficient versus angle-of-attack and flap 

angle. 



 14

 
Figure 14. Line functional box plot for pitching-moment coefficient versus angle-of-attack at 20 degree 
flap angle. 

 

 
Figure 15. Line functional box plot for pitching-moment coefficient versus angle-of-attack at 25 degree 

flap angle. 
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2.2     Results for Unsteady CFD Flow Data 
For four-dimensional unsteady data visualization, the generalized functional box plot shows the 
variation of the same five statistics (minimum, first quartile, median, third quartile, and maximum) 
over time for each point in the field. The statistics can be displayed in conventional one-, two-, or 
three-dimensional plots. The results may be combined into a single plot with 5 surfaces, or 5 plots 
showing the variation of the five statistics over the field. 

The box plot is a powerful tool for analyzing unsteady flow. In a single plot it shows the range 

over time of each variable, at each point in space. This information has many direct applications. 

Frequently, the engineer is concerned about certain variables exceeded some limit value. For example, 

a box plot of temperature on the surface of a turbine blade will quickly tell the engineer if it has 

exceeded the melting temperature of the material and any time in the analysis.  Likewise, the degree 

of oscillation (min to max) may be significant in certain chemical processes. Finally, the box plot 

allows rapid side-by-side evaluation of several unsteady cases that would otherwise be very difficult 

to compare.  

 
 
2.2.1     Vortex Shedding from Swept Cylinder (LES) 
The first example is unsteady flow past a swept cylinder. The 0.25m diameter cylinder is swept 
upward (positive y direction) by 50 degrees and backward (negative x direction) by 30 degrees. The 
cylinder is situated between two free-slip walls 1.22m apart. The free-stream flow conditions are 
Mach 0.1 and Reynolds number of 58784.7. The computation assumed laminar flow. 

Figure 16 shows the generalized functional box-plot for X-component of momentum on a slice 

aligned with a swept cylinder. The flow is going from right to left (positive X direction). Upstream of 

the cylinder, all of the statistics align (no unsteadiness). The statistics separate significantly just 

downstream of the cylinder where the unsteadiness is at a maximum, and slowly converge as the 

distance downstream of the cylinder increases. 

 

 
 
Figure 16. (left) Unsteady flow past a cylinder, (right) x-momentum box plot on plane 

 
From this box plot, it is easy to see the extent of the oscillations in the x-momentum at each point in 
the field.  
 
 

2.2.2     Wind-Turbine Acoustics 
Modern industrial economies are heavily reliant on electricity, and developing and maintaining a 

sufficient supply of affordable and reliable power generation capability is a priority of every nation. 
Fossil fuel based power generation capabilities have become less attractive for environmental reasons 
and the future expansion of nuclear power is uncertain following the recent Fukashima nuclear 

accident. For all of these reasons, “environmentally friendly” wind and solar power have become 

more attractive. 

One of the largest issues with wind-turbines is noise. For this reason, Nelson, et. al., recently 
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published a study that used a sequence of numerical methods to predict the noise pattern from wind-

turbines[8]. The sequence starts with a solution of the Navier-Stokes equations for the unsteady flow-

field around the NREL 10m diameter research wind turbine (figure 17). The equations were solved 

using the OVERFLOW code with adaptive mesh refinement. The computational grid started with a 

30.5 million point mesh (in 68 blocks) and over 7152 time steps grew to over 260 million points in 

more than 5600 blocks. The results were exported to plot files every 16 time steps for further analysis. 

In all, the plot files consumed roughly half a terabyte of disk space. 

The case modeled had a blade pitch of 3 degrees, a constant inflow velocity of 10 m/s and the 

wind turbine was perfectly aligned with the freestream. A complete evaluation of noise production 

over the complete operating envelope of the wind turbine would require a parametric analysis with 

multiple dimensions for blade pitch, wind speed, wind profile, and wind alignment with the turbine. 

While a single case may be analyzed with conventional techniques like animation of slices and 

isosurfaces, the complete parametric study would require aggregation of cases to reduce the number 

of dimensions. This is the purpose of the generalized functional box plot. 

 
Figure 17. The NREL 10M research wind turbine 

 
Figure 18 shows the components of the generalized functional box plot for vorticity magnitude on 

a plane at x=2.5m downstream of the blade. The box plot was generated by interpolating to a 

rectangular 500x500 plane at each available time step for the last half rotation of the blade. The 

vorticity magnitude at each point was sorted through time, and the minimum, first quartile, median, 

third quartile, and maximum values at that point were extracted. This maximum plot shows an intense 

tip vortex, and intense vortex sheet shedding from the pylon, and a complicated pattern of vortices 

shedding from the blade. For vorticity magnitude, the minimum, first quartile, and median plots show 

little detail of additional value.    
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Figure 18. Vorticity box plot components. 

 

Figure 19 shows the components of the generalized functional box plot for pressure on the 

plane x=2.5m downstream of the blade. They show that, on this plane, the most intense 

pressure oscillations are occurring near the base of the pylon. The cause of this is unknown. It 

could a physical phenomenon, such as a feedback loop with fluctuations emanating from the 

rotors bouncing off the ground and interacting with the mast, or it could be a numerical 

artifact. The most important fact, from the standpoint of this paper, is that these results were 

intensively analyzed using traditional visual analysis techniques, and this phenomenon was 

not discovered until the functional box plot was created.   
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Figure 19. Pressure box plot components. 

 
 

 

3     Conclusion and Future Work 
The function box plot was generalized to analyze and visualize the statistics of N-dimensional meta-
data and unsteady flow fields. The technique for meta-data was demonstrated for a roll-control 
analysis of the five-dimensional BEES-flyer aerodynamic database and for comparative analysis of 
the first High Lift Prediction Workshop database. For unsteady flows, the technique was 
demonstrated for vortex shedding off a swept cylinder and for flow past a wind turbine. The 
generalized function box plot is a powerful tool for generating a holistic view of highly dimensional 
meta-data and unsteady flows. 

 

References 
 
[1] S. T. Imlay and C. A. Mackey. Generalized Functional Box Plot for Visual Analysis of High-

Dimensional Aerodynamic Meta-Data. AIAA 2012-1262, Jan. 2012. 
[2] J. W. Tukey. Box-and-whisker plots.  Exploratory Data Analysis. Addison-Wesley, Reading 

MA. 1997. pp 39-43. 
[3] Y. Sun and M. G. Genton. Functional Boxplots. J. Computational and Graphical Statistics, 

20:216-334, 2011.  
[4] S. M. Murman, M. J. Aftosmis and M. Nemec. Automated Parameter Studies Using a Cartesian 

Method. AIAA 2004-5076. 
[5] D. D. Soccol, J. S. Chahl, J. Le Bouffant, M. A. Garratt, A. Mizutami, S. A. Thurrowgood, G. 

Ewyk, and S. Thakoor. A Utilitarian UAV Design for NASA Bioinspired Flight Control 
Research. AIAA Paper 2003-461, Jan. 2003. 



 19

[6] J. P. Slotnick, J. A. Hannon and M. Chaffin. Overview of the First AIAA High Lift Prediction 
Workshop. AIAA 2011-0862, Jan. 2011. 

[7] C. L. Rumsey, M. Long, R. A. Stuever and T. R. Wayman. Summary of the First AIAA CFD 
High Lift Prediction Workshop. AIAA 2011-0939, Jan. 2011. 

[8] C. C. Nelson, A. B. Cain, G. Raman, T. C. Chan, R. M. Saunders, J. Noble, R. Engeln, R. 
Dougherty, K. S. Brentner, and P. J. Morris. Numerical Studies of Wind Turbine Acoustics. 
AIAA 2012-0006, Jan. 2012. 

 


