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Abstrat: In this paper we use a geneti algorithm to identify an optimised set of model param-

eters for a turbulene model to improve its performane in CFD simulations. We look at two test

ases where good experimental data was available and use this data to train the model oe�ients

towards the �ow problem at hand. We an show a signi�ant performane boost using the opti-

mised parameters with respet to the veloity pro�les of the �ow. The fous lies primarily on the

k-ε and the k-ω SST models for the �rst ase and the Spalart-Allmaras one-equation model for the

latter. The in�uene of eah arbitrary parameter on the development of the �ow is investigated.

After identi�ation of the most in�uential parameters an optimisation is performed. The best

set of oe�ients is determined per test ase. The optimisation method is based on evolutionary

omputation priniples using an elitist geneti algorithm. The optimised set of oe�ients an

then be used to solve �ow problems of similar on�guration to a higher auray than by using

the standard values.
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1 Introdution

Numerial simulation of omplex �ow phenomena is a hallenging �eld in �uid dynamis. Even with omput-

ers getting faster and massively parallel in reent years, the auray of the omputations is still dependent

on the models that desribe the underlying �ows. The exeution of a diret numerial simulation (DNS)

is still far away from being a�ordable in terms of omputation time. Grid spaing and time disretization

sale with power laws of the Reynolds number and realisti ases are far beyond the apabilities even of

modern superomputers [1℄. While in the 80s and early 90s of the last entury memory was the limiting

fator, it is now more likely to be time. For example Erturk et. al. [2℄ reported the largest omputable

Reynolds number for the relatively simple 2D lid-driven avity �ow on a 600×600 grid to be 21,000. That is
why most solvers seek to solve the Reynolds-Averaged Navier-Stokes (RANS) equations desribed in setion

4.1, where the main �ow veloity is separated into a mean veloity omponent and turbulent �utuations,

expanding the NS-equations by additional terms that need to be modelled. Several di�erent approahes

have been developed and applied, ranging from one-equation models like the Spalart-Allmaras model [3℄,

and two-equation models like the k-ε model by [4℄ or the k-ω model by [5℄, as well as various ombinations

and variations of these. The empirial nature of these formulations an lead to undesired behaviour, espe-

ially in very heterogenous �ows or �ow regions with highly unsteady turbulent �utuations. To improve

the appliability of all the models to as wide a range of problems as possible several improvements and

hanges have been proposed. A simple internet searh reveals hundreds of di�erent models, some only slight

modi�ations to the most ommon ones, others adjusted to spei� �ow types like, for example, �ow around

buildings, oeani �ow, �ow through porous media and many others. Common to all of these models is a

formulation that ontains a set of arbitrary parameters that need to be determined either by experimental

observation or by desribing relations under simpli�ed onditions. The way in whih the values are obtained

is up to the developer and losely related to the hoie of �ows that are used for their determination. The
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ideal ase would be to �nd an argument for eah losure oe�ient separately, but in reality two or more

are involved and are rarely independent.

2 Evolutionary Computation

2.1 Overview

Evolutionary Computation (EC) an be divided into three major ategories: Geneti Algorithms (GA) devel-

oped by Holland [6℄ with ontributions by deJong, Goldberg and others, Evolution Strategies �rst mentioned

in Germany by Rehenberg and Shwefel [7, 8℄ and Evolutionary Programming desribed initially by Fogel,

Owens and Walsh [9℄ in the United States. All three have sine then spawned a series of journals and onfer-

enes related to the topi and have been further developed in reent years. Optimization proedures, as used

in this work, belong to the ategory of Geneti Algorithms. The general priniple of all �avours of EC is

that a solution to a problem 'evolves' from a randomly generated initial population in a series of generations.

By appliation of the three evolutionary operators: seletion, rossover and mutation, hanges are made to

the individuals that ultimately lead to a better �tness. This �tness is a measure of the quality of a solution.

Good results have been demonstrated in di�ult optimisation problems that are either impenetrable by

standard methods, suh as NP-omplete problems, or that are expensive in terms of evaluation [10℄. The

behaviour of GAs an be in�uened in di�erent ways. There are, for example, di�erent seletion methods to

hoose from or the probabilities that ontrol the evolutionary proess an be modi�ed.

Many large-sale optimisation problems an only be solved approximately. Geneti Algorithms are a good

hoie for these kind of problems. They ombine stohasti with diret searh, making them very robust

to the topology of the solution spae. GAs work on a broad data basis at all times, while pure determin-

isti optimisers tend to onentrate on a single solution. Early studies of the performane of evolutionary

optimisation for a set of a anonial topologies were arried out by deJong [11℄. In an engineering ontext

GAs have been applied to a wide range of appliations. Any optimisation problems that require expensive

omputations are possible andidates for evolutionary methods. Most of the work that has been published

up until now has been design related. In eletrial engineering, for example, to design eletri iruit boards

[12℄ or in hydromehanis in the planning of large-sale water distribution systems [13℄. In onjuntion with

CFD the evolutionary approah has mainly been used for shape optimisation, e.g. in the design of motor

fan blades [14℄ or heat-exhanger blades [15℄. To our knowledge the use of these tehniques to improve the

auray of CFD modelling represents a novel approah.

2.2 Methodology

Geneti Algorithms are based on the priniple of natural seletion and natural genetis [10℄. GAs are

randomly initialised, asserting a diverse set of possible solutions. Compared to onventional optimisation

methods they will limb many peaks simultaneously during the evolution proess. That redues the proba-

bility to onentrate on the wrong peak representing a loal optimum, as ommon gradient based methods

would do. Figure 1 depits the sequene of operations in a typial GA. A set of parameters in a GA will

generally be oded as a string of �nite length, most ommonly a binary string. Eah of these strings (also

hromosome or genotype) represents one possible solution to the optimisation problem. Two opposed strate-

gies are at work here: Exploitation of a single solution versus exploration of the solution spae. Classial

gradient based methods onentrate on the former, while sole usage of the latter would orrespond to a

random searh. GAs manage to reah a surprisingly good balane between those two extremes [16℄. Eah

population undergoes a simulated evolution. Good solutions reprodue while less favourable solutions are

disarded (or 'die'). Individuals are seleted for reprodution depending on their �tness value. This seletion

proess is stohastially ontrolled, assigning �tter individuals a higher probability to get hosen. From those

individuals (parents) seleted in this manner, o�spring (hildren) are generated by applying rossover and

mutation operators. The rossover operator uses two parents and ombines elements from one parent with

elements from the other, reating a new individual that now ontains information from both its anestors.
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An example of single point rossover between two hromosomes (binary strings) a and b of length n+1:

a = 〈an an−1 . . . a1 a0〉
b = 〈bn bn−1 . . . b1 b0〉

with a randomly seleted rossover point X ǫ [0, n− 2], reating hildren:

a′ = 〈an an−1 . . . aX+1 bX bX−1 . . . b1 b0〉
b′ = 〈bn bn−1 . . . bX+1 aX aX−1 . . . a1 a0〉

Mutation is in most ases implemented as bitwise mutation where the value of a single bit in a hromosome

is inverted. The probability of mutation or rossover ouring is ontrolled by external variables PM and

PC respetively. Other parameters that in�uene the performane of the GA are the population size S and

the number of generations G. In the optimisation problem at hand, the multiple real values are bit-string

enoded and the �tness objetives are measurable properties of the �ow.

YES

NO

Initialisation

Evaluation

Selection

Crossover

Mutation

terminate?

Figure 1: Shemati of the work�ow of a typial GA

2.3 Parameter oding

Sine the problem variables are real values and their hromosomal representation is a binary string, a mapping

has to be de�ned. For a single oe�ient c ǫ [clo, chi] the length of the bit�eld has to be determined by taking

into aount the desired resolution ∆c of the interval. The number of bits required is now

n =

⌈

log2

(

chi − clo
∆c

+ 1

)

− 1

⌉

(1)
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Translation from binary to deimal values an now easily be done as follows:

〈bn bn−1 . . . b1 b0〉2 =

(

n
∑

i=0

bi · 2i
)

10

= c′ (2)

c = clo + c′ · chi − clo
2n+1 − 1

(3)

2.4 Multi-objetive Optimisation

Complex optimisation problems often seek to �nd optimal solutions with respet to multiple, often on-

urring, objetives. Many multi objetive evolutionary algorithms (MOEAs) have been developed in the

last few deades [17, 18, 19℄. Sine it is generally the ase that a problem has no single solution that is

optimal w.r.t. all objetives simultaneously, a number of equally optimal solutions are reated that lie on

the Pareto-optimal front. The algorithm that is used in this study is a fast elitist non-dominated sorting

geneti algorithm (NSGA), that was originally introdued by Srinivas and Deb [17℄ and improved by Deb

et. al. [20℄. The seond generation version NSGA-II removed some of the ritiised �aws in the original

algorithm and is able to apture high order Pareto surfaes.

Elitism speeds up the onvergene of the GA and prevents the loss of the best solutions. The sorting pro-

edure orders solutions by the level of dominane over onurring solutions. That way the most dominant

individuals are onsidered to be the �tter ones and therefore have a higher hane to ontribute to the next

generation. The algorithm was suessfully used in engineering optimisation problems [21, 22℄. The imple-

mentation of NSGA-II and the appliation to the optimisation of turbulene model oe�ients is urrently

under development and results will be published subsequently.

3 Implementation

3.1 Software Pakages

Available for OpenFOAM is a toolset alled pyFoam

1

written in the objet-oriented language Python. It

o�ers appliations to read, modify and run OpenFOAM ases as well as analyse the results. Inspired by this,

the framework for the evolutionary omputation apabilities is developed in Python. That way the envoking

and manipulation funtions provided by pyFoam an be used and exeution of the program an easily be

ontrolled by using sripts. One of the most important requirements in the development of an EC software

in the ontext of CFD is the apability to parallelise the ode to allow for faster omputation spread over

several proessing units. A ommonly used library to realise this is the MPI (Message Passing Interfae)

standard [23℄. The Python implementation named mpi4py is used in the urrent projet. While it is not a

full realisation of the MPI standard, it provides all the required funtions for the purpose of this researh.

3.2 Code Design

In order to write software that is as generi as possible the design proess has to be treated with speial

are. Based on the guidelines by Gagné and Parizeau on how to write generi EC software tools [24℄, the

framework struture should meet these minimal riteria:

See the referene for details about how to measure the ful�lment of these goals. The term 'generi' in this

ontext needs further explanation. Aording to the omputer ditionary

2

, generi software is `Software

whih an perform many di�erent types of tasks but is not spei�ally designed for one type of appliation.'

Taking that into aount the development of a generi EC framework should not be tailored to one spei�

form of optimisation. Operators, suh as the rossover or seletion operator, should be interhangeable

regardless of the objets they are applied to. In addition the underlying representation of a solution should

not a�et the way the GA works. Interhangeability of operators an easily be implemented in modern

objet-oriented programming languages. The user an hoose at run-time between a given set of prede�ned

1
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operators or an add new operators to meet spei� needs. This is usually the ase for the �tness evaluation

whih is a problem dependent funtion. Reusability and independene of the optimisation problem on top

are key features of the seletion and rossover mehanisms. Commonly used realisations of these are therefore

inluded in the developed framework, but an be altered or new ones implemented. This is possible through

the realisation of the strategy design pattern (see hapter 5 in [25℄). Equally �exible is the seletion of the

oding algorithm that enodes and deodes the hromosome as desribed in setion 2.3.

In the developed software pakage ontrol parameters an be set using external on�guration �les. For every

variable that is subjet to the evolution proess the user an de�ne lower and upper bounds as well as the

desired preision. This allows running di�erent test ases with di�erent initial setups without altering the

ode. The only element that has to be adapted for eah ase is the �tness evaluation funtion sine it is

problem dependent.

4 Model Equations

4.1 RANS modelling

If a �ow is statistially steady it is possible to deompose the �ow variables φ into an ensemble averaged

part φ and �utuations φ′
about that average. This proess is known as Reynolds Averaging [26℄ and when

applied to the Navier-Stokes equations leads to Reynolds-Averaged Navier-Stokes (RANS) equations. In ase

of inompressible �ow with body fores, the ontinuity and momentum equations an be written as

∂(ρui)

∂xi
= 0, (4)

∂(ρui)

∂t
+

∂

∂xj

(

ρuiuj + ρu′

iu
′

j

)

= − ∂p

∂xi
+

∂τ ij
∂xj

(5)

where τ ij are the omponents of the mean visous stress tensor:

τ ij = µ

(

∂ui

∂xj
+

∂uj

∂xi

)

.

The inlusion of the Reynolds stresses ρu′

iu
′

j into the onservation equations introdues new unknowns to

the equation system. These annot be expressed in terms of the known variables. To lose the equation

system these quantities need to be modeled using a turbulene model. The values for these oe�ients are

usually the result of a ombination of theoretial onsiderations, omputer optimisation and experimental

measurements on simpli�ed �ows [27℄. But even these empirial 'onstants' have evolved in the 40 years

of their existene, so it an be assumed that they have not yet reahed generality for all possible �ow

on�gurations. For example the value for C2 in the k-ε model (see 4.1.1) has hanged by 4% from initially

2.0 to 1.92. Some researh was done in a-priori parameter identi�ation by Qian et al. [28℄, Bardow et al.

[29℄, and others, but all these onsiderations did not lead to a better understanding of the impat of the

parameters to the behaviour of the solution.

4.1.1 Standard k-ε Model

One way of modeling is to solve a transport equation for the rate of dissipation ε of turbulent kineti energy
k leading to the k-ε model �rst proposed by Jones and Launder [4℄ where (

√
k3/ε) ∼ l, with l being the

turbulent length sale. The main problem of the k-ε model is its treatment in the near-wall region of the �ow
where the destrution-of-dissipation term is singular. To avoid this in a layer lose to the wall the �ow has

to be treated seperately by a wall funtion. The resolution of the grid lose to the walls has to be su�iently

�ne for the wall funtions to yield reasonable results, meaning additional are needs to be taken when solving

a problem using this model. The equations as they are implemented in OpenFOAM are as follows:
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µt = ρCµk
2/ε (6)

ρ
∂k

∂t
+ ρUi

∂k

∂xi
= τij

∂Ui

∂xj
− ρε

+
∂

∂xi

[

(µ+ µT /sk)
∂k

∂xi

]

(7)

ρ
∂ε

∂t
+ ρUi

∂ε

∂xi
= C1

ε

k
τij

∂Ui

∂xj
− C2ρ

ε2

k

+
∂

∂xi

[

(µ+ µT /sε)
∂ε

∂xi

]

(8)

There are �ve arbitrary oe�ients in this formulation, eah in�uening di�erent aspets of the devel-

opment of the �ow. The ommonly reognised standard values as implemented in the OpenFOAM CFD

software are given in Table 1.

Table 1: Standard values for the k-ε model as implemented in OpenFOAM

sk sε C1 C2 Cµ

1.0 1.3 1.44 1.92 0.09

4.1.2 Menter k-ω-SST Model

Another approah is to model the spei� dissipation rate ω, as Wilox [5℄ suggested in his version of the k-ω
model, in whih (

√
k/ω) ∼ l. Menter [30℄ introdued a modi�ation to that model ombining the near-wall

treatment of the k-εmodel and the auray in prediting the free �ow from the k-ω model. He used blending

funtions to swith from one model to the other. The eddy visosity equation is modi�ed to aount for

the transport e�ets of the priniple turbulent shear stress (hene the name k-ω-SST). Menter's formulation

is widely used in aerodynamis and is a good example for the apability of the geneti optimisation as it

ontains no less than eleven arbitrary oe�ients, of whih the default values are given in Table 2. The

implementation of this model in OpenFOAM uses the following equations:

µt =
ρa1k

max(a1ω, SF2)
(9)

ρ
∂k

∂t
+ ρUi

∂k

∂xi
= P̃k − β∗ρkω

+
∂

∂xi

[

(µ+ skµt)
∂k

∂xi

]

(10)

ρ
∂ω

∂t
+ ρUi

∂ω

∂xi
= ρ

γP̃k

νt
− βρω2

+
∂

∂xi

[

(µ+ sωµt)
∂ω

∂xi

]

+ 2(1− F1)
ρsω2

ω

∂k

∂xi

∂ω

∂xi
(11)

using a prodution limiter

Pk = µt
∂Ui

∂xj

(

∂Ui

∂xj
+

∂Uj

∂xi

)

→ P̃k = min (Pk, c1β
∗ρωk) .
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Eah of the onstants φ ǫ {β, γ, sk, sω} is a blend of an inner φ1 and outer φ2 onstant, blended via:

φ = F1φ1 + (1− F1)φ2

with blending funtion

F1 = tanh



min

[

max

( √
k

β∗ωy
,
500ν

y2ω

)

,
4ρsω2k

CDkωy2

]4




CDkω = max

(

2ρsω2

1

ω

∂k

∂xi

∂ω

∂xi
, 10−10

)

F2 = tanh



max

(

2

√
k

β∗ωy
,
500ν

y2ω

)2




where ρ is the density, νt = µt/ρ is the turbulent kinemati visosity, µ is the moleular dynami visosity, y
is the distane from the �eld point to the nearest wall. F1 is equal to zero away from the surfae (k-ε model),
and swithes to one inside the boundary layer (k-ω model). Note that the prodution limiter oe�ient c1 is
proposed as a onstant in the original paper by Menter [30℄, but is implemented as a variable in OpenFOAM.

Table 2: Standard values for the k-ω-SST model in OpenFOAM

sk1 sω1 γ1 β1

0.85034 0.5 0.5532 0.075

sk2 sω2 γ2 β2

1.0 0.85616 0.4403 0.0828

a1 c1 β∗

0.31 10 0.09

4.1.3 Spalart-Allmaras 1-eqn model

The Spalart-Allmaras model was originally developed to model aerodynami �ows [3℄. It is a one equation

model as it only ontains transport equation for the turbulent property ν̃. The various terms in the formu-

lation an be identi�ed as di�usion, onvetion, prodution and destrution of this quantity. Eah of these

ontributions to the transport equation has to be hosen arefully to aount for the physis of the �ow.

Together with some dimensional analysis and modi�ations for the sake of numerial stability the original

model by Spalart and Allmaras is most often used in this form:

∂ν̃

∂t
+ uj

∂ν̃

∂xj
= Cb1(1 − ft2)S̃ν̃ −

[

Cw1fw − Cb1

κ2
ft2

](

ν̃

d

)2

+
1

s

[

∂

∂xj

(

(ν + ν̃)
∂ν̃

∂xj

)

+ Cb2
∂ν̃

∂xi

∂ν̃

∂xi

]

(12)

with

νt = ν̃fv1, fv1 =
χ3

χ3 + C3
v1

, χ :=
ν̃

ν

S̃ ≡ S +
ν̃

κ2d2
fv2, fv2 = 1− χ

1 + χfv1
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and

S ≡
√

2ΩijΩij , Ωij ≡
1

2
(
∂ui

∂xj
− ∂uj

∂xi
)

fw = g

[

1 + C6
w3

g6 + C6
w3

]1/6

, g = r + Cw2(r
6 − r)

r ≡ ν̃

S̃κ2d2

ft2 = Ct3 exp(−Ct4χ
2)

d is the distane to the losest wall. The trip ft2 was a numerial �x by Spalart and Allmaras that makes

ν̃ = 0 a stable solution. This behaviour was desired in onjuntion with a trip funtion ft1∆U given in the

original referene to ontrol the transition point in the �ow. But aording to Rumsey [31℄ most users do

not employ this trip funtion, but run the model in fully turbulent mode. The proposed standard values for

the oe�ients are given in Table 3. The parameter Cw1 is impliitly alulated from

Cw1 =
Cb1

κ2
+

1 + Cb2

s
.

Table 3: Standard values for the Spalart Allmaras model in OpenFOAM

Cb1 Cb2 s κ
0.1355 0.622 0.666 0.41

Cw2 Cw3 Cv1 Ct3 Ct4

0.3 2 7.1 1.2 0.5

a1 C1 β∗

0.31 10 0.09

4.2 Parameter Identi�ation

The above mentioned turbulene losure models inlude a number of parameters that need to be alibrated

to the type of �ow that is subjet of the investigation. Surprisingly, most of these oe�ients have little or

no physial relevane at all and are merely empirial. The number of parameters vary from model to model

with up to twelve in the Spalart-Allmaras losure. Lengthy experiments have to be onduted to estimate a

range of values for the oe�ients that best desribes a spei� type of �ow overed by the experiment. Even

though the authors of the models themselves provided standard values for the �ows they investigated, these

standards are used by industrial users regardless if they are �t to adequately desribe a problem, or not.

To identify those parts of the model equations that are most pereptible to variations in the oe�ients a

simple parameter identi�ation study was performed where only one parameter at a time was hanged while

the others were held �xed at their standard values listed in tables 1, 2 and 3. The variation ranged from

60% to 140% around the standard value. This was neessary to make sure the optimisation algorithm only

optimised those values that have a real impat on the properties of the �ow. Otherwise the method ould

not map unambigously between the value of a onstant and the �tness of the solution and would therefore

not onverge.

5 Test Cases

5.1 Fitness Funtion

The most important aspet for a geneti optimisation algorithm to work is a proper de�nition of the �tness

funtion. The return value of this funtion attributes the quality of a solution and the deision if a solution is
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�t for mating or will be disarded is based on this value. In the testases desribed above we used experimental

data and sampled data from the simulations and alulated the root mean square error between those two.

This value is by de�nition always positive as a �tness value should be [10℄. As the aim of the optimisation

is to reah a solution as lose to the experimental results as possible, we searh to minimise the r.m.s. error.

That means in reverse a smaller �tness funtion values represent better solutions. In ase several sample

regions are to be ompared simultaneously, the errors are umulated.

5.2 Bakward-Faing Step

The �ow over a bakward-faing step is investigated and the results are ompared to experimental data

obtained by Makiola [32℄. Simulations were done at two di�erent Reynolds numbers Re = 15, 000 and

Re = 64, 000 and both the standard k-ε and the k-ω turbulene model were applied. Computational meshes

of varying sizes were used to ensure grid onvergene and the �nal results are from grid independent solutions.

To simulate one generation of �fty individuals takes approximately 21 minutes on ten omputing ores in

parallel. The algorithm saves time by not realulating individuals that have been passed on from previous

generations, so the total runtime for 30 generations is about seven hours.

The geometry of the ase had an expansion ratio of h/H = 2 (see Figure 2) and the examined quantity was

the normalised veloity u/U0 at three di�erent positions x/H = 1, 3 and 6 in the hannel. That means the

�tness was estimated as being the mean square root error between the simulated results and the veloity

data measured in the experiment. The smaller the di�erene between the results, the better was the �tness

of the solution. A paraboli veloity pro�le was presribed at the inlet. Further only the results at position

x = 3H are shown exemplary for the omplete dataset. That position is lose to the enter of the main

reirulation vortex.

PSfrag replaements

U0

H

y

x x/H=3

Figure 2: Geometry of the bakward faing step test ase

5.3 Conial Conentrator and Sudden Expansion

In order to assess the urrent state of the art in CFD modeling in a medial devie model, Stewart et. al. [33℄

from the Amerian Food & Drug Administration (FDA) designed a benhmark ase to develop guidelines

for CFD users in industry. Figure 3 shows the dimensions of the nozzle geometry used in the laboratories

to obtain experimental results. The length of the inlet and outlet hannels was not spei�ed and should

be hosen to ensure fully developed turbulent �ow before entering the onial onentrator and the out�ow

ondition should not in�uene the reattahment point in the model. In the simulation the length of the

inlet and outlet hannels were hosen as 15d and 300d respetively, with d being the diameter of the throat.

For a throat Reynolds number of 5000, the inlet veloity was spei�ed as 0.46m/s. The best simulation

results aording to the authors were ahieved using the Spalart-Allmaras one-equation turbulene model

[3℄ (see also Setion 4.1.3). Experimental data for this ase was gathered from three di�erent, independent

laboratories and was made publily available [34℄. Sine this ase setup is slightly more ompliated and

9



requires a larger grid than the previous one, omputation time was onsiderably longer. One set of 50

individuals over 30 generations took about 36 hours to omplete on 10 ores.

d=0.004m 0.012m

0.04m

z=00.012m
PSfrag replaements

20
◦

Figure 3: Dimensions of nozzle for the FDA test ase

5.4 In�uene of Coe�ients

Due to the linear harater of the oe�ients in the models it is su�ient to show only the lower and upper

bounds of the investigated range, sine intermediate values all lie between these extremes. Tables 4 and 5

show �tness values relative to those obtained using the standard model oe�ients. The lower bound for

this investigation was 60% of the standard value, the upper bound was 140% of the standard value. Sine

smaller �tness values mean a better agreement with the experimental data, positive relative values represent

an inrease in the solution quality, while negative relative values stand for dereased quality. The relative

�tness is estimated by evaluating

frel =
fstd − fvar

fstd
(13)

where fstd is the �tness of the solution using the standard parameter values and fvar is the �tness value

from the simulation with a modi�ed parameter.

In the ase of the k-ε model Fig. 4 shows that only two parameters have a signi�ant in�uene on the

alulated veloity pro�les, namely C1 and C2. In physial terms these two parameters balane the prodution

and dissipation of turbulent kineti energy as the model Eqn. 8 shows. For the optimisation proess using

the geneti algorithm that means that only two instead of �ve variables need to be onsidered, signi�antly

speeding up the onvergene and auray of the proess.

A similiar investigation of the oe�ients of the k-ω-SST model was performed. Only a few of the

parameters have a notieable impat on the development of the �ow in this partiular ase, so the optimisation

will onentrate on these, whih are namely γ1, γ2, β1, β2 and β⋆
.

Table 4: Relative �tness values with varied oe�ients for the k-ω-SST model. Positive values stand for

improved solution quality ompared to the standard oe�ients while negative values mean dereased quality.

parameter frel(60%) frel(140%)

sk1 0.010 0.007

sk2 0.000 0.006

sω1 0.028 -0.020

sω2 0.013 -0.005

β1 -0.139 0.097

β2 -0.101 0.064

γ1 0.069 -0.094

γ2 0.059 -0.072

a1 -0.218 0.036

c1 -0.024 0.003

β⋆
0.199 -0.129
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Figure 4: Variations of the oe�ients in the k-ε model and their in�uene on the veloity pro�le at position

x/h = 3 downstream of the step. The bold line is the result using the standard value from Table 1; the

dotted line represents 140% of this value; the thin line is 60% of the standard value. The triangles mark

experimental data by Makiola [32℄.

The result of the variation analysis for the seond test ase and the SpalartAllmaras model is shown in

Table 5. In this ase almost all the parameters need to be onsidered in the optimisation proess.

5.5 Optimisation using GA

Based on the observations from the previous setion, we now tried to �nd an optimal setting of the losure

oe�ients. The operators used were a single-point rossover operator, tournament seletion and bitwise

mutation. The parameters for the setup of the GA are a rossover probability PC of 0.6, a mutation

probability PM of 0.03 and the population size S of 50 individuals. Analysis of the onvergene showed

no signi�ant hange to the optimal solution after just a few generations so the proess was terminated
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Table 5: Relative �tness values with varied oe�ients for the SpalartAllmaras model. Positive values stand

for improved solution quality ompared to the standard oe�ients while negative values mean dereased

quality.

parameter frel(60%) frel(140%)

Cb1 0.210 -4.527

Cb2 0.206 -0.223

Cv1 -1.502 0.749

Cv2 -0.405 0.428

Cw2 0.094 -0.113

Cw3 -0.031 0.036

κ 0.036 -0.642

s 0.763 -0.735

after 30 iterations. The �tness of a solution is measured as deviation from experimental data. In ase of

the bakward-faing step we alulate the sum of the root mean square errors of the veloity �eld at three

positions in the �ow downstream of the step. The smaller the error the better the �tness of an individual

solution. Beause of the non-deterministi harater of the optimisation routine multiple performanes of

the algorithm do not always give the same results. A statistial analysis of a set of tests shows that all

results lie within a standard deviation of 4%.

5.5.1 Bakward-Faing Step

The estimated optimal values are listed in Table 6 for the k-ǫ model and in Table 7 for the k-ω model

respetively. Fig. 5 shows the veloity pro�les at di�erent positions downstream as alulated using the

optimised oe�ients ompared to the results obtained using the standard values inluded in OpenFOAM.

The paraboli shape of the veloity pro�le is better aptured by the optimised setup further downstream of the

step. Using the standard oe�ients the transition to fully developed hannel �ow takes plae onsiderably

faster, while the optimised pro�le maintains the dominane of the �ow in the upper half of the hannel in

aordane to experiment.

Table 6: Optimum values and standard deviations for the k-ǫ model

C1 σ(C1) C2 σ(C2)
1.91 0.082 1.86 0.093

Table 7: Optimum values and standard deviations for the k-ω-SST model

γ1 σ(γ1) γ2 σ(γ2)
0.606 0.018 0.510 0.021

β1 σ(β1) β2 σ(β2) β⋆ σ(β⋆)
0.053 0.003 0.076 0.019 0.095 0.0008

Another interesting quantity to look at in the development of the �ow behind the step is the length of

the main reirulation eddy. The k-ε model is known to underestimate this model [?℄. Responsible for this

are the oe�ients C1 and C2 in equation 7. They ontrol the rate of prodution and dissipation of the

turbulent quantities and should be well balaned to give a realisti piture of the energy distribution in the

�ow. From the equations one ould dedue that a slightly higher in�uene of the prodution term and a

slightly lower in�uene of the dissipation term would inrease the size of the reirulation eddy. And that is

indeed the result of the optimisation proess. Table 8 ompares the alulated reattahment lengths of the

vertex with those obtained experimentally.
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Figure 5: Veloity pro�les at di�erent positions downstream for the bakward faing step ase. From left

to right: x/H = 3, 6, 10. Bold line: results using standard values for the k-ε model; dotted line: using

optimised oe�ients from Table 7. Triangles mark experimental data by Makiola [32℄.

Table 8: reattahment length of the main vortex normalized with step height for di�erent ase setups in

omparison with experimental values [32℄

k − ε k − ω
exp. std opt std opt

Re=15k 8.2 4.7 11.6 5.6 9.8

Re=64k 8.6 4.8 10.9 6.7 11.1

5.5.2 Conial Conentrator and Sudden Expansion

The improved values for the four optimised oe�ients in the SA model are listed in Table 9. As the model

was developed for aerodynami simulations, a boundary layer dominated �ow as the onial onentrator

is una�eted by most of the terms in the equation that ontrol �ow behaviour in the far�eld. Therefore

hanging the values of the oe�ients in these terms has no impat on the �ow in the throat, but mainly on

the reirulation area right after the sudden expansion. Taking that into aount the �tness was evaluated at

three di�erent points behind the expansion, while the r.m.s. error in the onentrator or in the throat turned

out to be largely invariant to hanges in the model parameters. An improvement in performane ompared

to the standard model is yet notieable. Espeially in the zone behind the sudden expansion where x/D > 0,
the algorithm was able to identify a set of parameters that almost perfetly mathed the experimental data

as an be seen in Figure 7.
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Figure 6: Veloity pro�les at di�erent positions downstream for the bakward faing step ase. From left to

right: x/H = 3, 6, 10. Bold line: results using standard values for the k-ω-SST model; dotted line: using

optimised oe�ients from Table 7. Triangles mark experimental data by Makiola [32℄.

Table 9: Optimum values for the Spalart-Allmaras model

Cb1 Cv1 s κ
0.172 9.187 0.447 0.274

6 Conlusions

Further tests need to be performed on more ompliated �ow regimes and di�erent turbulene models.

The results presented in this paper show the apability of geneti algorithms in ombination with turbulene

modelling. As an example two test ases were simulated, looking at three di�erent, ommonly used turbulene

models. The presented results learly show the ability of a non-deterministi evolution-based optimisation

method to improve the auray of �ow simulations. The tehnique an be used to �nd best-pratise

oe�ients of popular turbulene models for a spei� lass of �ow problems. With moderate e�ort it is

now possible to identify the optimal setup for a simulation and to outperform the ommonly used standard

values. It still requires knowledge and understanding of the expeted �ow behaviour to lassify a given

problem and �nd an appropriate alibration ase. It is also essential to have experimental or DNS data

available to measure the �tness of a solution.

The results also show that this method is apable to expose the generality of a model in assessing the

stability of a simulation to hanges in the parameter spae. If di�erent variations of a ase setup produe

a wide variation of oe�ients for one given model, that model seems not suitable to desribe that kind

of �ow behaviour. The geneti algorithm an therefore be used to test new turbulene models on their

versatility. In future work we will look into multi-objetive optimisation to apture more features of the

�ow simultaneously. That will generate a broader piture of the in�uene of the parameters and will help

to balane a solution between di�erent if not ontraditory quality requirements. Obviously for suh an
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Figure 7: Veloity pro�les at di�erent positions of the nozzle for the FDA ase. From left to right: x/D =

-2, 2, 6. Bold line: results using standard values for the k-ε model; dotted line: using optimised oe�ients

from Table 9. Triangles mark experimental data taken from [34℄.

investigation, more detailed experimental or DNS data is required.

Aknowledgements

Björn Fabritius would like to thank the University of Exeter for providing funding for his PhD studies.

Referenes

[1℄ P. Moin and K. Mahesh. Diret numerial simulation: A tool in turbulene researh. Annual Review of

Fluid Mehanis, 30:539â��78, 1998.

[2℄ E. Erturk, T.C. Corke, and C. Gök

.

öl. Numerial solutions of 2-D steady inompressible driven avity

�ow at high reynolds numbers. Int. J. Numer. Meth. Fluids, 48:747�774, 2005.

[3℄ P. R. Spalart and S. R. Allmaras. A one-equation turbulene model for aerodynami �ows. AIAA

Paper, 92-0439, 1992.

[4℄ W. P. Jones and B. E. Launder. The predition of laminarization with a two-equation model of turbu-

lene. International Journal of Heat and Mass Transfer, 15:301�314, 1972.

[5℄ D. C. Wilox. Turbulene Modeling for CFD. DCW Industries, In., La Cañada, 3rd edition, 2006.

[6℄ H. J. Holland. Adaptation in Natural and Arti�ial Systems. University of Mihigan Press, Ann Arbor,

1975.

[7℄ I. Rehenberg. Evolutionsstrategie. Optimierung tehnisher Systeme nah Prinzipien der biologishen

Evolution. Frommann Holzboog, 1973.

[8℄ H.-P. Shwefel. Evolution and Optimum Seeking. Wiley & Sons, New York, 1994.

15



[9℄ L. J. Fogel, A. J. Walsh, and A. J. Owens. Arti�ial Intelligene through simulated evolution. John

Wiley, New York, 1966.

[10℄ D. E. Goldberg. Geneti Algorithms in Searh, Optimization, and Mahine Learning. Addison-Wesley,

1989.

[11℄ K. A. deJong. An Analysis of the Behavior of a Class of Geneti Adaptive Systems. PhD thesis,

University of Mihigan, 1975.

[12℄ Xuesong Y., Wei W., Qingzhong L., Chengyu H., and Yuan Y. Designing eletroni iruits by means

of gene expression programming ii. In Proeedings of the 7th international onferene on Evolvable

systems: from biology to hardware, ICES'07, pages 319�330, Berlin, Heidelberg, 2007. Springer-Verlag.

[13℄ L. Jourdan, D. Corne, D. A. Savi, and G. A. Walters. LEMMO: Hybridising rule indution and

NSGA II for multi-objetive water systems design. In CCWI2005, Computing and Control in the Water

Industry, pages 45�50, 2005.

[14℄ N. León-Rovira, E. Uresti, and W. Aros. Fan shape optimisation using CFD and geneti algorithms for

inreasing the e�ieny of eletri motors. Int. J. Computer Appliations in Tehnology, 30(1/2):47�58,

2007.

[15℄ R. Hilbert, G. Janiga, R. Baron, and D. Thèvenin. Multi-objetive shape optimization of a heat

exhanger using parallel geneti algorithms. International Journal of Heat and Mass Transfer, 49(15-

16):2567 � 2577, 2006.

[16℄ Z. Mihalewiz. Geneti Algorithms + Data Strutures = Evolution Programs. Springer, Berlin, Hei-

delberg, 1996.

[17℄ N. Srinivas and K. Deb. Multiobjetive optimization using nondominated sorting in geneti algorithms.

Evolutionary Computation, 2(3):221�248, 1995.

[18℄ E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjetive evolutionary algorithms: Empirial

results. Evolutionary Computation, 8:173�195, 2000.

[19℄ C. M. Fonsea and P. J. Fleming. An overview of evolutionary algorithms in multiobjetive optimization.

Evolutionary Computation, 3:1�16, 1995.

[20℄ K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjetive geneti algorithm:

NSGA-II. Evolutionary Computation, IEEE Transations on, 6(2):182 �197, 2002.

[21℄ K. Behzadian, Z. Kapelan, D. Savi, and A. Ardeshir. Stohasti sampling design using a multi-objetive

geneti algorithm and adaptive neural networks. Environmental Modelling & Software, 24(4):530 � 541,

2009.

[22℄ L. Jourdan, D. Corne, D. Savi, and G. Walters. Preliminary investigation of the 'learnable evolution

model' for faster/better multiobjetive water systems design. In C. A. Coello Coello et al., editor, EMO

2005, volume LNCS 3410, pages 841�855. Springer-Verlag Berlin Heidelberg, 2005.

[23℄ Message Passing Interfae Forum. MPI: A Message-Passing Interfae Standard, Version 2.2. High-

Performane Computing Center Stuttgart, 2009.

[24℄ Ch. Gagné and M. Parizeau. Generiity in evolutionary omputation software tools: Priniples and

ase-study. International Journal on Arti�ial Intelligene Tools, 15(2):173�194, 2006.

[25℄ E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of Reusable Objet-

Oriented Software. Addison Wesley, 1995.

[26℄ J. H. Ferziger and M. Peri¢. Computational Methods for Fluid Dynamis. Springer-Verlag, Berlin, 3rd

rev. edition, 2002.

[27℄ K. Hanjali¢ and B.E. Launder. A reynolds stress model of turbulene and its appliation to thin shear

�ow. Journal of Fluid Mehanis, 52:609�638, 1972.

[28℄ Qian W. and Cai J. Parameter estimation of engineering turbulene model. Ata Mehania Sinia,

17(4):302�309, 2001.

[29℄ A. Bardow, Ch. H. Bishof, H. M. Buker, G. Dietze, R. Kneer, A. Leefken, W. Marquardt, U. Renz,

and E. Slusanshi. Sensitivity-based analysis of the k-ǫ model for the turbulent �ow between two plates.

Chemial Engineering Siene, 63(19):4763 � 4775, 2008.

[30℄ F. R. Menter, M. Kuntz, and R. Langtry. Ten Years of Industrial Experiene with the SST Turbulene

Model. Turbulene, Heat and Mass Transfer 4. Begell House, In, 2003.

[31℄ C. L. Rumsey. Apparent transition behavior of widely-used turbulene models. International Journal

of Heat and Fluid Flow, 28:1460�1471, 2007.

[32℄ B. Makiola. Experimentelle Untersuhungen zur Strömung über die shräge Stufe. PhD thesis, Institut

16



für Hydromehanik, Universität Karlsruhe, 1992.

[33℄ P. Hariharan, M. Giarra, V. Reddy, and S. W. Day. Multilaboratory partile image veloimetry analysis

of the FDA benhmark nozzle model to support validation of omputational �uid dynamis simulations.

Journal of Biomehanial Engineering, 133:410021�14, 2011.

[34℄ S. Stewart, E. Paterson, G. Burgreen, P. Hariharan, M. Giarra, V. Reddy, S. Day, K. Manning,

S. Deutsh, M. Berman, M. Myers, and R. Malinauskas. Assessment of CFD performane in sim-

ulations of an idealized medial devie: Results of FDA's �rst omputational interlaboratory study.

Cardiovasular Engineering and Tehnology, pages 1�22, 2012.

17


