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Abstract: For a hybrid rocket engine, it has been proven by ground and flight 

experiments that the fuel regression rate can be accelerated by swirling injection of 

the oxidizer. It is known a swirling turbulent flow has anisotropic nature in its 

turbulent viscosity. In this study, the objective is to improve the applicability of 

existing treatment of isotropic turbulent model such as two-equation, eddy 

viscosity, model by introducing anisotropic eddy-viscosity coefficients that can 

adjust particular direction of these with substantial derivative of vorticity, in order 

to simulate swirling turbulent flows in hybrid rocket engines. Simulation results for 

some swirling turbulent flows with the existing model and with an improved model 

will be compared. 
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1     Background and Objectives 
 

Hybrid rocket propulsion is one of space propulsion techniques for the next generation now 

researched actively. As shown in Figure 1, this type of rocket consists of solid fuel and liquid 

oxidizer. Typically, acrylic or wax is used as the solid fuel, and liquid oxygen is used as the oxidizer. 

Therefore, it has high safety because the fuel does not contain explosives as ingredients and low 

environmental load by exhaust than that of a solid rocket motor. In addition, the rocket shows good 

characteristics of capability that thrust modulation like a liquid rocket engine, and higher specific 

impulse than a solid rocket motor. 

 

  
 Figure 1: Outline of a hybrid rocket engine 

 

Though, in case a conventional fuel, such as, HTPB or PE, etc., a hybrid rocket engine has 

limitation that only low fuel regression rate can be obtained. As one of methods for enhancing fuel 

regression rate, a swirling-oxidizer-typed hybrid rocket engine that induces swirling flow in the 

chamber was invented. It has been clarified by experimental investigations that the regression rate can 

be improved by this method. Also, some numerical studies are reported. 

In general, for the case that CFD is employed as a design tool of the combustion chamber, the 

Reynolds Averaged Navier-Stokes (RANS) equations have been used because of their reasonable 

computational costs compared to those of LES and DNS. On this occasion, a two-equation turbulence 
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model, such as k - model, has been often selected in order to obtain turbulence stresses. However, 

as is well known, ordinary liner turbulence models based on the eddy-viscosity assumption cannot 

simulate flow field like swirling turbulence in pipe precisely. Because the turbulence transport in 

swirling flows is usually anisotropic which is small in selective directions, a turbulent model 

assuming isotropic turbulence transport cannot describe swirling flow in principle. Hence the 

Reynolds stress models (RSM) solving for each directional Reynolds stresses have been used for 

these swirling flow field. Though, because the variables of these models are increased by numbers of 

elements of Reynolds stresses, complexity of coding and calculation cost widely increase in 

comparison with standard two-equation turbulence models.  

Recently, Yoshizawa, et al. have developed the improved two-equation turbulence model, which is 

usable for simulating swirling turbulence flow [1]
.
This model is based on the standard k - model. 

An eddy-viscosity of this model is reduced by a coefficient constructed with substantial derivative of 

vorticity indicating swirling of mean flow. So, the turbulence stresses of all directions are reduced 

uniformly.  

Authors simulated the experiment of low velocity swirling flow in a pipe by Murakami, et al. [2] as 

a prior case for evaluating applicability of the improved model to the swirling-oxidizer-typed hybrid 

rocket engine [3]. And it was confirmed that the predictive accuracy for weak swirling flow is clearly 

improved than the result of standard k -  model. Though, the result that applying improved model to 

strong swirling flow for instance vortex-tube was not favorable. It is considered that these flow fields 

have strong anisotropic turbulence. Hence, authors attempt to that improvement simulation result of 

Yoshizawa model by adding nonlinear term of turbulent stress formulation of helicity model in order 

to append property of anisotropy to eddy viscosity. Objective of this study is to comprehend 

characteristic of this model by means of simulate existing experimental results and to validate 

availability.   

 

2     Governing Equations 
 

Favre averaged turbulent compressible Navier-Stokes Equations are used as governing equations, 

which are written in terms of mean variables as follows. 
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Momentum conservation: 
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Mean energy conservation: 
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And where, 
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and t  is time, ix is cartesian coordinate, i and j  are suffix,  is density, iu is velocity component, 

p is pressure, E is specific total energy, H is specific total enthalpy, k is turbulence energy, 
ijS  is 

stress tensor, T  is temperature, iq is heat flux, Cp is constant pressure specific heat, LPr is laminar 

Prantdtl number and TPr  is turbulent Prantdtl number. Definition of unit mass enthalpy peh   

and an equation of state RTp   are added to the above equation system with specific internal 

energy e  and gas constant R . The eddy viscosity t  and the turbulent strain tensor 
ijR  are evaluated 

by turbulence model. 

 

3     Turbulence Models 

 

The composite time scale k -  model (hereinafter called Yoshizawa model) build by Yoshizawa et 

al. [1] is shown below, which is base turbulence model of current study. In case of normal two 

equations turbulence model, turbulence energy cascade time scale E  is often used to determine eddy 

viscosity. The characteristic of this composite time scale model is to use time scale of strain S , time 

scale of vorticity   and time scale of lagrangian variation of vorticity vector in addition to E . 

Formulations of these time scales are shown as follows. 
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And ij  is vorticity tensor and Ω  is vorticity vector. 

These time-scale-effects are incorporated as correction factor  in production of eddy viscosity 

t  with conventional formulation used in normal k -  model. Formulations of this turbulence model 

are shown as follows. 

 

Turbulent energy transport: 
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Turbulent energy dissipation rate transport: 
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And where, 
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Where, 1
f  and 2

f  are low-Reynolds number correction functions. In this study, the functions 

constructed by Abe et al.
6
 are used. In this case, for the propose of steady state analysis, Lagrange 

derivative is defined as follows, 
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In addition, central difference scheme is used to discretize this derivative and the model constants are 

indicated as follows. 
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In the case of swirling flow, this model describes laminarization phenomenon at center of pipe 

due to suppress production of eddy viscosity by means of that third term of inner root of   

become dominant and   is more than 1. 

The k - - H  model build by Yokoi et, al.
 
 [4] (hereinafter called helicity model) is shown below. 

This model consists of three transport equations of turbulent energy, dissipation rate and turbulent 

helicity H ( ωu H ) which describe swirling of turbulence in flow and turbulent stress tensor is 

nonlinear.  

 

Turbulent energy transport: 
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Turbulent energy dissipation rate transport: 
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Turbulent helicity transport: 
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And where, 
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The turbulence model using in this study is composed by that adding nonlinear term of turbulent 

stress of helicity model to that of Yoshizawa model. Namely, equation of turbulent stress tensor of 

Yoshizawa model is changed from equation (15) to equation (20), and equation of dissipation rate is 

changed from equation (12) to equation (19) in terms of count the effect of helicity. Where, the 

helicity  H  is obtained from equation (19) under the assumption of local equilibrium as 

below. 
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Yoshizawa model is the turbulence model that has isotropic eddy viscosity, but by adding nonlinear 

term to turbulent stress, it can be considered that the isotropic eddy viscosity is converted into 

anisotropic eddy viscosity as follows.   
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The coefficients appear on Yoshizawa model are not changed, and that appear on helicity model are 

shown as follows, which are set with experimentally trial calculations.
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4     Numerical Method 
 

The governing equations are specially discretized by finite volume method. Numerical flux of 

convection term is calculated due to SLAU scheme constructed by Shima et al. [5] The 3rd order 

MUSCL scheme regulated by Van-Albada slope limiter with primitive variable interpolation is used 

to obtain higher order accuracy at cell boundary. Numerical flux of viscous term is evaluated by 2nd 

order central difference scheme. 2nd order 2 stages Runge-Kutta scheme is used to integrate time 

derivative term. 

 

5     Numerical Setup 
 

Two case of swirling flow are selected as analysis objects. One case is an experiment conducted by 

Murakami et, al. which has retard flow in center of the pipe and use water as working fluid. Another 

is an experiment by Kito [6] which indicate strong reverse flow in center and use air as working fluid. 

The numerical grid point number for the former case is about 0.3 million, and the number of each 

directions of axial, radius and circumferential are 71, 51 and 81 points respectively, and the grid 

number for the latter case is about 0.58 million, and the number of each directions are 101, 71 and 81 

points respectively.  The minimum grid length is about 10 μm at wall in each case. The velocity 

boundary conditions of axial and circumferential direction at inlet are adopted velocity profiles which 

were measured by experiment, and radius direction velocity set to “0”. In case of experiment of 

Murakami et, al., the position measuring velocity is at distance of 50 times of pipe radius 0
R  from the 

swirler, and in case of Kito et, al., the position is 10.4 times of pipe radius 0
R . Because the data of 

velocity profile have been nondimensionalized by bulk velocity, in this study, the bulk velocity is set 

to 5 m/s. In this case, the Reynolds number is about order of 10
5
. The free outflow condition is 

imported at outlet boundary and the non-slip condition is set at the wall. The boundary conditions for 



k  and   are shown below, where, suffix “in” and “w” indicate “inflow” and “wall”, respectively.  

 

Inflow Condition: 
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Wall Condition: 
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6     Results and Discussion 
 

First, the simulation results for the experiment by Murakami et, al. are shown. Figure 2 and Figure 

3 indicate radial distribution of axial velocity and circumferential velocity, respectively, both of them 

are averaged circumferentially and are nondimensionalized. In both figures, dot indicates the 

experimental values, dashed line and solid line indicate position of measuring sections which are 14

0R  and 17.8 0R  from inlet, line color of red and blue indicate current model and Yoshizawa model, 

respectively.  

 

   
  Figure 2: Axial velocity distributions          Figure 3: Circumferential velocity distributions  

 

In Figure 2, about axial velocity distribution, it can be seen that the current model simulate better 

results than that of the Yoshizawa model in central and near wall regions. In central region, the 

current model estimates smaller absolutes of axial velocity than the results Yoshizawa model, and in 

near wall region, it estimates bigger absolutes of velocity. In figure 3, about circumferential velocity 

distribution, differences between the current model and the Yoshizawa model are seen only in near 

wall region at both sections. In this situation, current model estimates bigger absolutes of velocity 

than the results of Yoshizawa model.  

Figure 4 shows circumferentially averaged distributions of isotropic eddy viscosity which are 

calculated by current model and Yoshizawa model at sections of 14
0

R  and 17.8
0

R . In both sections, 

absolute value of current model is smaller than that of Yoshizawa model at small region near center, 

this relation turn over in intermediate region, and the value is smaller than that of Yoshizawa model 

again at near wall.  Also, the absolute values of both models have increasing tendency depending on 



distance from the inlet. 

 
Figure 4: Isotropic eddy viscosity distribution 

 

Figure 5 shows six components of turbulent stress along “y” axis of Cartesian coordinate at section 

14
0

R . These components aren’t averaged circumferentially, and these are described as below: 
xx

R , 

xy
R , 

xz
R , yy

R , yz
R  and 

zz
R . In this situation, “x”, “y” and “z” axis of Cartesian coordinate are 

equivalent to “axial”, “radial” and “circumferential” direction, respectively. Display rule of stress 

tensor is canonical that first of two index indicates direction of normal vector of face applying stress, 

and second index indicates direction of stress. 

 

    
           (a)                                                                      (b) 

   
        (c)                                                                          (d) 



     
          (e)                                                                           (f) 

Figure 5: Components of turbulent stress 

 

From figure 5 (a) and (c) (
xx

R  and 
xz

R ), it can be seen that the absolute value of turbulent stress by 

current model is bigger than that of Yoshizawa model in central region. Hence, “x” directional 

momentum decrease as compared to the result of Yoshizawa model, and the difference of axial 

velocity distribution arises as central region of figure 2. Also, from figure 5 (a) and (b) (
xx

R  and xy
R ), 

it can be seen that the absolute value of turbulent stress by current model is smaller than that of 

Yoshizawa model in near wall region. Hence, “x” directional momentum doesn’t decrease as 

compared to the result of Yoshizawa model, and the axial velocity distribution is maintained as near 

wall region of figure 2. Additionally, from figure 5 (e) and (f) (
yz

R  and 
zz

R ), it can be seen that the 

absolute value of turbulent stress by current model is smaller than that of Yoshizawa model in near 

wall region. Hence, “z” directional momentum doesn’t decrease as compared to the result of 

Yoshizawa model, and the difference of circumferential velocity distribution arises as near wall 

region of figure 3.  

Second, the simulation results for the experiment by Kito are shown. Figure 6 and Figure 7 indicate 

radial distribution of axial velocity and circumferential velocity, respectively, both of them are 

averaged circumferentially and are nondimensionalized. The means of lines and colors are same as 

figure 2 and figure 3, and the positions of measuring section are 24.6 0R  and 38 0R  from inlet. 

 

 
Figure 6: Axial velocity distributions          Figure 7: Circumferential velocity distributions  

 

In figure 6 and 7, even distances from inlet to positions of measuring section are longer than the 

cases of Murakami, it can be seen that both of current model and Yoshizawa model can’t simulate 

experimental results of Kito. Though, both distributions have trends similar to cases of Murakami. 



 

 
Figure 8: Isotropic eddy viscosity distribution 

 

Figure 8 shows circumferentially averaged distributions of isotropic eddy viscosity which are 

calculated by current model and Yoshizawa model at sections of 14
0

R  and 18
0

R . Unlike simulation 

case for the experiment of Murakami, the value isn’t changed by turbulence models except central 

region of pipe, and distributions in this region have same trend to simulation results for the case of 

Murakami. When figure 8 and figure 4 are compared, it can be seen that values of eddy viscosity in 

figure 8 is several times bigger than that of figure 8. Hence, it is thought that both models cannot 

simulate the experimental results due to defection of damping eddy viscosity. 

 

7     Summary 
 

In this study, Yoshizawa model is improved by adding nonlinear term of turbulent stress 

formulation of helicity model in order to append property of anisotropy to eddy viscosity. In the case 

of simulation for experiment of Murakami et al., which doesn’t have reverse flow in central region, 

axial velocity distributions are slightly improved at central and near wall region, and absolute value of 

circumferential velocity become bigger than that of Yoshizawa model. 

Meanwhile, in the case of simulation for experiment of Kito, which have strong reverse flow in 

central region, both Yoshizawa model and current model cannot achieve favorable results.    
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