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Abstract: Preconditioning techniques that are used to alleviate numerical stiffness 
due to low Mach numbers in steady flows have typically not performed well for 
unsteady low Mach problems because the preconditioning scaling requirements for 
preserving discrete accuracy in time-accurate flows are very different from those 
for steady flows.  Specifically, distinct scalings are necessary for the velocity and 
pressure fields under the low-Mach, high-Strouhal conditions characteristic of 
acoustic wave problems. In this article, a unified flux formulation is presented 
where the optimal scaling required for spatial accuracy is maintained over a broad 
range of flow conditions.  Both upwind flux-difference and AUSM-type schemes 
are investigated and, in both cases, the judicious use of “steady” and “unsteady” 
preconditioning scalings in the flux formulation is shown to be critical for 
preserving accuracy. Low Mach number vortex propagation and acoustic problems 
are used to demonstrate the strengths of the formulation. These studies show that 
the AUSM family generally performs better than the blended flux-difference 
schemes especially in terms of vortex shape preservation.  
Keywords:    Low Mach Number Preconditioning, Unsteady Flow. 

 
 
1     Introduction 
 
Accurate and efficient modeling of unsteady low Mach number flows continues to be a challenging 
problem since it requires the resolution of disparate time scales.  Unsteady effects may arise from a 
combination of hydrodynamic effects in which pressure fluctuations are generated by unsteady 
velocity fluctuations, and acoustic effects where pressure fluctuations correlate with density 
fluctuations even if the mean Mach number is very low.  Examples in the former category would 
include vortex propagation problems and bluff body shedding, while examples of the latter include 
both aeroacoustic problems as well as acoustic wave propagation in internal flows among others.  
Many practical applications including rotorcraft flows, jets and shear layers include a combination of 
both acoustic and hydrodynamic effects.  Furthermore these effects may be localized with the flow 
characteristics varying in the domain. Typically the near-field may exhibit non-linear coupling 
between the different modes of unsteadiness, while the far-field may show a separation of vortex 
propagation and acoustic scales more typical of low Mach number flows.  Therefore, it is important 
that an algorithm designed for unsteady low Mach number flows function efficiently over a broad 
range of flow conditions and accurately resolve the inherent stiffness of the system. 

Accurate unsteady simulations of these complex low Mach number flows pose difficulties for time-
marching algorithms. Preconditioning techniques that are traditionally used to alleviate numerical 
stiffness work well for steady state simulations but have problems with both efficiency and accuracy 
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for unsteady computations.  One crucial factor arises from the conflicting requirements placed on the 
flux procedure:  the preconditioning scaling that is optimal for accuracy of momentum and energy 
transport is different from that needed for accuracy of the acoustic (pressure) waves under the low-
Mach, high-Strouhal conditions characteristic of acoustic problems.  The goal of the current effort is 
the development of a unified numerical flux procedure where the optimal scalings required for spatial 
accuracy of all fields are preserved over a wide range of flow conditions. A related aspect of this work 
is the design of preconditioning procedures to preserve optimal convergence efficiency as well 
without impacting the underlying accuracy of the discrete formulation.  

The development of preconditioning algorithms has been a very active area of research in the 
literature and many flavors of flux procedures have been developed.  These schemes can be broadly 
classified into two families based on their general characteristics for low Mach number flows:  1) 
flux-difference/matrix-dissipation preconditioning algorithms [1]-[4] and 2) the AUSM family of 
flux-splitting schemes [5]-[8].  Both sets of algorithms have been applied with success to steady low 
Mach number flows by recognizing that the standard flux formulations for higher Mach numbers 
generate too little dissipation in the pressure field and too much dissipation in the velocity field.  By 
reformulating the equations by introducing a preconditioning matrix (as in the flux-difference 
schemes) or by modifying the flux formulation using a preconditioning scaling term (as in the 
AUSM+up schemes), the stiff acoustic speeds are scaled to the local convective velocity and good 
solution convergence and accuracy is obtained for “all speeds”. 

For unsteady flows at low Mach numbers and high Strouhal numbers (needed to resolve acoustic 
waves), the steady preconditioning scaling that effectively filters the acoustics from the solution 
becomes far too dissipative for the acoustic/pressure field.  More generalized definitions of the 
preconditioning parameter have been proposed that take the local Strouhal number into account [9]. 
Here, the preconditioning parameter reverts back to its non-preconditioned value as acoustic effects 
become dominant thus restoring the ability to accurately model acoustic propagation with good 
convergence.  However, a key drawback of this unsteady preconditioning scaling, especially for the 
flux-difference procedures, is that the formulation becomes inaccurate for the velocity and 
temperature fields which are still governed by the convective fluid time scales and not the acoustic 
time scales.  Therefore, solutions to unsteady low Mach number problems may show a disconcerting 
disconnect between the accuracy requirements of the velocity and the acoustic fields [1]. 

In an effort to improve on this behavior, Sankaran and Merkle reformulated the flux-difference 
scheme with features akin to the AUSM schemes [9].  Here, the eigenvalue matrix used for spatial 
flux dissipation was altered such that the eigenvalue associated with pressure equation corresponded 
to the acoustic wave from the unsteady preconditioned system whereas all the other equations use the 
convective velocity.  While accurate results with unsteady preconditioning are reported for both 
acoustic and vortex propagation problem, the concern with this formulation is that the spatial 
dissipation does not reduce to the “steady” preconditioning form if unsteady effects are not dominant.  
To avoid this discrepancy for steady calculations, Potsdam et al. [1] formulated a “blended” procedure 
by defining selection matrices that use the flux from the “unsteady” preconditioning matrix for the 
continuity equation (or the pressure field) and the flux from “steady” preconditioning for the 
momentum and energy equations (or the velocity and temperature fields) [1].  In the limit of steady 
flow, the “unsteady” preconditioning parameter for the continuity equation automatically reverts back 
to the steady preconditioning parameter and the overall steady preconditioning formulation is 
recovered.   

The second class of numerical flux procedures, the AUSM family of flux-split schemes has also been 
extended to low Mach number flows [5]-[8].  A key characteristic of AUSM schemes is that the 
convective flux is separated from the pressure flux; both flux terms are computed independently as 
scalar formulations thus making it possible to independently tailor the dissipation for hydrodynamic 
and acoustic unsteadiness.  The convective flux terms have essentially a upwinded form with 
additional dissipation at low Mach numbers;  Liou demonstrates excellent results for steady low Mach 
number flows in the AUSM+up formulation, wherein the “u” and “p” refer to velocity and pressure 
dissipation terms that have been introduced into the basic AUSM+. Specifically, the magnitude of the 
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pressure dissipation term is controlled by the introduction of the steady preconditioning scaling in 
order to obtain uniform accuracy of this term at all Mach numbers [5].  Shima and Kitamura [7],[8] 
have proposed a variant to the AUSM scheme, referred to as the SLAU scheme (Simple Low 
Dissipation AUSM),  which has been applied primarily to unsteady flows. Interestingly, this scheme 
does not involve any explicit modifications for low Mach numbers, but as we will later show, this 
scheme is naturally formulated for unsteady low-Mach acoustic problems.   

The focus of this paper is to present a more generalized preconditioning framework based on an 
unsteady Mach number parameter which ensures that the flux formulation is accurate and efficient for 
both hydrodynamic and acoustic instabilities, and reverts to the traditional steady flux form in the 
limit of steady low Mach number flows.  The generalized unsteady preconditioning framework has 
been adapted for both AUSM and flux-difference schemes. The flux-difference procedures are 
derived by developing “blended” formulations of the “unsteady” and “steady” preconditioning 
parameters and are extensions of the work presented by Potsdam et al. [1].  For the AUSM family of 
schemes, the dissipation parameters for both the mass flux and pressure terms have been modified 
using the unsteady Mach number parameter.  The modified AUSM schemes are referred to as 
AUSM+up’ and AUSM+u’p’, where the “primes” designate that the pressure and/or velocity 
dissipation terms are being scaled by the unsteady Mach number. Corresponding modifications are 
proposed for the SLAU scheme as well.  Both the blended flux-difference and the modified 
AUSM+up formulations are tested on a range of unit problems encompassing both hydrodynamic and 
acoustic instabilities. Solution accuracy and unsteady inner iteration convergence are evaluated for 
these problems to demonstrate their wide range of applicability. 

 
2     Flux Formulations for Low Mach Number Unsteady Flows 
 
The formulation of a more generalized unsteady preconditioning framework for both flux differenced 
and AUSM family of schemes is described here.  We begin by giving a brief overview of the 
preconditioned system of equations and steady preconditioning for-flux difference schemes in 
Sections 2.1 and 2.2.  The “blended” flux difference formulations for unsteady preconditioning that 
were developed as part of this effort are described in Section 2.3.  The AUSM family of schemes is 
described in Section II.D and an analysis comparing AUSM+up and SLAU is discussed here.  The 
extensions for AUSM+up’ and AUSM+u’p’ employing the unsteady preconditioning parameter are 
described in Section 2.5. 

2.1     Preconditioned Equation System 
The standard conservative form of the equations (with a two-equation turbulence model) may be 
written as  

 v=S+DQ E F G
t x y z

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

+ + +  (1) 

where Q = [ρ, ρu, ρv, ρw, e, ρk,ρε]T represents the vector of conserved variables; E, F and G are the 
flux vectors; S represents the source terms (if any); and Dv represents the viscous fluxes.  For low 
Mach number flows as density approaches a constant the conservative variables become ineffective 
for temporal integration.  In this flow regime, the primitive variables vector, Qv = [p, u, v, w, T, k, ε]T, 
constitutes a particularly effective choice.  Primitive variables replace the density by pressure, thereby 
avoiding round-off errors, and the total energy by temperature which is more compatible with the 
thermal diffusion terms and for modeling multi-species flows (as, for example, the combusted exhaust 
plume from an aircraft engine). 

One effective way for expressing a general iterative method is through a dual-time formulation. Upon 
appending a pseudo-time derivative and a preconditioning matrix, Γp, Eqn. (1) takes the form; 

 v
p v

Q Q E F G S D
t x y z

∂ ∂ ∂ ∂ ∂
∂τ ∂ ∂ ∂ ∂

Γ + + + + = +  (2) 
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The numerical characteristics of the pseudo-time in this equation are determined by the eigenvalues of 
the matrix, ( )1 /p vE Q− Γ ∂ ∂   which are: 

 

2 2 2 2 2 21 ˆ ˆ ˆ ˆ ˆ ˆ ˆ(1 ) (1 ) 4 ' ( ) , , , , ,
2 x y zdiag U R U R c l l l U U U U UΛ = + ± − + + +  

   
 (3) 

where R represents the ration of the square of the pseudo-acoustic speed and the physical acoustic 
speed which can be expressed as the square of the ratio of the physical Mach number to a pseudo-
Mach number as 

 

( )
( )

2 2(1 )

(1 )
p T T P

p T T P

h h c M
R

h h c M

ρρ ρ ρ

ρρ ρ ρ

+ − ′
= = =

′ ′+ −
   
   
   

 (4) 

This system of equations can be made well-conditioned by choosing pρ′  to be of order  
2(1 / )p O uρ′  ≈   , thereby resulting in a pseudo-sound speed, [ ]( )c O u′ ≈ .  The preconditioning 

parameter, pρ′ , can be expressed in terms of the ratio of pseudo-Mach number to physical-Mach 
number and the ratio of specific heats: 

 
2

1 1p

p p

M
M

ρ γ
ρ γ γ

′  ′ −
= +  

 
 (5) 

where
 

2 2 2 2
minmin max( , , ),1p i uM M M M =    (6) 

Here, Mi is the local Mach number, Mmin is a user specified cut-off Mach number to preclude 
difficulties at stagnation points, and Mu is an “unsteady” preconditioning scaling.  This unsteady 
preconditioning term can be related to the global Strouhal number for the problem as: 

 u
LM
c tπ

=
∆

 (7) 

where L is a global length scale and ∆t is the time-step. In the following discussions, Eqn. (6) without 
the unsteady preconditioning scaling is referred to as steady preconditioning formulation, while the 
full version of Eqn. (6) is called the unsteady preconditioning formulation.  

 

2.2     Flux-Difference Algorithm:  Roe’s Scheme with Steady or Unsteady 
Preconditioning 
The inviscid flux at cell interfaces is calculated with an approximate Riemann solver given the 
reconstructed left and right solution states.  The flux difference/matrix-dissipation procedure based on 
Roe’s scheme [11] can be given as: 

 { }m v v v v
1 ˆ ˆF   F(Q , n) F(Q , n) F (Q , n) F (Q , n)
2

− + − += + + ∆ + ∆     (8) 

where n  is the area-directed normal of either the cell face or the dual face crossing the edge, vQ−  and 

vQ+  are the left and right primitive state variables, and vQ̂  denotes the Roe-averaged variables.  The 
flux differences ∆F- and ∆F+ are given by: 

 ( )v oi p p p p p v v
1ˆ ˆ ˆ ˆ ˆˆF (Q ,n ) R ( | |)L (Q Q )
2

+ + −∆ = Γ Λ + Λ −
  (9) 

 ( )v oi p p p p p v v
1ˆ ˆ ˆ ˆ ˆˆF (Q ,n ) R ( | |)L (Q Q )
2

− + −∆ = Γ Λ − Λ −
  (10) 

Here Γp, Rp, Lp, and Λp are the preconditioning matrix, right eigenvector matrix, left eigenvector 
matrix, and diagonal eigenvalue matrix vQ̂ for the preconditioned system computed with the Roe-
averaged variables. 
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2.3     Flux-Difference Algorithms: Blended Unsteady/Steady Preconditioned 
Schemes 
The standard flux difference formulation shown above (Eqns. (9) and (10)) indicate that the spatial 
dissipation is intimately tied to the time scaling defined by the preconditioning matrix.  Table 1 gives 
the behavior of the pressure and velocity dissipation terms for both steady low Mach numbers and for 
unsteady low-Mach, high-Strouhal numbers. In the steady low Mach case, the use of no 
preconditioning clearly leads to ill-behaved artificial dissipation terms with the pressure dissipation 
becoming vanishingly small and the velocity dissipation becoming unboundedly large. The use of the 
steady or inviscid preconditioning in Eqn. (6) clearly alleviates this situation and both the pressure 
and velocity dissipation terms become the same magnitude as the dominant physical terms in the 
equations of motion. The situation for unsteady flows in the low-Mach, high-Str limit is more 
challenging. It can be observed that using just the inviscid preconditioning in the flux formulation 
leads to increased dissipative errors in the pressure field, while the velocity dissipation is well-
behaved. In contrast, when the unsteady preconditioning scaling given in Eqn. (6) is used, the 
pressure dissipation is well behaved, while the velocity dissipation becomes too large. Thus, no 
scaling of the standard flux-difference formulation naturally preserves the discretization accuracy in 
the unsteady case.  

 
Table 1: Normalized scaling of the pressure and velocity dissipation terms in the steady low-

Mach limit and the unsteady low-Mach, high-Str limit for different preconditioning scalings in 
the flux-difference scheme. 

Formulation Steady Low Mach Limit Unsteady Low-Mach High-Str 
 Pressure Velocity Pressure Velocity 
No preconditioning O(M) O(1/M) O(1) O(1/M) 
Steady Preconditioning O(1) O(1) O(1/M) O(1) 
Uns. Preconditioning O(1) O(1) O(1) O(1/M) 
Blended scheme O(1) O(1) O(1) O(1) 

Also shown in Table 1 is the so-called blended formulation which is constructed so that “steady” and 
“unsteady” preconditioning forms can be used for specific terms in the momentum and energy 
equations, thereby controlling the pressure and velocity dissipation scaling independently.  These 
formulations are devised by exploiting the form of the algebraic expressions for the spatial dissipation 
terms.  The combination of the spatial dissipation terms in Eqns. (9) and (10) may be written as a 
matrix, Cp, multiplied by the change in the primary dependent variable vector: 

 v oi v oi p v v
ˆ ˆF (Q ,n ) F (Q ,n ) C (Q Q )+ − + −∆ + ∆ = −

    (11) 
where the combined dissipation matrix, Cp, can be written out as 

 

11 12 13 14 15 16 17
' ' ' ' '

11 21 12 22 13 23 14 24 15 25 16 17
'

11 31
'

p 11 41
' ' ' ' '

11 51 12 52 13 53 14 54 15 55 16 17

11 12 13 14 15 16 17

11

C C C C C C C

uC C uC C uC C uC C uC C uC uC

vC C

C wC C

HC C HC C HC C HC C HC C HC HC

kC kC kC kC kC kC kC

C



+ + + + +

+

= +

+ + + + +

ε

     

     

     


 
 
 
 
 
 
 
 
 
 
 



 (12) 

The form of this matrix shows that the entries for the scalar transport equations, such as those for the 
turbulence scalars or species equations for combusting flows, are multiples of the first row (the 
continuity equation) scaled by the convected property of that equation.  Similarly, the entries for the 
momentum and energy equations contained one term that is a product of the first row multiplied by 
the pertinent local scalar (e.g., u, H), however, they also include an additive correction term which is a 
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function of the eigenvalues.  Therefore, the form of this matrix suggests “blended” schemes in which 
steady and unsteady preconditioning can be applied to different parts of this matrix. 

One choice of blended scheme is constructed by decomposing the dissipation matrix into two terms as 
given by 

 ( )( )T
p v vF F C C Q Q+ − + −′∆ + ∆ = Φ + −  (13) 

where the first term is given by the tensor product of two vectors given by 
( )11 12 13 14 15 16 17C C C C C C C C=  and ( )1 u v w H k εΦ =  and the second term is a 

correction matrix pC′ .  This matrix structure suggests a sophisticated blending strategy in which 
“steady” and “unsteady” preconditioning forms could be used for specific terms in the momentum and 
energy equations which may be written as: 

 ( )( )p v
T

vF F C QC Q+ − + −∆ + ∆ = + −′Φ  (14) 

Here the TCΦ  terms use “unsteady” (green notation) while the pC′  terms could use “steady” 
preconditioning (red notation).  This blending scheme is equivalent to having the first row of the Cp 
matrix with unsteady preconditioning while the other rows will have a combination of steady and 
unsteady preconditioning terms.  The last row of Table 1 shows that such a scaling strategy results in 
well-behaved pressure and velocity terms in both the steady and unsteady limits.  

Other choices of blended schemes are possible, but have been observed to yield similar scaling results 
and so are not investigated further here.  Also, we note that this blended scheme is similar (but not 
identical) to the scheme proposed by Potsdam et al. [1].  

 

2.4     AUSM Type Algorithms for Preconditioned Systems 
Flux-splitting schemes provide an alternative approach to flux difference schemes for calculating the 
inviscid flux at cell interfaces.  These procedures are attractive since they provide a natural means to 
decouple the dissipation for the momentum and pressure flux thus allowing more flexibility to tailor 
the dissipation for acoustic and hydrodynamic instabilities in unsteady flows.  Prior to describing the 
extensions to an unsteady preconditioning framework we analyze the differences between the 
AUSM+up scheme [5] developed by Liou and the SLAU scheme derived from AUSM by Shima and 
Kitamura [7],[8] specifically for low Mach number flows.  These schemes are described below. 

The numerical flux for flux-split schemes is given by 

 
2 2

m m m m
F= pnΦ Φ+ −+ −

+ +
       (15) 

 1 T
Tu v w hΦ = ( , , , , )  (16) 

The unique formulation of the AUSM family schemes is determined by the choice of mass flux 
function, m , and average pressure, p . The mass flux in AUSM+up scheme is given by 

 

1/2
1/2

2
1/2 (4) (4) 2

0
,

( ) ( ) max(1 ,0)

L

R

p R L
L R

a

if M
m cM

otherwise
K p pM M M M M M
f c

ρ
ρ

σ
ρ

+ −

>
= 


−

= + − −



 (17) 

Here (4)M ±  are fourth order polynomials in Mach number.  The last term is a dissipation term 
formulated for low Mach number flows.  The fa term in the denominator increases the dissipation in 
inverse proportion to the Mach number and is equivalent to a steady preconditioning parameter.  It is 
defined as: 
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( ) ( )( ) ( )2 2 2 2 2 2 2
min2 [0,1], min 1,max , , 2a o o o L Rf M M M M M M u u c= − ∈ = = +  (18) 

Making a low Mach number assumption and dropping higher order terms in Mach number Eqn. (17) 
can be rewritten as: 

 
( ) 21 max(1 0)

2
p R L

n n
a

K p pm V V M
f c

ρ σ
ρ

± + − −
= + − − 

 
 ,  (19) 

where ρ ±  is ρ +  for 1/2M  greater than zero and ρ −  otherwise. 

The pressure flux formulation in the AUSM+up scheme is given by; 

 (5) (5) 5 5( ) ( ) 2L L R R u ap P M p P M p K P P f c uρ+ − + −= + − ∆  (20) 

Here (5)P±  are fifth-order polynomials in Mach number while the last term, which can be summarized 
as the pu dissipation term, is a dissipation term that operates at transonic Mach numbers and decreases 
in value as the Mach number drops.  Making a low Mach number assumption and dropping higher 
order terms in Mach number this equation reduces to: 

 ( ) ( ) [ ]1 3 3 2
2 4 8

p p p M p M p M c uρ+ − + + − −= + + − − ∆  (21) 

where the [2M] factor in the last term comes from the expression for fa. 

For the SLAU scheme given by Shima and Kitamura [7],[8], the mass flux is given directly in the 
simplified low Mach number form as 

 
( ) ( ){ }1

2 2
1 2

n n n nm V V V V p
c

M

χρ ρ

χ

+ −+ + − −= + + − − ∆

= −

  (22) 

While the pressure flux for the SLAU formulation is given by  

 
(5) (5)

(5) (5)

( )( ) ( )( ) (1 )( 1)
2 2 2

p
P Pp p p pp p P Pχ

+ −+ − + −
+ − + −=

−+ +
+ − + − + −  (23) 

Making a low Mach number assumption and dropping higher order terms in Mach number this 
equation reduces to:  

 ( ) ( )( ) [ ]1 3 3 2
2 8 8

p p p M M p p M c uρ+ − + − + −= + + + − − ∆  (24) 

where the [2M] factor in the last term comes from the expression for χ. 

Comparing the mass flux dissipation for AUSM+up (Eqn. (19)) and SLAU (Eqn. (22)), it is observed 
that the primary difference for the two schemes is the dissipation that is added at low Mach numbers 
for the AUSM+up scheme.  In the AUSM+up scheme, the dissipation term for the mass flux (which is 
a pressure dissipation) has the fa term in the denominator which increases the dissipation substantially 
as the Mach number drops and behaves like a steady preconditioning parameter.  In contrast, the 
SLAU formulation does not have this term and exhibits only a weak dependence on Mach number 
from the χ term in the numerator.  Therefore, the SLAU scheme would be inadequate for steady low 
Mach number problems as seen in Table 2, which shows the behavior of the pressure and velocity 
dissipation terms for the steady low-Mach and unsteady low-Mach/high-Str limits.  

In contrast, the AUSM+up scheme is well-behaved for steady low-Mach problems. Interestingly, in 
the unsteady acoustic limit, the SLAU scheme (which is similar to the basic AUSM+ scheme) 
performs well, while the AUSM+up scheme introduces too much damping in the acoustic/pressure 
field. To obtain uniform accuracy under both steady and unsteady limits, we consider in the following 
section the extensions of the unsteady preconditioning to the AUSM family of schemes.  
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Table 2: Normalized scaling of the pressure and velocity dissipation terms in the steady low-
Mach limit and the unsteady low-Mach, high-Str limit for different preconditioning scalings in 

the AUSM family of schemes. 

Formulation Steady Low Mach Limit Unsteady Low-Mach High-Str Limit 
 Pressure Velocity Pressure Velocity 
SLAU O(M) O(1) O(1) O(1) 
AUSM+up O(1) O(1) O(1/M) O(1) 
AUSM+up’ O(1) O(1) O(1) O(1) 
AUSM+u’p’ O(1) O(1) O(1) O(1/M) 
 

2.5     Extensions of Unsteady Preconditioning Framework to AUSM schemes 
As our analysis in the previous section indicates the standard AUSM+up scheme is optimized for 
steady low Mach number problems.  A more general unified formulation that automatically selects the 
appropriate dissipation level is presented here by formulating the mass flux dissipation in terms of an 
unsteady Mach number scale.  This modified scheme is referred to AUSM+up’; where the pressure 
prime indicates that the pressure dissipation is scaled by the unsteady Mach number.  The dissipation 
for the mass flux term in the AUSM+up’ scheme is generalized by modifying the definition of Mach 
number used to define the fa term in Eqn. (18) by including an unsteady preconditioning scale as 
follows: 

 

( )( )2 2
m

22
inmin 1,max , , uoM M MM=  (25) 

We note that in the most general configuration the Mu scale can be defined both as a global parameter 
and as local factor that is computed on the local flow physics.  For simpler problems a global 
parameter might suffice but for more complex physics where the characteristics may vary (e.g. high 
frequency in the near field of a turbulent jet and low frequency in the far-field) the ability for the 
numerical formulation to select the automatically select the unsteady scale is crucial.  We note that 
reducing the dissipation for the mass flux term for unsteady acoustic flows has been suggested both 
by Liou [5] and Vigneron et al. [6] however Eqn. (25) provides a means for the numerical formulation 
to self-select the appropriate dissipation level. Table 2 confirms that the resulting scheme is indeed 
well-behaved in both the steady and unsteady limits of interest.  

An additional modification involves changing the pressure dissipation term by adding additional 
dissipation for low Mach number acoustic problems using the unsteady Mach number parameter.  
These modifications lead to the AUSM+u’p’ scheme where the primes indicate that both pressure and 
velocity dissipation terms are scaled by the Mach number parameter. The definition of Mach number 
Mo using the unsteady Mach number scale Mu as shown above in Eqn. (25) also affects the pressure 
dissipation term in Eqn. (20) as shown below: 

 

0 when 0 for steady low Mach number flows
1 when 1 for unsteady low Mach number flows

a u

a u

f M
f M

≈ ≈
≈ ≈

 (26) 

In particular, for steady flows no additional dissipation results but for unsteady acoustic low Mach 
number flows substantial dissipation is added to the pressure flux. Table 2 shows that such a 
formulation adversely impacts solution accuracy in the velocity field for unsteady acoustic problems. 
Thus, the AUSM+up’ formulation appears to be the ideal choice of scheme for a wide range of steady 
and unsteady flow conditions with the exception of a narrow class of acoustic propagation problems 
where the AUSM+u’p’ was required (see discussion in Section 3.4).  We further note that the 
dissipation flux modifications in AUSM+up, AUSM+up’ and AUSM+u’p’ can be implemented in the 
context of the SLAU scheme as well with similar scaling behaviors of the associated dissipation 
terms.  
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3     Evaluation of the Low Mach Number Formulations 
 
The low Mach number formulations described in the previous section were evaluated with several test 
problems involving hydrodynamic and acoustic unsteadiness.  These calculations were performed 
with the CRUNCH CFD® code, developed at CRAFT Tech [12]-[15].  The candidate flux 
formulations for unsteady low Mach number flows will be tested out rigorously for the following 
three test cases that include both hydrodynamic and acoustic instabilities: 1) Unsteady inviscid Lamb 
vortex problem (hydrodynamic instability), 2) Unsteady inviscid flow in a pipe with fluctuating back 
pressure (mixed acoustic and hydrodynamic instability), and 3) Shock tube with small pressure 
difference (pure acoustic problem).  We note that both the “blended” flux difference and AUSM type 
schemes have to be run with inconsistent LHS and RHS discretization since these formulations are 
unstable when a consistent LHS is used.  For the results presented here we employ the standard 
preconditioned Roe flux differenced procedure on the LHS with unsteady preconditioning and dual 
time stepping at each time step. Prior to discussing the unsteady test cases, a steady low Mach number 
test case is presented to compare the Roe flux differenced procedure with the SLAU scheme; as 
discussed earlier the dissipation in the original SLAU scheme is shown to be appropriate only for 
unsteady flows and this constraint is demonstrated by computing a steady flow-field. 

 
(a) Pressure contours with SLAU Scheme:  Odd-even oscillations are evident 

  
(b) Pressure coefficient (c) Residual convergence 

Figure 1.  Solution for a steady flow over a NACA0015 airfoil at a freestream Mach number of 
0.001 and an angle of attach of 4o as computed with the SLAU scheme and a Roe flux 

differenced scheme with steady preconditioning. 
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3.1     Steady Flow over a NACA0015 Airfoil 
Steady state calculations were performed for a NACA0015 airfoil, at a freestream Mach number of 
0.001, Reynolds number of 1.95E+06, and an angle-of-attack of 4o using a Roe flux differences 
procedure with steady preconditioning and the SLAU scheme.  The higher order solution and 
convergence is shown Figure 1 for both schemes.  For the SLAU scheme it is noted that the solution 
shows oscillations with odd-even coupling that is reflected in the surface pressure coefficient.  
Moreover, the corresponding convergence shown in Figure 1(c) indicates that the SLAU solution does 
not converge in contrast to the solution with flux difference procedure with steady preconditioning.  
The numerical instability for the SLAU was verified to result from the low freestream Mach numbers; 
the odd-even oscillations were not evident when the Mach number was increased to 0.1 (results not 
shown).  Therefore, it was concluded that the mass flux dissipation in Eqn. (22) for SLAU scheme 
was unable to provide accurate solutions for steady low Mach number flows as expected. 

The dissipation term for SLAU was subsequently modified by adding the form of the dissipation from 
the AUSM+up formulation (Eqn. (19)).  Therefore, for steady low Mach number problems substantial 
dissipation (resulting from the fa term in the denominator of Eqn. (19) is added to the mass flux term, 
leading to what we refer to as the SLAU+p scheme.  The solution for the NACA0015 airfoil with the 
modified dissipation term is shown in Figure 2.  The flow contours and pressure coefficient are now 
smooth and the convergence was found to be independent of the Mach number.  Therefore, this 
confirms our premise discussed earlier that the SLAU scheme corresponds to the standard AUSM+ 
formulation and requires modifications in the steady limit (i.e., the SLAU+p scheme) for low Mach 
number flows. 

 
(a) Pressure contours with additional dissipation at low Mach number number (SLAU+p scheme) 

  
(b) Pressure coefficient (c) Residual convergence 

Figure 2.  Solution for a steady flow over a NACA0015 airfoil at a freestream Mach number of 
0.001 and an angle of attach of 4o as computed with the SLAU+p scheme. 
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3.2     Vortex Propagation Problem 
The propagation of an unsteady convecting inviscid Lamb vortex was used to assess the effectiveness 
of the flux formulations discussed above for the hydrodynamic class of problems.  The velocity 
distribution in polar coordinates for the Lamb vortex is given by 

 
2 2

10
reV Vr r

/ φ
Γθ

 −− = =   
 

 (27) 

where Γ and φ are the vortex strength and characteristic radius of the vortex and were set to 0.1Μ∞ 
and 0.03, respectively.  Simulations are presented here for a freestream Mach number of 0.001 were 
computed on a uniform Cartesian grid with a spacing of 0.005.  The vortex solution is presented after 
the vortex has travelled a distance equal to 0.4 on this uniform mesh.  The unsteady Mach number 
scale was specified as done by Potsdam et al. in Ref. [1].  
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For a baseline value of CFLu = 1 this translates to an unsteady Mach number of 2.55E-02.  For very 
small time steps (e.g., CFLu = 0.001) the unsteady Mach number becomes1 and the dissipation levels 
are representative of unsteady preconditioning.  Results are presented for the baseline time-step 
dictated by CFLu = 1 and an extremely small time-step given by CFLu = 0.001.  Two-hundred and 
fifty inner iterations were used for all cases.  Both the blended flux difference scheme and the 
AUSM+up’ scheme are compared with benchmark values of Roe flux differenced scheme using 
steady and unsteady preconditioning. 

The vortex solution and inner iteration convergence are shown for the baseline time step of CFLu = 1 
in Figure 3 for the different schemes. The exact vorticity profile is given by the black line in Figure 
3(a). The red and blue lines correspond to the standard flux-difference scheme with steady and 
unsteady preconditioning, respectively.  The result computed with a blended flux formulation is given 
by the green line whereas the orange line gives the profile computed with the AUSM+up’ scheme.  
The vorticity profiles show that the flux difference scheme with steady preconditioning, the blended 
flux difference scheme, and the AUSM+up’ collapse to essentially the same solution.  The solution 
computed using the flux difference scheme with unsteady preconditioning has poor accuracy 
compared to the other schemes, however, the convergence plots shows that it has the best rate of 
convergence indicating optimal time scaling for convergence.  Rectification of this inconsistency 
between solution accuracy and convergence was one of the primary goals at the outset of this 
research.  The convergence for the blended scheme is slightly better than the flux difference scheme 
with steady preconditioning.  The convergence for the AUSM+up’ scheme is worse than the blended 
scheme which is likely due to the increased inconsistency of the left-hand side and right-hand side 
flux formulations, however, the solution was just as accurate as the blended and pure steady 
preconditioning schemes. 
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(a) Vorticity profile (b) Inner iteration convergence 
Figure 3.  Vortex solution accuracy and convergence a time-step of CFLu = 1. 

 

To further confirm the insensitivity of the solution accuracy to the unsteady preconditioning 
parameter, the time-step was reduced to CFLu = 0.001 which goes to the limit of unsteady 
preconditioning for the blended and AUSM+up’ schemes.  The vorticity profiles and inner iteration 
convergence are plotted in Figure 4.  At this much smaller time step, the steady preconditioning case 
and AUSM+up’ show essentially flat convergence while the baseline unsteady preconditioning and 
blended scheme show rapid convergence.  From Figure 4(a), it is observed that the accuracy for the 
baseline unsteady preconditioning scheme deteriorates very dramatically while the blended scheme 
continues to provide an accurate vorticity profile.  Despite the very poor convergence, the AUSM+up’ 
scheme and the baseline scheme with steady preconditioning give as accurate a profile as the blended 
flux formulation. 

  
(a) Vorticity profile (b) Inner iteration convergence 

Figure 4.  Vortex solution accuracy and convergence for a time-step of CFLu = 0.001. 
 

Thus far the predicted vorticity field was considered as the metric for evaluating the solution 
accuracy.  However, while the pressure variations may be very small, its gradient should correspond 
to the swirl velocity in the vortex.  Therefore, it is instructive to evaluate the resulting pressure 
contours for the difference flux procedures.  The vorticity and pressure contours for the various 
schemes are plotted in Figure 5 and Figure 6, respectively.  The flux difference scheme with steady 
preconditioning gives accurate results for the vorticity field as seen in Figure 5(a), however, the 
pressure field in Figure 6(a) is very inaccurate.  This is not unexpected since the steady 
preconditioning gives the correct scale for the velocity equation but provides an incorrect scale for the 
acoustic eigenvalues.  The flux difference scheme with unsteady preconditioning gives poor solutions 
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for both the vorticity and pressure fields in Figure 5(b) and Figure 6(b) due to large dissipation in the 
velocity equation.  

    
(a) Flux Difference 

with Steady 
Preconditioning 

(b) Flux Difference 
with Unsteady 

Preconditioning 

(c) Blended Scheme (d) AUSM+up’ 
Scheme 

Figure 5:  Vorticity field for various flux schemes for a time step of CFLu=0.001. 
 

The blended flux difference scheme gives the correct solution for both the vorticity and pressure field 
as shown in Figure 5(c) and Figure 6(c), since they use different preconditioning scales for the two 
variables: unsteady for the pressure wave and steady for the velocity field.  However, there appears to 
be one notable discrepancy in that the pressure field is not circular to match the vortex but is instead 
distorted to be a rhombus.  The cause of this distortion is not fully understood but may be due to the 
difference in magnitude for the cross-dissipation terms involving the velocity components and the 
pressure field (e.g., ∆u∆p versus ∆v∆p). 

The vorticity and pressure fields computed using the modified AUSM+up’ scheme can be seen in 
Figure 5(d) and Figure 6(d).  Accurate solutions are realized for both the velocity and pressure fields.  
In particular, the pressure field does not show the distortion that was evident from the blended scheme 
results.  Moreover, the circular contours in the pressure field accurately match the contours of the 
velocity field.  The blended flux-difference and the AUSM+up’ schemes both show odd-even 
oscillations in the pressure field.  The source of this instability is not clear but may be related to the 
inconsistency between the schemes used for the flux for the implicit and explicit sides. 

    
(a) Flux Difference 

with Steady 
Preconditioning 

(b) Flux Difference 
with Unsteady 

Preconditioning 

(c) Blended Scheme (d) AUSM+up’ 
Scheme 

Figure 6:  Gauge pressure field for various flux schemes for a time step of CFLu=.001. 
 

In summary, both the blended flux difference and the AUSM+up’ schemes are able to provide 
accurate solutions of the vorticity field and are insensitive to the time step.  Both schemes are a 
substantial improvement over previous baseline flux difference procedures that showed inconsistency 
between convergence and accuracy with the solution accuracy in particular deteriorating rapidly with 
unsteady preconditioning.  An evaluation of the pressure contours revealed that both the blended flux 
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difference and the AUSM+up’ schemes were able to provide the correct pressure depression in the 
vortex.  However, the solutions for the blended flux difference scheme show a distortion of the 
pressure field shape.  In contrast, the pressure field computed using the AUSM+up’ scheme 
maintained the circular pressure field.  The only drawback of the AUSM+up’ formulation appears to 
be less than ideal convergence at small time steps and this is probably related to the inconsistent 
discretizations on the LHS and RHS.  This is potentially an area requiring improvement in terms of 
efficiency of the procedure. 

 
3.3     Simulations of Flow in a Tube with Oscillating Back Pressure 
The next test problem investigated was inviscid flow in a 1-D tube where the back pressure was 
fluctuated and the inlet pressure was held constant as given by 

 0
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The analytical solution for this scenario is given below: 
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The velocity field is uniform in space but fluctuates in time, while the pressure field has a linear slope 
spatially from the inlet to the exit while also fluctuating in time.  The key parameter of interest here is 
the Strouhal number Ω; as Ω increases the unsteady time scales become dominant and the baseline 
flux difference procedures provide inaccurate solutions that vary with the preconditioning parameter.  
Therefore, this problem would be a good test for the validity of both the blended flux difference and 
the modified AUSM+up’ schemes.  The objective is to be able to get an accurate solution independent 
of the preconditioning parameter and frequency. 

In the present calculations, the mean Mach number in the tube was specified to be 0.001 and a 5 
percent fluctuation amplitude was applied at the exit with 100 inner iterations for the dual time 
iteration.  The frequency and the time step were varied over a broad range to test the robustness and 
accuracy of the flux procedures over a broad range of conditions.  The steady preconditioning Mach 
number cut-off was specified as 0.001 while the unsteady Mach number scale was set to 1.0.  The 
time step was specified as 2 π/(PPW Ω) where PPW denotes the points per time period. 

For the benign scenario where the fluctuation frequency is low, Ω = 1, and the time-step is large with 
10 points per time period, the baseline flux difference scheme with steady and unsteady 
preconditioning, the blended flux difference scheme, and the AUSM+up’ scheme all produced 
pressure and velocity profiles that matched the exact solution.  Essentially in this case the flow 
behaves like a quasi-steady problem with the time variation being a series of steady variations. The 
convergence history shows very little difference between steady and unsteady preconditioning for the 
various schemes and is consistent with this quasi-steady picture. 

The results for the more difficult case in which the fluctuation frequency is high, Ω = 100, and the 
time-step is small with 1000 points per time period are presented in Figure 7.  For the flux difference 
scheme with steady preconditioning, the pressure response becomes very unstable and the amplitude 
overshoots the exact solution for velocity and pressure as seen in Figure 7(a) and Figure 7(b), 
respectively.   
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(a) Velocity history (b) Pressure history 

  
(c) Velocity residual (d) Pressure residual 

Figure 7:  Velocity and pressure history and residuals for a high oscillation frequency  
( 100Ω = ) computed with a small time step (1000 PPW) 

 

Moreover, an excessive phase error is also evident.  The pressure residual for the steady 
preconditioning scheme is shown in Figure 7(d) and shows no convergence during the inner 
iterations.  This is consistent with the incorrect flow results.  The solutions computed using the 
blended flux difference scheme, and the AUSM+up’ gave essentially the same results that matched 
the exact solution very well.  Therefore, only the solution profiles predicted by the modified 
AUSM+up’ scheme are shown in Figure 7.  The velocity profile matches the exact solution perfectly.  
However, an initial fluctuation around the exact solution can be seen for the pressure transient in 
Figure 7(b).  This fluctuation decays very quickly and the source of the error is not clear at this point.  
The convergence history plotted in Figure 7(c) and Figure 7(d) for the velocity and pressure residuals 
show that the AUSM+up’ show good convergence slopes in general for both the velocity and pressure 
residual.  In contrast the steady preconditioning shows very poor convergence consistent with the fact 
that steady preconditioning is inappropriate for high frequency pressure fluctuations.  These results 
confirm that for low Mach number acoustic problems that the dissipation for the continuity equation 
(pressure variable) for both the AUSM+up’ and the blended flux difference form must be consistent 
with the unsteady preconditioning form. 

 
3.6     Simulations of Shock Tube with Small Pressure Difference 
The final test case is a pure acoustic problem with low velocities. Here we model a shock tube with a 
very small pressure difference across the diaphragm that generates a low Mach number flow.  In this 
particular case, a tube of length 1 m was chosen and the diaphragm was placed at x = 0.5.  The 
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pressure on the left side of the diaphragm is initialized to 100028.04 Pa and the pressure on the right 
side is initialized to 100000 Pa; therefore the pressure difference is 28.04 Pa.  The temperature is 
initialized to 300 K on both sides and the initial velocity is zero.  A very weak acoustic waves results 
and generates a low Mach number flow of the order of 0.0001 in the contact interface. 

In the calculations presented here, the time step was kept constant at 10 µs and the calculations were 
done for a total time of 750 µs.  One-hundred inner iterations were used at each time-step and the 
unsteady Mach number for unsteady preconditioning was set to 1.0.  The results of the previous 
problem confirmed that dissipation corresponding to unsteady preconditioning must be employed 
when simulating low Mach number acoustic problems.  Therefore, the flux difference procedure with 
steady preconditioning will not be considered here. 

Figure 8 shows the solution predicted using the baseline flux difference scheme with unsteady 
preconditioning and the blended flux difference procedure.  Recall that the blended scheme uses 
unsteady preconditioning for the pressure waves and steady preconditioning for the velocity and 
temperature equation.  For the solution profiles shown in Figure 8, the steady preconditioning 
parameter is set to Ms = 0.01 and the unsteady Mach number scale was set to Mu = 1.0.  It can be seen 
in Figure 8(a) and Figure 8(b) that the acoustic wave and the contact interface have propagated to the 
correction location and the inner iteration convergence history shown in Figure 8(c) appears to be 
good for both flux difference procedures.  

   
(a) Pressure profile (b) Mach number profile (c) Inner iteration convergence 

Figure 8:  Shock tube solutions for the blended flux difference schemes with Mu=1.0 and 
Ms=0.01 

 

However, closer inspection shows that the blended flux difference procedure produces small 
fluctuations in the pressure field at the contact interface which translates to substantial fluctuations in 
the velocity.  The level of the fluctuations is sensitive to the disparity between the steady and unsteady 
preconditioning in the blending formula; the oscillation amplitude increases as the steady cut-off 
Mach number is reduced and the oscillation amplitude decreases as the steady cut-off Mach number is 
raised.  If Ms is increased to 1.0 then the blended flux procedure is identical to the flux difference 
scheme with unsteady preconditioning which does not produce any oscillations. 

The profiles predicted using the AUSM+up schemes are shown in Figure 9 for two different 
formulations.  The profiles given by the blue-line include the modification to the mass flux dissipation 
term as given by Eqn. (25), however, does not include the modification to the pressure dissipation 
term as given by Eqn. (27).  It can be observed from Figure 9 that this formulation produces 
fluctuations near the contact surface similar to what was seen from the blended flux difference 
procedure.  Additional calculations were done with larger pressure ratios that increase the flow Mach 
number and it was found that the oscillations dissipate when the pressure difference is large enough to 
generate a Mach number of the order of 0.1 at the contact interface.  This provides conclusive 
evidence that this numerical instability is related to acoustic propagation at low Mach numbers.  In 
particular, these oscillations appear to be a fundamental manifestation of inadequate dissipation in the 
pressure flux that arises for low Mach number flows where the velocity arises from the propagating 
pressure pulse and appear for both blended flux difference and AUSM family of schemes. 
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(a) Pressure profile (b) Mach number profile (c) Inner iteration convergence 

Figure 9:  Shock tube solutions for the AUSM+up schemes with Mu=1.0 
 

The derivation of the additional pressure dissipation in Eqn. (27) was in fact motivated by this test 
case which pointed out the inadequacy of the pressure dissipation term in both flux differenced and 
AUSM schemes.  The velocity dissipation term in the pressure flux for the AUSM+up formulation 
goes to zero as the Mach number becomes low.  However this dissipation may be required for 
reducing the pressure fluctuations for low Mach number acoustic waves and, therefore, the unsteady 
Mach number parameter was included in Eqn. (27) for the definition of fa.  In this so-called 
AUSM+u’p’ scheme, the addition of the unsteady Mach number scale in the velocity dissipation term 
means that it retains a substantial value for unsteady low Mach number flows.  The effect of this 
dissipation is illustrated in Figure 9 as indicated by the profiles given by the green line.  The addition 
of the velocity dissipation allows for solutions that are smooth in both the pressure and Mach number 
profiles.  Furthermore, the convergence is slightly improved and, therefore, provides a scheme that 
works in an accurate and efficient manner. 

In summary, simulations for low Mach number shock tube configurations which represent a pure 
acoustic wave propagation that generates a very low Mach number flow indicates that both blended 
flux difference and the original AUSM+up/SLAU schemes have some fundamental deficiencies.  
While the location of the acoustic front was accurately captured, the pressure and velocity in the 
contact interface showed fluctuations that were a function of the local Mach number.  For very weak 
acoustic waves where the flow Mach number was 0.0001 substantial oscillations were observed which 
dissipated as the Mach number rose to 0.1 (for a larger initial pressure difference).  The fundamental 
deficiency in the dissipation was rectified in the AUSM+u’p’ scheme by adding a pressure dissipation 
that is enforced only for unsteady low Mach number flows and represents a fundamental advancement 
to the AUSM family of schemes.  Unfortunately for blended flux difference schemes there is no clear 
remedy apart from going to a pure unsteady preconditioning procedure (i.e. no blending) which 
obviously is not acceptable for the broader class of unsteady low Mach number flows that were tested. 

 

4     Concluding Remarks 
 
A generalized preconditioning framework that is both accurate and efficient for unsteady low Mach 
number flows is presented.  It rectifies the deficiencies of standard steady/unsteady preconditioned 
flux difference schemes for simulating unsteady low Mach number flows and has been shown to 
apply to a broad class of problem encompassing both hydrodynamic and acoustic driven unsteady 
flows.  Two classes of schemes were considered: flux difference schemes with blended steady and 
unsteady preconditioning and AUSM family of flux-splitting schemes.  For flux difference schemes, 
generalized “blending” methodologies were developed (extending earlier work by Potsdam et al. [1]) 
wherein “unsteady” preconditioning is used for the pressure wave propagation, while “steady” 
preconditioning is used for the convected scalars that propagate at the fluid velocity.  Two well-
known AUSM schemes were analyzed initially; the AUSM+up by Liou [5] and the SLAU scheme by 
Shima and Kitamura [7],[8].  The SLAU scheme was shown to be equivalent to the standard AUSM+ 
formulation (i.e., without the additional velocity and pressure dissipation proposed for low Mach 
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number flows).  A more generalized formulation, the AUSM+up’ scheme, that provides a unified 
framework for unsteady and steady flows using an unsteady Mach number parameter was developed; 
the unsteady Mach number parameter which can be specified as a local function of the flow physics is 
shown to provide the right selection of dissipation in the mass flux term.  Furthermore a new velocity 
dissipation term was developed in the AUSM+u’p’ formulation for acoustic flows to suppress 
spurious oscillations at very low Mach numbers.  

Both the blended flux difference schemes and the modified AUSM+up’ schemes were tested over a 
wide range of unsteady test cases that encompass both hydrodynamic and acoustic unsteadiness.  Both 
schemes gave superior results with both the pressure wave and velocity propagation being captured 
accurately independent of time step and Strouhal number while providing adequate convergence for 
the inner iteration.  However there were two notable exceptions: 1) for multi-dimensional flows such 
as the vortex propagation problem the blended flux difference schemes distorted the pressure field 
while the AUSM+up’ scheme did not, and 2) for small pressure jump shock tube problem, oscillations 
in the contact surface were suppressed in the AUSM+u’p’ scheme by the addition of a velocity 
dissipation term while no remedy was available for the blended flux difference procedure.  Therefore, 
the modified AUSM+up’ and AUSM+u’p’ schemes are considered the superior scheme for unsteady 
low Mach number flows.  We note here that the additional velocity dissipation term in AUSM+u’p’ is 
needed only for suppressing the oscillations in the shock-tube problem. In all other cases, the 
modified AUSM+up’ scheme proved to be the best choice. Resolving this discrepancy will be 
addressed in future work. Additionally, improvement of the inner iteration convergence for the 
AUSM+up’ scheme also deserves further scrutiny. Here, the convergence may currently be hindered 
by the inconsistency between the LHS (implicit matrix) and RHS.  Finally, future work will also focus 
on extending the methodology to frameworks that have both rotational and inertial frames as well as 
on developing generalizing the unsteady preconditioning parameter to consider local and global 
Strouhal numbers. 
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