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Abstract: We have performed direct numerical simulation (DNS) of a particle-laden spatially
developing, zero-pressure-gradient turbulent boundary layer at Reθ = 1000− 2750. We computed
the Lagrangian trajectories of �uid points and solid particles of three di�erent Stokes numbers
(St = 0.1, 1, and 5). The particles were released in the computational domain from a line source
at three di�erent distances from the wall, in the viscous sublayer, the bu�er layer, and the log-
layer (z+inj = 2, 10, and 100). The �uid points mean-displacement obtained from the DNS is
analyzed and compared to the theory of Batchelor (1964). Also, the time development of �uid
point and solid particle mean-square displacement (or dispersion) and turbulent di�usivity are
analyzed. Dispersion statistics are generally found to be strongly in�uenced by particle inertia.
Such dependence is mostly caused by the particles tendency to preferentially concentrate in the
viscous sublayer. Furthermore, for very long times (several integral timescales), the DNS results
show that the streamwise dispersion of �uid points and particles with St= 0.1 is nearly ∝ t5/3,
while that of particles with St= 1 and 5 is nearly ∝ t5/2. For all cases studied, the long-time
wall-normal dispersion is nearly ∝ t.
Keywords: Direct Numerical Simulation, Turbulent Boundary Layers, Particle-Laden Flows,
Dispersion.

1 Introduction

Particle dispersion in turbulent �ows is common in many engineering and environmental applications. Fun-
damental understanding of particle dispersion in turbulent �ows can improve prediction of sedimentation
processes and pollutant dispersion in the atmosphere. A review on dispersion in homogeneous turbulent �ows
is given by Yeung (2002). Theoretical studies of �uid points dispersion have been performed for isotropic
turbulence by Taylor (1921), for homogeneous shear �ow by Corrsin (1959), and for turbulent boundary
layers by Batchelor (1964) and Chatwin (1968). These theories rely on the turbulent di�usivity hypothesis.

Practical �ows are mostly inhomogeneous turbulent �ows, and often bounded by one or more walls.
Soldati & Marchioli (2009) review the DNS studies of particle-laden fully-developed turbulent channel �ows
with emphasis on particle deposition and entrainment. DNS studies of particle dispersion in the zero-
pressure-gradient spatially developing turbulent boundary layer, which is homogeneous only in the spanwise
direction, have not been reported in the refereed literature.

One of the �rst experiments on dispersion in a turbulent boundary layer was conducted by Poreh &
Cermak (1964), in which ammonia gas was released steadily from a line source near the wall. They identi�ed
four stages of dispersion in their experiments, and Shlien & Corrsin (1976) identi�ed similar stages when
measuring mean temperature pro�les behind a heated �tagging� wire in a turbulent boundary layer:

1. An initial stage when the particles exhibit short time (t � TL, where TL is the Lagrangian integral
time scale of turbulence) dispersion behavior near the source, in which the particle distribution is
approximately Gaussian.
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2. An intermediate stage in which the dispersed cloud is �submerged in the boundary layer�, i.e., particles
are within the turbulent boundary layer and below the viscous superlayer, a thin front separating the
turbulent boundary layer �uid from the irrotational free-stream �uid (see e.g. Pope (2000)).

3. A transition stage when the viscous superlayer acts as a �lid� which inhibits dispersion. Dispersion in
the irrotational region is greatly attenuated as it is only accomplished through the much slower process
of molecular di�usion.

4. A �nal (asymptotic) stage in which the particle dispersion is regulated by the growth of the spa-
tially developing boundary layer. The dispersed cloud is contained between the wall and the viscous
superlayer, and mean-pro�les become independent of the line-source distance from the wall.

The clustering of particles near the wall, commonly referred to as turbophoresis (Caporaloni et al., 1975),
has been documented, e.g., Reeks (1983) and Marchioli & Soldati (2002). Turbophoresis has been described
as a process whereby inertial particles in turbulent �ows preferentially migrate to regions of lower turbulence
intensity. Recent direct numerical simulations of inertial particle dispersion in fully-developed turbulent
channel �ow have revealed that coherent structures play a dominant role in transferring particles to the wall
(Marchioli & Soldati, 2002). Additionally, particle Stokes number are found to a�ect the peak concentration
magnitude.

Our objective in the current paper is to present, for the �rst time, DNS results of dispersion of �uid
points and solid particles from a line source in a spatially developing turbulent boundary layer. We identify
the e�ects of particle Stokes number and release distance from the wall on particle statistics and we compare
�uid point dispersion with the theory of Batchelor (1964).

2 Mathematical Description

2.1 Governing Equations

The governing equations for an incompressible turbulent boundary layer �ow are the three-dimensional
unsteady Navier-Stokes equations, which are given here in dimensionless form:

DUj
Dt

= − ∂p

∂xj
+ ν

∂2Uj
∂xk∂xk

, (1)

and the continuity equation,
∂Uj
∂xj

= 0 , (2)

where xj are the streamwise x-, spanwise y- and wall-normal z-direction respectively for j = 1, 2, 3. The
dimensionless kinematic viscosity is ν = 1/Reδ where Reδ= Ũ∞δ̃0/ν̃ is the Reynolds number based on the
dimensional free-stream velocity Ũ∞, the dimensional boundary layer thickness (based on the location of 99%
of the freestream velocity) δ̃0 at the inlet plane (x = 0) of the computational domain, and the dimensional
kinematic viscosity ν̃ (= 10−6m2s−1). All variables in (1) and (2) are non-dimensionalized by Ũ∞ and δ̃0
(Table 1).

Throughout the paper, dimensionless quantities in wall-units carry the superscript `+', i.e. U+
ref =

Uref/uτ and z+ = zuτ/ν where uτ =
√
τw/ρf is the friction velocity, τw is the wall shear stress, and ρf

is the �uid density. Additionally, the �uid velocity component Ui is written as the sum of its mean and
�uctuation, Ui(x, y, z, t) = 〈Ui〉(x, z) + ui(x, y, z, t), where 〈. . .〉 represents, spatial averaging in the spanwise
(y) direction in addition to time averaging of the enclosed quantity, and ui is the local instantaneous deviation
from 〈Ui〉.

The particle equation of motion for particles smaller than Kolmogorov's length scale of turbulence, derived
by Maxey & Riley (1983), can be written for large ratio (ρp/ρf ) of particle density to �uid density as

dVj
dtp

=
(Uj − Vj)

τp
fd(Rep) (3)
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where d/dtp is the time derivative following the moving particle, Vj is the instantaneous particle velocity,
Uj is the instantaneous �uid velocity at the particle location, and fd(Rep) = 1 + 0.15Re0.687p is an empirical
correction to Stokes formula. The particle Reynolds number is de�ned as Rep = d|Uj − Vj |/ν. τp is the
particle response time, which for Stokes drag law is

τp =
d2

18ν

ρp
ρf

(4)

where d is the particle diameter.

2.2 Numerical Method

We employ the Eulerian-Lagrangian approach in which we solve the �uid continuity and momentum equa-
tions, Eqs. (1) and (2), in an Eulerian framework, whereas the particle equation of motion, Eq. (3), is solved
for each particle to track its trajectory in time.

Figure 1 shows a schematic of the spatially developing turbulent boundary layer (SDTBL) �ow where
the line source (x = 10.0δ0) is placed downstream the inlet recycling plane (x = 8.25δ0). The computational
domain is a parallelpiped whose dimensions Lx, Ly, and Lz and the corresponding number of grid points,
Nx, Ny and Nz in the streamwise, spanwise and wall-normal directions respectively are listed in Table 2.
The computational mesh is equispaced in the streamwise and spanwise directions, with grid spacings ∆x+

and ∆y+ (Table 2), whereas in the vertical direction, the mesh is stretched gradually via mapping a uniform
computational grid ζ into its non-uniform counterpart z with a combination of hyperbolic tangent functions
(Ferrante & Elghobashi, 2004) with the closest grid point to the wall located at z+min = 0.33.

Reδ ν = 1/Reδ uτ0 δ̃0 (mm) Ũ∞(m s−1)

9.5× 103 1.05× 10−4 0.0447 10.0 0.95

Table 1: Fluid properties.

Lx Ly Lz L+
x L+

y L+
z Nx Ny Nz ∆x+ ∆y+ z+min

90δ0 5δ0 7.2δ0 38177 2121 3053 4608 512 256 8.28 4.14 0.33

Table 2: Computational domain parameters.

The governing equations, (1) and (2), were discretized in space in an Eulerian framework on a staggered
mesh using a second-order central di�erence scheme, except for the mean advection terms, which were
evaluated via a �fth-order upwind di�erencing scheme. Time integration was performed via the second-
order Adams-Bashforth scheme with a time step ∆t = 0.075ν/u2τ . Pressure was treated implicitly and was
obtained by solving the Poisson equation in �nite-di�erence form using a cosine transform in the streamwise
direction, a fast Fourier transform (FFT) in the spanwise direction, and Gauss elimination in the wall-normal
direction (see Ferrante & Elghobashi (2004) for a complete description).

Particles were released gradually downstream the recycling plane from a line source located at x = 10δ0
and variable height z+inj (Fig. 1). The particles were released over one Eulerian integral time scale (Tx,L ≈ 1.5)
starting at time t = 0 in order to improve statistical accuracy by eliminating memory e�ects near the source.
The time a particle was released will be referred to hereinafter as �release time�, tp,r. The initial velocity
at tp,r of each particle was set equal to the instantaneous �uid velocity at the particle position. Particle
trajectories were then tracked in time by solving for each particle the particle equation of motion (Eq. (3))
using the second-order Adams-Bashforth scheme to compute the particle velocity. The �uid velocity, Uj ,
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Case λr�
1 1.25± 0.25
2 2.5± 0.5
3 5± 1
4 7.5± 1.5

Table 3: Dynamic re�ection parametric study

at the particle location which is needed to solve Eq. (3), was computed via a fourth-order accurate fully
three-dimensional Hermite interpolation polynomial (see Ferrante (2004), Appendix D) which switches to a
one-sided scheme for particles located below the �rst grid point from the wall. The particle position was
then computed from the time integration of the particle velocity. We tracked Np = 8 × 106 particles. The
results (not shown) using Np = 17 × 106 were indistinguishable from those using Np = 8 × 106. Particles
that hit the wall are re�ected elastically into the interior of the compuational domain. The simulations were
stopped after 0.001% of the particles have exited the computational domain.

2.2.1 In�ow and out�ow boundary conditions

The method for generation of the turbulent �ow conditions at the inlet plane (x = 0) are described in detail
by Ferrante & Elghobashi (2004). However, in the present work, we have implemented three modi�cations
to that methodology, in particular, regarding (i) the computational domain, (ii) the rescaling procedure, and
(iii) the out�ow convective velocity. Each modi�cation is now described in detail.

(i) Computational domain Instead of using two computational domains, a short box (A, Lx = 10δ0) to
generate in�ow conditions and a long box (B, Lx = 20δ0) for the main simulation (see Fig. 1 of Ferrante &
Elghobashi (2004)), as in Ferrante & Elghobashi (2004), we simply use a single very long box (A, Lx = 90δ0)
in which we keep generating in�ow conditions through the recycling procedure, thus avoiding the writing
and reading operations of in�ow conditions from box A to box B. Overall this saves storage and halves the
computational time avoiding the need of writing and reading the in�ow plane information from box A into
B.

(ii) Rescaling procedure The rescaling procedure of Lund et al. (1998) used in Task 2 of Ferrante &
Elghobashi (2004) generates spurious two-point velocity correlation,

Rij(r, x, t) = 〈ui(x, t)uj(x+ r, t)〉, (5)

as shown in Fig. 2(a) with unphysical peak values of R11 at x = 8.25δ0 and 16.5δ0. To remove these peaks,
the rescaled plane was dynamically re�ected similarly to the method in Morgan et al. (2011), in which the
dynamic re�ection was applied to a large-eddy simulation of a supersonic boundary layer. We have adapted
the dynamic re�ection methodology of Morgan et al. (2011) to DNS of SDTBL.

Due to the periodicity in the spanwise direction (y-axis), the in�ow can be re�ected about any y-plane
to remove the non-physical peaks of the velocity correlations. A single in�ow plane re�ection generates a
correlation in a diagonal direction. To remove this, the plane has to be re�ected at random y-planes at
random time intervals. Also, the period of time between the change in re�ection planes has to be random
to remove any time correlations.

A parametric study was performed to �nd the best range of the random re�ection times. The parameters
used to de�ne the random re�ection time interval are as follows: λr� as de�ned in the paper by Morgan
et al. (2011) as the characteristic streamwise streaks length. This is used to �nd the mean re�ection time
τr� = λr�

0.8U∞
. Case 3 of the test-cases summarized in Table 3 produced the best results by removing the

spurious velocity correlations as shown in Fig. 2(b) and by producing accurate results (Figs. 4 5).

(iii) Out�ow convective velocity At the out�ow plane (x = Lx), a zero-pressure gradient in the stream-
wise direction (∂p/∂x = 0), and the following convective condition Lowery & Reynolds (1986) was imposed
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for the velocity �uctuations,
∂uj
∂t

+ Uc
∂uj
∂x

= 0, (6)

where Uc is the convective velocity at the exit plane and uj is the �uctuating velocity. The convective velocity
in Ferrante & Elghobashi (2004) was de�ned by taking the span and wall normal averaged convective velocity:

UC(t) = 〈〈UC(x, y, z, t)〉y〉z. (7)

The new out�ow convective velocity is only averaged in the spanwise direction:

UC(z, t) = 〈UC(x, y, z, t)〉y. (8)

Using (7) instead of (8) in (6) allows to advect the velocity �uctuations at the out�ow plane at their local
average velocity, rather then a plane-averaged speed that would be too large for the advection at the near
wall grid points. This modi�cation improves the spatial development of the boundary layer near the out�ow
plane by producing a nearly straight line of the Reθ(x) pro�le as shown in Fig. 3.

3 Results

3.1 SDTBL

We now compare our DNS results with experimental and DNS data for a spatially developing turbulent
boundary layer over a �at plate at Reθ = 1430 and 2541. Figures 4(a) and (b) display the comparison in
wall units for the mean streamwise velocity, 〈U1〉+, and three Reynolds stresses at Reθ = 1430 (x = 21.8δ0)
with the experimental data of DeGraa� & Eaton (2000) and the DNS results at Reθ = 1421 of Schlatter
& Örlü (2010). Figures 4(a) and (b) show similar agreement between the present DNS and the DNS by
Schlatter & Örlü (2010). The mean velocity pro�le is in excellent agreement with the experimental pro�le.
The Reynolds stresses also show good agreement with the experimental data. Figures 5(a) and (b) display
the comparison of 〈U1〉+ and 〈u21〉+ at Reθ = 2541 (x = 83.0δ0) with the experimental data of Schlatter et al.
(2009) and DNS data of Schlatter & Örlü (2010). Again, 〈U1〉+ of the present DNS is in excellent agreement
with the experimental pro�le. Figure 5(b) shows a similar discrepancy in the 〈u21〉+ max value between the
present DNS and the DNS of Schlatter & Örlü (2010) compared with their experiments. Our computed skin
friction coe�cient (Cfx = 2τw/(ρU

2
∞) = 3.93 × 10−3 and 3.40 × 10−3, where τw = µ[∂z〈U1〉(x, z)]z=0) at

Reθ = 1430 and Reθ = 2541 are nearly identical to those measured (Cfx = 3.96× 10−3 and 3.39× 10−3) by
DeGraa� & Eaton (2000) and Schlatter et al. (2009), respectively.

3.2 Particle parameters

We studied four cases to understand how particles of di�erent Stokes number (St= τp/τk) disperse in a
SDTBL. The particle properties are shown in Table 4. Case A represents the �uid points, and cases B, C,
and D represent particle-laden �ows with di�erent particle Stokes numbers in zero gravity, St= 0.1, 1.0,
and 5.0, respectively. The value for the reference Kolmogorov time scale (τk) and length scale (η) were
computed at x = 10δ0 and z+ = 10, and found to be τk = 0.137 and η = 0.00377. We only changed the
particle diameter for each case to change the particle response time, τp. Figure 6 shows the Stokes number
dependence on z+, at three streamwise locations for cases B, C, and D. Throughout the paper particle case
identi�ers are appended with a number corresponding to the particle injection height, z+inj , e.g., case B100

represents St= 0.1 particles released from z+inj = 100. The values of d̃ in Table 4 were computed using the

dimensional values of δ̃0 and Ũ∞ in Table 1.

3.3 Time scales of SDTBL

Table 5 provides a summary of the time scales that were computed from the �uid point velocities (case A10
and A100) and from the turbulent �ow velocity at the line source. The Eulerian integral time scale was
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Case St=τp/τk τp τ+p d d+ d/η d̃(µm) ρp/ρf Rep,max

A 0 0 0 0 0 0 0 1 0
B 0.1 0.014 0.27 1.609×10−4 0.069 0.043 1.61 1000 0.38
C 1.0 0.137 2.68 5.087×10−4 0.220 0.135 5.09 1000 2.52
D 5.0 0.683 13.42 1.138×10−3 0.492 0.302 11.38 1000 7.34

Table 4: Particle properties at injection time (t = 0).

computed from the two-time Eulerian velocity autocorrelation function as

Ri,E(τ) =
〈ui(t0)ui(t0 + τ)〉
〈ui(t0)2〉 , (9)

where averaging, 〈. . .〉, is performed in both the spanwise and streamwise direction. The Eulerian integral
time scale is then de�ned as

Ti,E =

∫ ∞

0

RE,i(τ)dt. (10)

The Lagrangian autocorrelation function can also be written as

Ri,L(τ) =
〈vi(t0)vi(t0 + τ)〉Np

[〈vi(t0)2〉Np ]
1
2 [〈vi(t0 + τ)2〉Np ]

1
2

, (11)

where vi(t) is the �uid point velocity and 〈. . .〉Np
denotes the ensemble average of the enclosed quantity over

the total number of particles, Np. The Lagrangian integral time scale is then de�ned as

Ti,L =

∫ ∞

0

RL,i(τ)dt. (12)

z+inj τk (x = 10δ0) Tx,E Tx,L
10 0.0137 1.156 1.758
100 0.0351 1.532 1.850

Table 5: Fluid point properties and �ow parameters.

3.4 Particle mean displacement

The particle mean displacement in the xi-direction of dispersed particles is given by

〈xi,p(t∗)〉Np =
1

Np

Ninj∑

k=1

Np,k∑

j=1

[xi,p(t
∗)− xi,p(tp,r)]j,k (13)

where xi,p(t∗) is the particle location, tp,r is the time at which the particle is released, t∗ is a reference time
used for computing particle statistics de�ned as t∗ ≡ t− tp,r, Ninj is the number of particle injection events,
Np,k is the number of particles injected at each injection event, and Np is the total number of particles
tracked in the computational domain:

Np = NinjNp,k. (14)
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3.4.1 Comparison with Batchelor's (1964) theory

Using a Lagrangian similarity hypothesis, Batchelor (1964) derived analytical expressions for the displace-
ment of a passive scalar (�uid point) in the log-law region. The hypothesis is that �the statistical properties
of the velocity of a marked �uid particle at time t after release from the ground depend only on uτ and
t.� Batchelor extended the hypothesis to include particle sources above the ground. This extension is: �the
statistical properties of the velocity of a marked particle at time t after release at height zinj are the same
as those of a particle released at the ground at the instant t1, provided t� t1, where t1 is expected to be of
the order of magnitude of the time scale of turbulence at height zinj , that is, of order zinj/uτ .� Batchelor
then derived formulas for the mean streamwise and wall-normal displacement of �uid points:

〈zp(t)〉Np
= buτ t (15)

〈xp(t)〉Np
=
c 〈zp(t)〉Np

bκ

[
log

(
c 〈zp(t)〉Np

z0

)
− 1

]
(16)

where b and c are constants taken to be 0.41 and 0.5615 respectively, κ is von Kármán's constant, and z0 is
the length characterizing the surface roughness. For smooth walls, Cermak (1963) suggests z0 = 0.141(ν/uτ ).

Figure 7 shows the time development of the streamwise and wall-normal mean displacement of �uid
points from present DNS and Batchelor's (1964) theory (Eqs. (15) and (16)). In Fig. 7, Batchelor's (1964)
condition that t1 = O(zinj/uτ ) is shown by the vertical dashed line. Also, in Fig. 7, we have added a blue
area for which the lower limit is at t = Tx,L = 1.80 for �uid points released at z+inj = 50, and the upper limit
corresponds to the time when 35% of the �uid points have exited the log-layer. Over the period indicated
by the blue area, Batchelor's theory is in excellent agreement with our DNS results.

3.4.2 Solid particles

Figure 8 shows the time development of 〈xp(t∗)〉Np for the four cases (A-D) initially released in the log-layer
at z+ = 100, the bu�er layer at z+ = 10, and the viscous sublayer at z+ = 2. The quantity 〈xp(t∗)〉Np is
the centroid location of the particle cloud in the x-direction at time t∗. In all cases, the mean streamwise
displacement of the cloud decreases for increasing Stokes number. Also, this e�ect is enhanced as the injection
height z+inj is decreased. For z

+
inj = 100, Fig. 8(a) shows that at t∗ = 80 the centroid of the particles with

St= 5 (case D) has traveled 21% less distance than that of the �uid points (case A), whereas, for z+inj = 2,
Fig. 8(c) shows that this di�erence increases to 59%. Furthermore, Fig. 8(a) (z+inj = 100) shows that
the centroid streamwise displacement is ∝ t, thus the centroid moves at approximately constant streamwise
velocity as shown in Fig. 8(a).

Figure 9 shows the time development of the streamwise velocity of the particle cloud centroid, d
dt∗ 〈xp(t∗)〉Np

.
For all z+inj ,

d
dt∗ 〈xp(t∗)〉Np

decreases for increasing particle Stokes number. Figure 9(a) (z+inj = 100) shows
that particle cloud centroid of cases A, B, and C travels with constant streamwise velocity for t∗ > 70. Also,
in case D100 (St= 5), d

dt∗ 〈xp(t∗)〉Np decreases in time, i.e., the particle cloud centroid is decelerating. For
that case, simulation in a longer computational domain would be needed to show the asymptotic streamwise
velocity of the cloud centroid. Figures 9(b) and (c) show that the particle cloud centroid initially after injec-
tion undergoes a transient phase lasting approximately one Lagrangian integral time scale (Tx,L), and then
has a period of increasing d

dt∗ 〈xp(t∗)〉Np
lasting several integral timescales before reaching a steady value of

the mean streamwise velocity. The steady streamwise mean velocity of the centroid is reached only in cases
A, B and C for z+inj=100. In all other cases, such behavior cannot be observed in the present results because
longer time statistics would be needed, thus a longer computational domain. Figure 9(c) shows that the
centroid of particles with St= 5 approach constant velocity when z+inj = 2 and that d

dt∗ 〈xp(t∗)〉Np
is roughly

75% less than the �nal velocity of the �uid point cloud centroid at t∗ = 80.
Particles disperse in the boundary layer after they have been released from the line source. Particles in

cases A, B (St=0 and 0.1) do not preferentially accumulate as shown by the nearly uniform concentration
pro�le of the particles A and B in Fig. 10� and, when released in a region of local mean velocity closer to
the average velocity of the cloud, they reach their asymptotic streamwise centroid velocity in a shorter time
than when released near the wall (Fig. 9). For increasing Stokes number preferential accumulation in the
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near-wall region increases (turbophoresis), as shown in Fig. 10, thus the surrounding mean �uid velocity
to the particles decreases, and consequently the asymptotic centroid velocity decreases (Fig. 9). Particles
in case D, preferentially accumulate in the viscous sublayer independently from the injection height (Fig.
10). The asymptotic centroid velocity is reached in case D2 for t∗ > 50 because the particles are released
in the viscous sublayer where they preferentially accumulate, but as the injection height increases the time
required for the particles in case D to reach the asymptotic velocity increases due to the fact that longer time
is required for the particles to preferentially accumulate farther from their injection location in the viscous
sublayer.

To understand the time evolution of particle accumulation in the wall region, the number of particles in
the viscous sublayer (0 < z+ < 5) was counted and then normalized by the total number of particles in the
computational domain, Np,ν(t)/Np. Figure 11 shows that independent of the injection height, Np,ν(t)/Np
increases with Stokes number. Figure 11(c) shows the �uid points (case A) and the particles at St=0.1 (case
B) are nearly all ejected from the viscous sublayer for long times. In stark contrast, the largest particles
(case D) approach an equilibrium concentration of roughly 80% in this region. Hence, the mean displacement
of large particles is greatly reduced as a majority are trapped in the relatively stagnant viscous sublayer,
whereas small particles and �uid points show a net �ux into the higher speed outer �ow. Figure 11(a) and
(b) show that particles released outside the viscous sublayer also preferentially concentrate near the wall and
this e�ect is again accentuated for increasing Stokes number. Furthermore, an equilibrium state is reached
for all but the St= 5 particles. The equilibrium state appears to be dependent on the release height z+inj ,
however, a longer domain is needed to verify this.

Figure 12 shows the time development of the vertical position of the particle-cloud centroid in wall units,
〈z+p (t∗)〉Np

. For all z+inj , 〈z+p (t∗)〉Np
decreases for increasing particle Stokes number from case A to case D,

because as the Stokes number increases the particle cloud center of mass is closer to the wall (Fig. 10). This
e�ect is also enhanced as z+inj is decreased because the instantaneous particle concentration near the wall is
higher when particles are released near the wall (Fig. 10). In fact, for z+inj = 100, Fig. 12(a) shows that at
t∗ = 80, 〈z+p (t∗)〉Np

in case D is 40% smaller than that in case A, whereas, for z+inj = 2, Fig. 12(c) shows
that this di�erence increases to 82%.

Figure 13 shows the time development of the wall-normal velocity of the particle cloud centroid, d
dt∗ 〈z+p (t∗)〉Np

.
For all z+inj ,

d
dt∗ 〈z+p (t∗)〉Np

decreases for increasing particle Stokes number. Figures 13(a) and (b) show the
centroid experiences a period of rapid acceleration in the wall-normal direction lasting roughly 2 Tx,L, then
a short period of nearly constant maximum velocity, followed by an extended period of deceleration in which
for long times (t∗ > 70) constant wall-normal velocity is approached. Figure 13(c) shows for all cases (A-D),
for z+inj = 2, d

dt∗ 〈z+p (t∗)〉Np increases signi�cantly more slowly than in Figs. 13(a) and (b). Finally, the
d

dt∗ 〈z+p (t∗)〉Np
peak decreases for decreasing z+inj independent of particle Stokes number.

3.5 Particle mean-square displacement

The particle mean-square displacement (or dispersion), σ2
i , of an ensemble of dispersed particles in the

xi-direction is de�ned and calculated as

σ2
i (t∗) ≡

〈
(xi,p(t

∗)− 〈xi,p(t∗)〉)2
〉
Np

=
1

Np

Ninj∑

k=1

Np,k∑

j=1

[
xi,p(t

∗)− 〈xi,p(t∗)〉
]2
j,k
, (17)

which is a measure of the particle-cloud spreading about its center of mass.
Figure 14 shows the time development of the particle dispersion in the streamwise direction, σ2

x(t∗). For
z+inj = 10 and 100, σ2

x(t∗) increases with the Stokes number from case A to D because the spreading rate
is enhanced by the signi�cant number of particles trapped in the slow motion of the viscous sublayer (Fig.
11). For z+inj = 2 instead σ2

x(t∗) is not monotone with the Stokes number and is maximum in case C (St=1).
Figures 15 and 16 show instantaneous color contours of the number of particles summed in the spanwise
direction for cases A100 and D100, respectively, at times t = 0.8 . . . 78.4. Also shown is the the boundary
layer thickness, δ(x), (solid white line) and the lower and upper boundaries of the log layer (dashed white
lines). Figure 15 shows that the �uid point cloud released at z+inj = 100 is increasingly sheared in the
streamwise direction in time. Also, the white line, δ(x), limits the growth of the cloud in the wall-normal
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direction, however particles can still be advected beyond δ(x) by intermittent large eddies, as δ(x) is the
boundary layer thickness of the mean �ow. Figure 16 shows the cloud with St= 5 particles obtains a peak
concentration at x ≈ 12.5δ0 (see inset) in the viscous sublayer which is approximately �xed in time. We see
in general, much higher particle concentrations near the wall and much lower particle concentrations in the
outer �ow compared to �uid points (case A100). In all cases C and D, (not shown) particles separate into
two clouds, one trapped in the viscous sublayer (see inset of Fig. 16) and one traveling in the outer �ow,
whereas in cases A and B particles are more uniformly distributed across the boundary layer as shown in
Fig. 10 and 15.

For �uid points and particles with St= 0.1, and t∗ > 70, Fig. 14 (in log scaling) shows σ2
x is nearly ∝ t5/3.

Surprisingly, this result for the streamwise mean-square displacement in the SDTBL is markedly di�erent
from that in homogeneous turbulent shear �ows where for long times (t � TL) σ2

x ∝ t3, which was shown
theoretically by Corrsin (1959) and using DNS by Ahmed & Elghobashi (2001).

Figure 17 shows the time development of the particle dispersion in the wall-normal direction, σ2
z(t∗). For

z+inj = 100, σ2
z(t∗) is nearly independent of the particle Stokes number. Decreasing the injection wall-normal

distance from z+inj = 100 to 10 and to 2, σ2
z(t∗) decreases for all cases. For z+inj = 2, σ2

z(t∗) decreases with
the Stokes number from cases A & B to D. Finally, for all cases, σ2

z(t∗) is approximately ∝ t for t∗ > 30.

3.6 Particle turbulent di�usivity

The dispersion can be expressed for all times in terms of a di�usivity, Γ̂i,T(t∗) de�ned as:

Γ̂i,T(t∗) ≡ 1

2

d

dt∗
σ2
i (18)

Figure 18 shows the time development of the turbulent di�usivity in the streamwise direction, Γ̂x,T(t∗). For
z+inj = 10 and 100, Γ̂x,T(t∗) increases with the Stokes number from case A to D. For z+inj = 2 instead Γ̂x,T(t∗)
is not monotone with the Stokes number and is maximum in case C (St=1).

Figure 19 shows the time development of the turbulent di�usivity in the wall-normal direction, Γ̂z,T(t∗).
Figure 19(a) shows that the peak Γ̂z,T(t∗) increases with Stokes number. This is due to the Lagrangian
velocity autocorrelation (not shown) of larger particles decaying more slowly than for �uid points. Thus,
large particles exhibit a greater time period of short time (t� Tx,L) dispersion (∝ t2). As a result, Γ̂z,T(t∗)
for inertial particles will exceed that of �uid points for short times. A similar behavior was observed by
Elghobashi & Truesdell (1992) in DNS of particle dispersion in isotropic turbulence. This argument does not
hold for Figs. 19(b) and (c), as particles are moving in the viscous sublayer for short times. For very long
times (t∗ > 80), the �uid point turbulent di�usivity converges to Γ̂z,T(t∗) ≈ 0.002 independently of z+inj .

4 Conclusions

We have presented, for the �rst time, particle dispersion statistics obtained by performing DNS of a particle-
laden spatially developing turbulent boundary layer using an Eulerian-Lagrangian approach.

We showed that the streamwise and wall-normal displacement of the particle cloud centroid decreases
with increasing Stokes number independently of z+inj . This was explained by particles tendency to prefer-
entially accumulate in the viscous sublayer for increasing Stokes number. Flow visualizations showed that
St= 5 particles have peak concentration in the viscous sublayer whereas �uid points have nearly uniform
concentration pro�les.

The dispersion characteristics of inertial particles was then computed by measuring the mean-square
displacment, σ2

i (t∗), and the turbulent di�usivity, Γ̂i,T(t∗). We found that streamwise dispersion for �uid
points is fundamentally di�erent from that of inertial particles. Due to the trapping of inertial particles in
the viscous sublayer, cases C and D exhibit nearly ∝ t5/2 dispersion in the streamwise direction, whereas
cases A and B exhibit nearly ∝ t5/3 dispersion, which is di�erent than streamwise dispersion in homogeneous
turbulent shear �ow (∝ t3). For cases C and D, the particle cloud was separated into two components, one
which was trapped in the viscous sublayer, and the other traveling in the outer �ow with mean velocity
≈ 0.8U∞.
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For all cases, the wall-normal dispersion, σ2
z(t∗), is approximately ∝ t for t∗ > 30. Also, for particles

released in the log-layer, σ2
z(t∗) was found to be nearly independent of the Stokes number.

Finally, we showed excellent agreement with Batchelor (1964) for the mean displacement of �uid points
in the streamwise and wall-normal direction. Because the Lagrangian similarity hypothesis requires particles
to remain in the log-layer, Batchelor (1964) does not hold for long times. Also, we found that the lower
time limit can be relaxed to t > Tx,L for the time needed for the particles to lose memory of their initial
conditions.

The simulations were performed in part on a high-performance computer cluster called Hyak at the Uni-
versity of Washington, Seattle. This research was supported in part by the National Science Foundation
through the XSEDE computational resources provided by the National Institute for Computational Sciences
(NICS) at the Oak Ridge National Laboratory, under XSEDE grant number TG-CTS100024. We speci�cally
acknowledge the assistance of the XSEDE ECSS team members, Jay Alameda and Darren Adams, of the Na-
tional Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign.
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Figure 1: Schematic of the computational domain (not to scale).

Figure 2: x − z plane contours of the two-point streamwise velocity correlation, R11 (Eq. 5), computed
using an in�ow generation method (a) without dynamic re�ection and (b) with dynamic re�ection for case
3 (Table 3).
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Figure 3: Momentum thickness Reynolds number, Reθ, versus streamwise position, x.
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Figure 4: (a) Mean streamwise velocity pro�le and (b) Reynolds stress pro�les. Present DNS at Reθ = 1430
(solid lines); experimental data of DeGraa� & Eaton (2000) at Reθ = 1430 (symbols); DNS data of Schlatter
& Örlü (2010) at Reθ = 1421 (dashed lines).
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Figure 5: (a) Mean streamwise velocity pro�le and (b) normal Reynolds stress pro�le. Present DNS at
Reθ = 2541 (solid lines); experimental data of Schlatter et al. (2009) at Reθ = 2541 (symbols); DNS data of
Schlatter & Örlü (2010) at Reθ = 2537 (dashed lines).
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lines), x = 50δ0 (dashed lines), and x = 80δ0 (dot-dashed lines).
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Eq. (13),

for particles released at z+inj = 100, 10, and 2. Lin-lin plot (left column); log-log plot (right column).
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Figure 11: Time development of the number of particles in the viscous sublayer (0 < z+ < 5) normalized by
the total number of particles, Np,ν(t)/Np, for particles released at z+inj = 100, 10, and 2.
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Figure 12: Time development of the wall-normal location of the particle cloud centroid, 〈z+p (t∗)〉Np
Eq. (13),

for particles released at z+inj = 100, 10, and 2. Lin-lin plot (left column); log-log plot (right column).
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Figure 13: Time development of the wall-normal velocity of the particle cloud centroid, d
dt∗ 〈z+p (t∗)〉Np

, for
particles released at z+inj = 100, 10, and 2.
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Figure 14: Time development of the streamwise dispersion, σ2
x Eq. (17), for particles released at z+inj = 100,

10, and 2. Lin-lin plot (left column); log-log plot (right column).
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Figure 15: Instantaneous color contours of the number of particles summed in the spanwise direction for
case A100 at times t = 0.8, . . . , 78.4; boundary layer thickness, δ(x), (solid white line); and lower and upper
boundaries of the log-layer (z = 30δν(x) and z = 0.3δ(x)) (dashed white lines).

22



Figure 16: Instantaneous color contours of the number of particles summed in the spanwise direction for
case D100 at times t = 0.8, . . . , 78.4; boundary layer thickness, δ(x), (solid white line); and lower and upper
boundaries of the log-layer (z = 30δν(x) and z = 0.3δ(x)) (dashed white lines).
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Figure 17: Time development of the wall-normal dispersion, σ2
z Eq. (17), for particles released at z+inj =

100, 10, and 2. Lin-lin plot (left column); log-log plot (right column).
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Figure 18: Time development of the Lagrangian turbulent di�usivity, Γ̂x,T(t∗) Eq. (18), in the streamwise
direction for particles released at z+inj = 100, 10, and 2. Lin-lin plot (left column); log-log plot (right column).
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Figure 19: Time development of the Lagrangian turbulent di�usivity, Γ̂z,T(t∗) Eq. (18), in the wall-normal
direction for particles released at z+inj = 100, 10, and 2. Lin-lin plot (left column); log-log plot (right column).
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